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Abstract
This study investigates how capturing semantic relationships between essay prompts and responses can enhance
the prediction performance in a domain-adaptive automated essay scoring (AES). Domain-adaptive AES models
offer a balanced solution between cross-prompt models that are more generalizable but less accurate, and prompt-
specific models that are more accurate but require training models for individual prompts. Our findings show that
jointly training a model’s Relevance block, which aims to learn the topical relevancy from prompt-response pairs
using contrastive learning or classification methods, and Scoring block, which minimizes the regression loss, can
significantly improve scoring performance in domain-adaptive AES tasks. Additionally, our models effectively
mitigate the central tendency of predicted results, providing more reliable score predictions with substantially
higher accuracies for low- and high-scored essays. Qualitative analysis results further demonstrate how our
models capture the topical relevance between essay prompts and responses and improve the score predictions.
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1. Introduction

Automated essay scoring (AES) systems are widely used in educational settings to provide efficient and
consistent assessment results for a large volume of essay writings [1]. The models have evolved from
traditional machine-learning models to deep neural network models, leveraging pre-trained models like
GloVe [2] or BERT [3], to capture the nuanced semantic representations of essay responses [4]. Early
AES models focused on capturing lexical quality indicators, such as grammatical error counts, linguistic
complexity metrics, and other syntactic features [1]. While the models performed well on high-stakes
tests, they were found to be susceptible to adversarial or off-topic responses [5, 6]. Recent advances in
AES studies show that neural network models can more accurately predict human-annotated scores by
capturing the semantic relationships between the essay prompts and responses [7, 8, 9, 10]. AES models
that score essay responses with respect to the provided writing instructions could better reflect students’
actual writing behaviors and improve the models’ prediction performance [7]. However, existing
studies tend to miss the balance between the model’s generalizability and accuracy, which is crucial for
real-world applications, and more detailed evaluations that can capture the model’s performance across
different score ranges.

Many AES studies were conducted using either prompt-specific or cross-prompt settings. Prompt-
specific models train and evaluate on a single prompt, which provides higher accuracy but requires
training multiple models [11, 12]. Cross-prompt models train on multiple prompts and evaluate on
held-out prompts, offering generalizability but often sacrificing accuracy [13, 14]. Domain-adaptive
models, on the other hand, balance the two approaches (Figure 3). They are advantageous in large-scale
assessments by training a single model with essays from existing prompts and predicting scores across
multiple prompts. They also maintain competitive accuracy without the need for managing numerous
prompt-specific models [9, 10].

Moreover, evaluating AES models’ performance often depends on overall scores, such as Quadratic
Weighted Kappa (QWK) or correlation scores. Solely relying on these metrics may not provide detailed
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illustrations of the model’s reliability across various score levels. Machine learning models may
exhibit lower sensitivity to lower- or higher-scored examples, which are often underrepresented in
training sets [15]. In the context of AES, models with high central tendencies may inaccurately reward
poorly written essays or unduly penalize well-written ones, and misalign the output from the rating
schema [16, 17]. Investigating the model’s reliability across different score ranges can offer deeper
understandings of how models perform on diverse essay responses. Qualitative analyses that take a
closer look at what models have learned can also inform potential areas for improvement.

This study investigates whether jointly training the AES model with a non-scoring task, such as
determining the topical relevance between essay prompts and responses, can enhance the AES model’s
overall and score-wise performance. Our contributions to the research community include:

1. We show that the domain-adaptive models balance the strengths and weaknesses of both cross-
prompt and prompt-specific models, providing generalizability across multiple prompts while
maintaining competitive accuracy.

2. We compare various methods to capture the topical relevance between essay prompts and re-
sponses to improve the overall score prediction performance.

3. We demonstrate that our multitask models also reduce the central tendency and provide more
accurate predictions for both low- and high-scored essays.

4. Our qualitative analysis of essay prompts and responses provides a deeper understanding of how
our approach enhanced the model’s ability for AES.

2. Related Works

2.1. Domain-Adaptive Setting in AES

Prompt-specific AES models generally outperform cross-prompt models in terms of prediction accuracy.
But training multiple models for each prompt can be costly and limit the creation of new writing
prompts. Cross-prompt models can generalize across multiple prompts. However, using less accurate
AES models in high-stakes tests can compromise the assessment program’s reliability.

