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Abstract 
Large language models (LLMs) offer new opportunities to support deeper learning through open-ended, 
formative practice. This paper investigates two novel types of automatically generated questions: compare-
and-contrast prompts and student-authored exam questions. These question types are integrated into an 
ereader platform alongside conventional fill-in-the-blank items. To enable meaningful interaction with 
these open-ended tasks, an LLM is used to generate personalized feedback grounded in textbook content. 
A dataset of more than 90,000 student-question interactions is analyzed to evaluate how these new question 
types perform in terms of engagement, difficulty, persistence, and non-genuine responses, and how 
students interact with the LLM-generated feedback. Results are compared across contexts where questions 
were assigned as part of a course versus used voluntarily. Assigned usage dramatically increases 
engagement and improves performance across most metrics. To understand how students respond to the 
feedback itself, timing and textual overlap between the initial LLM-generated feedback and the student’s 
second attempt are examined, revealing distinct patterns of reflection, revision, and potential feedback 
reuse. These results highlight both the promise and complexity of using LLMs to expand the cognitive scope 
of automated formative practice while maintaining pedagogical value at scale. 

Keywords  
automatic question generation, open-ended questions, personalized feedback, large language models,  
performance metrics 

1. Introduction 

Automatic question generation (AQG) has been a proficient area of research and development in the 
past decade, enabled by advancements in natural language processing tools, machine learning 
techniques, and artificial intelligence. Many approaches have been used to develop AQG pipelines 
and for equally varied use-cases. However, from their systematic review of 92 AQG studies, Kurdi et 
al. [1] found only one study that evaluated automatically generated (AG) questions using student 
data and called for quantitative evaluations of question performance metrics. The AQG system 
studied in this investigation is an expert-designed, rule-based system that uses textbook content as 
the corpus for natural language processing in order to select important sentences and key terms and 
transform them into formative practice questions for students to answer as they read. Formative 
practice significantly benefits all students, particularly those who struggle or are disadvantaged [2, 
3], with integrated practice achieving six times the effect size compared to reading alone [4, 5]. Given 
this robust causal relationship [5, 6], leveraging AQG to scale formative practice widely was 
pragmatic. To support equity and access at scale, the AG formative practice was made available for 
free to any learner who uses textbooks containing it. Prior research on this AQG system in recent 
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years has compared engagement, difficulty, persistence, and discrimination performance metrics of 
intermixed AG and human-authored questions within a courseware environment [7, 8], and 
evaluated these same performance metrics at scale with more than seven million student-question 
interactions [9]. Further research studied student learning behaviors via question interaction 
patterns [10], the most effective type of automatically generated feedback for student persistence 
[11], and performance metrics with faculty and student perceptions from classroom implementations 
[12]. Not only does studying AQ questions using student data provide valuable performance 
benchmarks for formative learning contexts, but this research leads to iterative improvement cycles 
of the AQG system itself—ultimately benefiting the learners who use it.  

The AQG pipeline as originally created does not use large language models (LLMs) for question 
generation for two primary reasons: first, the LLMs were far less robust when the AQG pipeline was 
being developed and second, there is a possibility for factual inaccuracies from LLMs and the scale 
at which questions are being generated is far too great for human review—an ethical barrier. 
However, LLM technologies do have many advantages that could be applied to AQG pipelines if 
done so responsibly. Personalized feedback is one such opportunity. Generating open-ended 
questions is not challenging, but providing feedback is. Personalized, error-specific feedback is a 
hallmark feature of intelligent tutoring systems, well established for being the most effective 
computer-based learning environments [13, 14]. Once again, scale for this type of feedback was 
largely prohibitive, but text comparison is a strength of LLMs and could provide a solution to this 
challenge.  

In the fall of 2024, two new open-ended question types were added to the existing AG practice 
question types: a glossary term compare and contrast (C&C) question and a write your own exam 
question. These two new question types were selected to engage students in higher-level cognitive 
process dimensions [15]. An LLM is then harnessed to compare the student’s response to the relevant 
section of textbook content and provide constructive feedback. Although the rule-based AQG system 
was capable of generating such open-ended questions before, implementing them without providing 
feedback would have left students uncertain about their correctness, risking the perpetuation of 
misconceptions. Therefore, including these question types required the ability to provide 
accompanying personalized feedback.  