Domain-adaptive models [9, 10] can be an efficient solution that balances the two approaches for
real-world applications. These models are trained to predict essay scores from multiple writing prompts.
However, unlike the cross-prompt setting, evaluating essays may come from known or similar writing
prompts that exist in the training dataset. While the model works on multiple prompts, the models can
also achieve scoring accuracies that are comparable to those of prompt-specific models. In this study,
we demonstrate that our domain-adaptive models significantly outperform cross-prompt AES models
and achieve comparable performance to prompt-specific models.

2.2. Incorporating Essay Prompts and Other Responses in AES

Some AES studies aimed to capture the general quality of essays for accurate score predictions. This goal
could be further sophisticated by comparing the essays’ relative quality with other responses [12, 18],
or by extracting common latent features for high quality essay writing across different prompts [14].
AES studies also have used essay prompts as input features [7, 8, 9, 19, 10]. Studies have employed
attention mechanisms to capture the weighted vector values of the essay prompt and response texts [7]
or sentence-level similarity scores between the prompts and responses [8] as input features for the
downstream scoring task. In other machine learning applications, learning representations based on
target labels, such as sentiment types or review ratings, has been demonstrated to enhance a model’s
generalizability and prediction performance [20, 21].

Our study tests contrastive learning objectives to leverage intricate relationships between essay
prompts and student responses, training a model to represent positive examples in proximity, while
pushing away negative examples. Contrastive learning can improve data-efficient training and maximize
the utility of the training data. In NLP research, it has been shown to improve model representations [22]



and performance in classification tasks [21]. Previous AES studies have utilized contrastive pair-wise
ranking to leverage relative scores between responses [12] or compared essay responses with similar
scores to identify common quality features [14]. These studies relied on annotated scores to identify
positive and negative responses for contrastive learning. Our study explores whether two methods of
capturing the topical relevance between essay prompts and responses can enhance the accuracy of
score predictions.

2.3. Multitask Learning in AES

Multitask learning models refer to machine learning models that can learn to solve multiple tasks
simultaneously. These models can achieve better performance on individual tasks by leveraging
shared information across the tasks [23]. Recent studies in AES have also explored the multitask
learning approaches. For instance, combining different objectives, such as regression, ranking [8],
or similarity loss functions [11] could significantly enhance the performance of prompt-specific AES
models. Predicting multiple trait scores simultaneously, by leveraging inter-trait [13] or hierarchical
structures [24], could also improve the AES models’ prediction performance.

Capturing the relationships between writing prompts and responses can improve AES performance.
[19] utilized prompt label prediction and sentence coherency classification tasks as multitask learning
objectives to train AES models. Other studies have explored various learning tasks, such as measuring the
distance between responses and topical clusters, next sentence classification [9], or calibrated regression
loss with topical relevance probability [10], to improve score prediction accuracy. In this study, we
specifically investigate whether multitask learning objectives that extensively capture the semantic
relationships between essay prompts and responses, such as contrastive learning or classification
methods, can simultaneously improve domain-adaptive score prediction performance.

3. Model Design

This study explores whether the multitask model design, which learns both topical relevance and
scoring simultaneously, can improve overall predictions and score bin-wise reliability results (Figure 1).
The Relevance block learns contrastive representations of essay prompts and responses (Section 3.1).
For example, we assume that the embeddings of an assigned essay prompt and response pair from the
dataset should be similar to each other, whereas the similarity score between an essay prompt and a
response from a different prompt should be low. Simultaneously, the Scoring block learns to score using
essay prompts and responses (Section 3.2). During training, the encoder weights in each block are softly
shared and updated with L2 regularization (Section 3.3).

3.1. Relevance Block

The Relevance block requires positive and negative prompt-response pairs for training (Figure 1 (right)).
For example, if there is an essay response to score (anchor response), a prompt originally assigned to a
student is viewed as a positive example, while other randomly selected prompts are seen as negative
examples. When considering a writing prompt as an anchor point, a response written for that prompt
is considered positive, and responses from other prompts are regarded as negative. For this study, we
used one negative example for an anchor pair; however, it can be easily expanded by using multiple
negative pairs, as the computational resources permit.

3.1.1. Contrastive Learning with Essay Prompts and Responses

In existing studies, learning representations of texts with respect to the target labels has been shown to
improve the model’s generalization and prediction performance [20]. Specifically in [21], the authors
presented supervised contrastive learning methods, using multiple loss functions to learn representations
of text passages and labels, such as sentiments from Yelp reviews or genres of DBPedia articles.
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Figure 1: Left: This study used a multitask learning model with the Relevance and the Scoring blocks. The
Relevance block learns contrastive representations of essay prompts and responses, while the Scoring block
learns to score. The encoder weights are being softly shared. ( : residual connection, +: concatenation, (+):
element-wise sum, (−): element-wise absolute difference.) Right: For the contrastive learning setting, we used a
combination of loss functions. ICL attracts the embedding vector for an anchor response to the positive prompts
(𝑖) while repelling it from the negative prompts (𝑟). LCL compares an anchor prompt with positive and negative
responses. ERL ensures sufficient spacing between input prompts and output responses. [21].

In our study, we adapted this approach to essay responses and prompt identifiers, capturing the
topical relevance between essay prompts and responses. However, unlike the original study [21], which
trained new embeddings for the annotated labels, we utilized the essay prompts’ [CLS] embeddings
from transformer encoder models to leverage the rich content of essay prompts and simplify the model
design. All similarity functions used cosine similarity.

We used three loss functions to learn the representations of essay prompts and responses. The
Instance-Centered Loss (ICL) uses the InfoNCE loss [25] to increase the cosine similarity between the
positive pairs (e.g., positive response 𝑥𝑖 (anchor) and prompt 𝑦𝑖 pair) (Eq. 1), and decrease the similarity
between an anchor response 𝑥𝑖 and negative prompts 𝑦𝑟 (𝑖 ̸= 𝑟) (Eq. 2). 𝜏 is a scaling factor for the
exponential function, and 𝛾 is a lower bound for the similarity score. Following [21], we used 𝜏 = 1/16
and 𝛾 = 0.1. 𝐻 denotes embeddings from the encoder. 𝑖 and 𝑟 ∈ 𝑅 are indexes of positive and negative
examples from the batch. 𝑁 is the number of responses in a batch.

𝑆𝑝𝑟 = 𝑒𝑥𝑝((𝑠𝑖𝑚(𝐻𝑥𝑖 , 𝐻𝑦𝑖)− 𝛾)/𝜏) (1)

𝑆¬𝑝𝑟 = 𝑒𝑥𝑝((𝑠𝑖𝑚(𝐻𝑥𝑖 , 𝐻𝑦𝑟)− 𝛾)/𝜏) (2)

𝐿𝐼𝐶𝐿
𝑅 = − 1

𝑁
log

𝑆𝑝𝑟

𝑆𝑝𝑟 +
∑︀

𝑟∈𝑅 𝑆¬𝑝𝑟
(3)

The Label-Centered Loss (LCL) function is similar to ICL, but it aims to increase the similarity between
the positive prompt (anchor) and the response, and decrease the similarity between the anchor prompt
and negative responses.

The previous study [21] used the the Embedding Regularizer Loss (ERL) function to regularize the
label embeddings to be well dispersed in the embedding space. Instead, we used an average of two



ERL functions for responses (𝐿𝐸𝑅𝐿𝑅
𝑅 ) and prompts (𝐿𝐸𝑅𝐿𝑃

𝑅 ) to make both essay response and prompt
embeddings are more separable. (𝑞, 𝑘 ∈ ∪(𝑅, 𝑖), 𝑞 ̸= 𝑘).

𝐿𝐸𝑅𝐿𝑅
𝑅 =

1

𝑁
(
∑︁

𝑒𝑥𝑝(1.0 + 𝑠𝑖𝑚(𝐻𝑥𝑘
, 𝐻𝑥𝑞))− 1.0) (4)

The contrastive loss (𝐿𝐶𝑁
𝑅 ) comprises a weighted average of ICL, LCL, and ERLs. Following the

previous study [21], we used 𝜆𝐸𝑅𝐿
𝑅 = 0.5 [21].

𝐿𝐶𝑁
𝑅 = (𝐿𝐼𝐶𝐿

𝑅 + 𝐿𝐿𝐶𝐿
𝑅 + 𝜆𝐸𝑅𝐿

𝑅 · 𝐿𝐸𝑅𝐿
𝑅 )/3 (5)

3.1.2. Positive and Negative Pair Classification

An alternative approach to contrastive learning is to train a classifier that directly predicts the essay
prompt-response assignments. We created synthetic positive and negative pairs, similar to methods
used in off-topic essay detection studies [26]. We selected one response and its assigned prompt as a
positive pair. For negative examples, we paired the positive prompt with a randomly selected response
from a different prompt, and the positive response with a randomly selected prompt.

For each input pair, we concatenated three vectors: the attention-weighted response vector, the
prompt vector, and absolute differences between the two [27]. The single linear layer classifier was
trained by using cross-entropy loss, measuring how well the sigmoid output aligns with the synthetic
off-topic labels.

3.2. Scoring Block

For the Scoring block, we used a similar concatenated input from the classification module, but with
additional residual connections (Figure 1). We used RMSE instead of MSE [12, 11, 10, 9, 14], for the
predicted and annotated scores of positive responses to keep in scale with contrastive or cross-entropy
loss values. The regression head was composed of a fully connected layer, dropout, ReLU, and a linear
layer. The dropout probability was 0.3.

3.3. Input Representations

We tested two pre-trained encoders as backbones. We used BERT [3] to compare our results with
the existing AES studies [9, 10, 11, 12]. The results from smaller-sized DistilBERT [28] also help us to
examine the generalizability of our methods.

Following other AES and multitask learning studies, we used the embedding vector for the [CLS]
token to represent an essay response or prompt [11, 29, 30]. For inputs exceeding the pre-trained
encoder’s context length (e.g., 512 tokens for BERT), we fetched multiple [CLS] vectors with a 128-
token window and calculated their average. We used multi-head attention units with 8 heads to capture
the semantic relationship between the essay prompts and responses. For example, to calculate the
attention-weighted response vectors, the original response vector was used as the query, while the
prompt vector served as the key and value inputs to the multi-head attention units. The process is
reversed for the prompt vectors.

For the multitask learning settings, we used individual pre-trained encoders for the Relevance and
Scoring blocks. All encoder layers were fine-tuned with their respective tasks. Each layer’s weights
were softly shared and regularized to minimize the L2-norms of layer-wise differences. Compared to
other multitask AES models, where all tasks shared the same encoder module [14], the soft-sharing
design may adapt better to multiple tasks [31, 32].

3.4. Summing Up the Loss Values

For the comprehensive model, we calculated the weighted sum of relevance (𝐿𝐶𝑁
𝑅 , 𝐿𝐶𝐿

𝑅 ), scoring (𝐿𝑆),
and encoder soft-share (𝐿𝐸) losses. Based on a preliminary study, we used 𝜆𝐶𝑁

𝑅 = 0.1 and 𝜆𝐶𝐿
𝑅 = 1.0



Table 1
ASAP dataset by prompt. The response and prompt lengths are counted in the number of words and tokens
from the BERT tokenizer.

Prompt Essays Avg. Response Len.
(words/tokens)

Prompt Len.
(words/tokens)

Score Range Score Bins

1 1783 365.68 / 452.53 111 / 128 2-12 2-6, 7-8, 9-10, 11-12
2 1800 380.75 / 459.07 126 / 153 1-6 1-2, 3, 4, 5-6
3 1726 108.69 / 130.05 1087 / 1411 0-3 0, 1, 2, 3
4 1772 94.51 / 113.40 1411 / 2007 0-3 0, 1, 2, 3
5 1805 122.13 / 154.22 825 / 1050 0-4 0-1, 2, 3, 4
6 1800 153.30 / 195.23 1611 / 2028 0-4 0-1, 2, 3, 4
7 1569 168.20 / 213.36 58 / 65 0-30 0-6, 7-12, 13-18, 19-30
8 723 604.87 / 752.24 45 / 55 0-60 0-30, 31-35, 36-40, 41-60

for better scaling between the losses.

𝐿 = 𝜆𝐶𝑁
𝑅 · 𝐿𝐶𝑁

𝑅 + 𝜆𝐶𝐿
𝑅 · 𝐿𝐶𝐿

𝑅 + 𝐿𝑆 + 𝐿𝐸 (6)

4. Experiment Setup

4.1. Dataset and Evaluation

In this study, we used the ASAP dataset 1 (Table 1). The dataset includes essay responses from eight
prompts covering argumentative (Prompts 1, 2), source-dependent (3-6), and narrative (7, 8) writing
tasks. Following the previous studies [9, 10], we used a domain-adaptive setting that splits the entire
dataset into a 5-fold cross-validation setting (60:20:20). The domain-adaptive setting differs from the
prompt-specific setting, where each train and test set is derived from a single prompt set, or the cross-
prompt setting, which uses essays from multiple prompts and a held-out prompt for the test set (Figure 3).
We used the same data splits from [33], following other prompt-specific AES studies [11, 18]. A single
domain-adaptive model is trained with essays from all prompts and predicts the test set essays from all
prompts. As we used the same data splits, the results are comparable to a collection of prompt-specific
model evaluations (Figure 3 (Left)). All scores were scaled to a 0-1 range using min-max scaling per
prompt to score essay responses from multiple prompts within the Scoring block.

The source-dependent essays (Prompts 3–6) include background stories in the writing prompts,
making these prompts significantly longer than the argumentative or narrative essay prompts (825–
1611 words; Table 1). To control the length effect across different writing prompts as inputs, we
summarized the background stories for Prompts 3–6 using GPT-4o (version:2024-08-06). The
summaries were manually reviewed to ensure quality and relevance to the original prompts, resulting in
shorter summaries that are 96–156 words long. Instructions and excerpts for the summarized prompts
are shown in Figure 2.

The QWK results show an overall model performance across multiple essay prompts. However, they
do not describe the model’s performance at varying score levels, such as low, mid, and high scores.
To measure this, we categorized all the essay scores into the same number of bins and calculated the
score bin-wise accuracy and coefficient of variation (CoV) scores. We binned all essay scores into four
bins with hand-picked cut scores to minimize modifications (e.g., Prompts 3-6 already had four or
five score bins) and ensure that there are enough examples assigned for each score bin (Table 1). The
distribution of binned scores closely matched the original scores upon visual inspection (Figure 3). CoV
was calculated as the ratio of the standard deviation to the mean ( 𝑠𝜇 ) [15]. A lower CoV value indicates
that the scores deviate less from the mean, or a higher central tendency in the model’s predicted scores.
For the accuracy scores, we counted the number of correct predictions and divided it by the actual

1https://www.kaggle.com/competitions/asap-aes/data

https://www.kaggle.com/competitions/asap-aes/data


Instruction:
Summarize the story below in 50-100 words. The summarization should include useful information to
answer the question.\n\n#Question: {{question}}\n\n#Story: {{context}}

Summarized Story:
P3: A cyclist in Lodi follows misguided advice from old-timers, leading him on a challenging shortcut to
Yosemite. He faces ghost towns, rough roads, dehydration, and unhelpful landmarks like an old Welch’s
factory in the high desert. ... (108 words / 152 tokens)
P4: The author concludes the story with Saeng’s vow to retake her driver’s test in spring, symbolizing hope
and resilience. After failing the test, Saeng finds solace in the familiar hibiscus, reminiscent of Vietnam,
and shares a bonding moment ... (151 words / 195 tokens)
P5: Narciso Rodriguez’s memoir conveys a warm, nostalgic mood, celebrating the essence of family, love,
and community. Raised in Newark’s Ironbound, his Cuban immigrant parents exemplified sacrifice and
hospitality, turning their modest home into a vibrant hub ... (99 words / 132 tokens)
P6: The Empire State Building’s design aimed to surpass the Chrysler Building by incorporating a dirigible
mooring mast, inspired by aviation pioneers. Despite consultations with experts and tests, the mast faced
obstacles such as the Hindenburg disaster highlighting hydrogen’s ... (96 words / 135 tokens)

Figure 2: Instructions and excerpts of LLM-summarized stories for the source-dependent essays (Prompts 3–6).
The length of summarized prompts is also noted in the parentheses.
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Figure 3: Left: A domain-adaptive model is trained and evaluated using responses from all prompts. It
corresponds to a collection of training and test sets of the prompt-specific setting. This process is repeated across
𝑘 cross-validation folds. This setting is distinguished from the cross-prompt setting, where a model is trained on
essays from 𝑗− 1 prompts and is evaluated with the 𝑗𝑡ℎ held-out prompt. Right: The distributions of the binned
scores (blue) resemble the original scores (orange). The widths of the bars represent each score bin’s range.

number of essays for each score bin. Metrics like score bin-wise accuracy and CoV are useful for
evaluating the consistency and fairness of AES models [34, 35].

4.2. Baselines and Training Settings

Our baseline models were simple BERT-based regression models, fine-tuned solely with essay responses,
without incorporating any writing prompts or multitask learning objectives. Baseline-PS models
were trained and evaluated in a prompt-specific manner. Baseline-DA models used essays from all of
the multiple writing prompts.

We included results from other domain-adaptive (DA) AES models for comparison. First, we consid-
ered domain-adaptive AES studies based on BERT [3] and multitask learning. SST+DAT [9] combined
multiple objectives, such as next-sentence classification, noise detection, and distance to the topical
cluster’s centroid. AOES [10] used the off-topic probability of essay responses with respect to the writ-
ing prompt and calculated weighted scores. Although these studies’ results are not directly comparable
to ours, as they used different cross-validation splits for their evaluation, they serve as references for
domain-adaptive models.

Additionally, we included the results from cross-prompt (CP) and prompt-specific (PS) AES studies.
PMAES [14] is a state-of-the-art cross-prompt model that used contrastive learning with similarly



Table 2
Our domain-adaptive (DA) models demonstrated better prediction performance than the cross-prompt (CP)
models, but they did not perform as well as the state-of-the-art prompt-specific (PS) models. The multitask
learning models‡ achieved better average QWK scores than the single-task models†. Numbers in bold and
italic represent the best and second-best scores from the same pre-trained backbone. Statistically significantly
different results (one-tailed wilcoxon test, 𝑝 < 0.05) from the baseline models are marked (DA: *, PS: ∘). Results
from other studies were collected from each paper.

PLM +Features P1 P2 P3 P4 P5 P6 P7 P8 Avg.

BERT ‡+P+CL+CN .816* .702*∘ .703*∘ .810* .807 .808* .830* .733* .776*∘
‡+P+CL .812* .705*∘ .698∘ .820*∘ .807 .807∘ .830* .737* .777*∘

‡+P+CN .805* .692*∘ .691∘ .818* .800* .807* .829* .736* .772*∘
†+P .794* .674 .695 .803 .793 .803∘ .816 .702* .760*
†(Baseline-DA) .771∘ .645 .685 .788 .791 .799∘ .801 .670 .744∘
†(Baseline-PS) .818 .645 .680 .802 .801 .820* .825 .716 .763*

Distil- ‡+P+CL+CN .803* .691 .698* .815 .798 .803 .823*∘ .724* .769*

BERT ‡+P+CL .813* .688 .693* .813 .802 .798*∘ .820* .738*∘ .771*∘

‡+P+CN .812* .681* .680* .815 .793 .811* .823* .725* .768*
†+P .795 .656 .704*∘ .803 .800 .800∘ .804 .702* .758*
†(Baseline-DA) .788∘ .653 .706*∘ .808 .794 .796∘ .805 .638 .748
†(Baseline-PS) .810* .671 .670 .814 .802 .814* .810 .666 .757

(CP) PMAES [14] .758 .674 .658 .625 .735 .578 .749 .718 .687
(PS) BERT-LS [29] .815 .672 .693 .816 .809 .814 .829 .717 .771

Tr.-BERT [11] .834 .716 .714 .812 .813 .836 .839 .766 .791
NPCR [12] .856 .750 .756 .851 .847 .858 .838 .779 .817

(DA) AOES [10] .793 .661 .667 .789 .782 .787 .845 .754 .760
SST+DAT [9] .824 .699 .726 .859 .822 .828 .840 .726 .792

scored essays across multiple prompts to capture common quality features of essay writing. All prompt-
specific AES study results used BERT [3] as a backbone, and used the same test sets as our study [33],
making the results directly comparable to ours. BERT-LS [29] utilized the logical relationship between
sentences to enhance the performance of transformer-based AES models. Trans-BERT [11] pre-trained
the model using all non-target prompts first, and then fine-tuned it as a prompt-specific scorer for the
target prompt. Comparably, our approach is a single-stage training that is trained and evaluated with
multiple prompts simultaneously. NPCR [12] used contrastive ranking with a scoring task, achieving
state-of-the-art performance for a prompt-specific approach.

All models were trained for ten epochs with a 0.1 warm-up epoch. We used a batch size of 64, a
gradient accumulation of two, and a cosine learning rate scheduler with learning rates of 2.5e-5 (BERT)
or 5e-5 (DistilBERT).

5. Results

5.1. Overall Prediction Performance

Our models significantly outperformed the baseline models’ overall QWK scores (Table 2). The single-
task model with essay prompt input (+P) achieved significant improvements over the domain-adaptive
baselines (Baseline-DA) and similar performance to the prompt-specific (Baseline-PS) baselines.

The multitask models provided additional significant improvements over all single-task models
(𝑝 < 0.05). The models with the classification objective (+P+CL) performed better than the contrastive
learning (+P+CN) or the combined (+P+CL+CN). These models performed similarly [29] or worse [12, 11]
than other prompt-specific AES models. Although it was not directly comparable, our models also
showed a higher overall QWK score than the state-of-the-art cross-prompt model [14] and were similar



Table 3
Nearly all multitask learning models‡ and single-task models† demonstrated significant improvements in the
accuracies of the lowest and highest score bins, overall accuracy, QWK, and CoV scores. Numbers in bold and
italic represent the best and second-best scores from the same pre-trained backbone. Statistically significant
different results from the Baseline models (DA: *, PS: ∘) are also marked.

PLM +Features 1 2 3 4 Acc. QWK CoV

BERT ‡+P+CL+CN +8.6*∘ +1.9 -4.1*∘ +7.9*∘ 62.10* .735* .322*∘
‡+P+CL +7.2* +1.9* -4.3*∘ +10.1*∘ 62.22* .734* .320*∘
‡+P+CN +9.3*∘ +0.5∘ -3.7*∘ +7.8*∘ 61.98* .733* .323*∘

†+P +2.8 +1.0 -3.1* +5.1* 59.96 .721* .305*∘
†(Baseline-DA) 46.94 64.61∘ 72.42 50.09 58.52 .702 .295∘
†(Baseline-PS) +2.5 +2.8* -0.9 +1.3 59.94 .727 .284*

Distil- ‡+P+CL+CN +3.6∘ +3.5* -2.4∘ +2.9∘ 61.55* .727* .322*∘

BERT ‡+P+CL +3.8*∘ +2.8 -3.1*∘ +4.4*∘ 61.32* .727* .320*∘
‡+P+CN +4.0*∘ +1.8∘ -0.8∘ +1.7∘ 61.61* .726* .319*∘
†+P +2.6 +1.6 -2.5∘ +5.5*∘ 61.45 .722 .305*∘
†(Baseline-DA) 50.76 62.11∘ 71.31∘ 54.39∘ 59.64 .707 .304∘
†(Baseline-PS) -3.2 +3.6* +3.0* -4.9* 59.24 .722 .277*

to a domain-adaptive model [10].
The smaller DistilBERT-based Baseline-DA model performed better than BERT. However, the

BERT-based models outperformed DistilBERT in multitask learning settings (e.g., +P+CL: 0.777 (BERT-
based) vs. 0.771 (DistilBERT-based) (𝑝 < 0.05)). These results indicate that the larger backbone might
gain greater advantages from the multitask learning design by capturing more nuanced semantic
relationships between essay prompts and responses for scoring.

5.2. Score Bin-Wise Performance

The QWK results with the binned scores were lower than the original scores, but the overall patterns
were similar (Table 3). Our models provided significant improvements in accuracies for the lower- or
higher-end bins (e.g., 1, 4), while there were marginal improvements in the lower-mid scores (2) and
significant decreases in the higher-mid scores (3). However, the overall benefits in accuracy scores over
the baseline models were greater, especially with the multitask models.

We calculated CoV for min-max scaled scores across the prompts. Compared to the average of
human-annotated scores (.369), our AES models’ score predictions were still more centered around the
mean, but significantly improved from both domain-adaptive and prompt-specific baselines (𝑝 < 0.05).

5.3. Visualizing Prompt and Response Embeddings

Lastly, we investigated how different model features impacted the attention-weighted essay prompt
and response embeddings of the Scoring and Relevance blocks. We used t-SNE [36] to reduce the
embeddings’ dimensionality (Figure 4 (Top)).

For the Scoring block, the single-task baseline model (Baseline-DA) did not clearly grouped the
essay responses by each prompt, especially for the source-dependent responses (Prompts 3-6). Adding
essay prompts as input (+P) resulted in more distinct prompt-wise clusters of essay responses, although
some essay prompts were still not clearly separated. The multitask models using the classification task
(+P+CL or +P+CL+CN) showed similarly better clusters for both response and prompt texts.

The embeddings for Prompt 8 from the Baseline-DA did not clearly differentiate between the scores,
whereas the multitask model with classification (+P+CL) demonstrated better clustering of low- and
high-scored responses (Figure 4 (Bottom Left)).

The results from the Relevance block showed similar patterns because of the soft-sharing regular-
ization between the two encoders (Figure 4 (Bottom Right)). The embeddings from the contrastive
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Figure 4: Scoring block embeddings (Top), example response embeddings with scores (Prompt 8; Bottom left),
and Relevance block embeddings (Bottom right) from the BERT-based models. The visualization results show
that adding essay prompt input (+P) or multitask learning objectives (+CN or +CL) provides clearer clusters of
essay prompts and responses, and supports more accurate score predictions.

learning model (+P+CN) formed larger clusters that include both essay prompts and responses. The
classification multitask models (+P+CL or +P+CL+CN) developed more distinctive clusters for essay
prompts and responses. These results suggest that the multitask models can provide embeddings that
are both topically distinct and better suited for the scoring task.

6. Conclusion and Discussion

This study investigated whether capturing the topical relevance between essay prompts and responses
could provide more accurate and reliable AES predictions in domain-adaptive settings. Our multitask
learning design significantly improved overall QWK scores and reliability across different score ranges.
Also, the qualitative analysis showed that our methods can provide better representations of prompt
and essay text relationships and distinctions between the scores. We believe our domain-adaptive AES
models with the multitask learning design, offering generalizability across multiple prompts while
maintaining competitive accuracy, can be useful for real-world essay assessments.

Although the results were promising, our models did not reach the state-of-the-art performance of
the prompt-specific AES models [11, 12]. Adopting contrastive learning methods to extract general
essay quality features [14] could enhance scoring performance by combining both domain-adaptive and
domain-agnostic features. Testing the embedding quality of the Relevance block using a downstream
task, such as off-topic detection [10], or evaluating the relevance of essay responses to their assigned
prompts based on their writing quality, may also offer further insights. Additionally, t-SNE visualizations
provided potential explanations for the improvements observed with our contrastive learning methods.
A more formal and comprehensive investigation would further clarify why our methods are effective
and how they can be improved.

Investigating hyperparameters or model architectures could lead to better results. For instance,
our results indicated that the simple classification method provided marginally better scoring results
than using the contrastive learning objectives. The visualization results also showed that the essay
clusters from the classification (+P+CL) method were more distinctive than those from the contrastive
learning method (+P+CN). This may indicate that the ERL loss, which encourages the model to maintain
distance between the prompts (or responses) in the embedding space, was less effective than the simple
classification method in distinguishing different essay prompt groups. More systematic investigations



into the combinations of contrastive loss functions or weight parameters would help enhance the model’s
performance. For this study, we employed a BERT-based model design to compare our results with other
AES studies. Testing the method with more recent models, such as DeBERTa [37] or ModernBERT [38],
would improve our ability to handle longer inputs with more accurate representations.

Training our multitask learning models took longer than the baselines or single-task models because
they used an additional encoder unit and retrieved more essay response and prompt embeddings
for contrasting examples. Investigations into more efficient model architectures, such as mixture-of-
experts [30] or sparse sharing [32], may help address the resource issue and enhance the model’s
predictive capabilities in a parameter-efficient manner.

Lastly, our analyses were limited to the models trained with the ASAP dataset. In certain scenarios,
the differences between the models were minimal. Conducting experiments with cross-prompt settings
or additional datasets, such as PERSUADE [39], TOEFL writing [40], non-English essays, or other tasks
like scoring constructive responses would provide more insights into the models’ generalizability.

Declaration on Generative AI

During the preparation, the author(s) used GPT-4o-mini in order to: Grammar and spelling check.
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