All AG questions are presented within a dedicated “CoachMe” panel alongside the ebook text, 
allowing learners to interact with questions while reading (Figure 1). Students may attempt each 
question as many times as desired, receiving immediate feedback indicating whether their response 
is correct or incorrect. The fill-in-the-blank (FITB) questions have contextual hints generated using 
related sentences of the same textbook section [11]. Students can revisit the textbook content for 
support before retrying, or when needed, can choose to reveal the correct answer. Additionally, 
students may rate the question after submitting a response using the thumbs up and down icon.  

Each student interaction with the ereader platform generates microlevel clickstream data, and 
these “digital traces of student actions promise a more scalable and finer-grained understanding of 
learning processes” [16]. These high-quality data allow for investigation of learner behaviors as well 
as learning technologies, allowing for old research questions to be answered in new ways and new 
research questions to arise from novel data [17]. The clickstream data are stored with a student 
identifier, so no personally identifiable information is connected with engagement data. The platform 
does not capture any student demographic data. The analysis in this study includes all students who 
have answered these questions, with an interest in studying the difference between self-motivated 
usage and usage when assigned in a course context. Investigating the effectiveness of AI is required 
to ensure its application is beneficial and performing as intended for learners. The use of AI in 
educational technology should adhere to AI principles (such as accountability, transparency and 
explainability, responsibility and ethics, and efficacy) both during its conceptualization and 
development [18] as well as reporting efficacy findings and continuing to engage in iterative 
improvement [19]. 

Beyond evaluating the two new question types, this study contributes to the broader theoretical 
understanding of how generative AI can facilitate higher-order cognitive engagement [15] and 



constructive learning activities [20]. Practically, our findings provide educators and educational 
technology designers concrete evidence supporting structured integration of cognitively demanding 
open-ended questions paired with AI-generated personalized feedback. By empirically 
demonstrating significant differences between assigned and unassigned contexts, this research 
underscores the critical role of instructional design in maximizing the benefits of automated 
formative practice at scale. 

The primary research questions for this paper are:  

1. What are the performance metrics for the new open-ended question types and how do they 
compare to the existing FITB questions as a benchmark?  

2. How do the performance benchmarks differ between contexts where the questions are 
unassigned (students self-selecting to answer) and assigned (known classroom 
implementations)?  

3. How does the LLM-generated personalized feedback perform? 

2. Methods 

2.1. Automatic Question Generation 

A rule-based AQG pipeline underpins the generation of the standard FITB questions used for 
comparison in this investigation. While full implementation details can be found in earlier work (e.g., 
[9]), a brief overview is provided here for context. The pipeline uses spaCy [21] to perform syntactic 
and semantic analysis of textbook content and applies TextRank [22] to identify sentences deemed 
important. Very short (fewer than five words) or very long (more than 40 words) sentences are 
discarded. For each remaining sentence, a set of rule-based filters removes trivial or ambiguous terms 
(e.g., function words, overly predictable words [23], or list items), leaving only key terms as blank 
candidates. If multiple terms survive, each is turned into a separate FITB question. These items are 
placed at major subsection boundaries so that learners regularly encounter formative practice 
questions while reading the textbook. 

2.1.1. Open-Ended Questions with LLM-Enabled Feedback 

Building on the rule-based pipeline described above, two new question types extend CoachMe into 
more open-ended tasks designed to foster deeper cognitive engagement (shown in Figure 1). The 
existing questions (including the FITB questions used here for comparison) are primarily focused on 
basic comprehension and most closely align with lower-level recognition and recall cognitive 
processes in Bloom’s taxonomy [15], and according to the ICAP framework [20], help maintain an 
“active” mode of engagement. Despite the seemingly modest cognitive demands, these question types 
have demonstrated effectiveness in supporting learning, as evidenced by the doer effect [5, 6]. While 
the standard items attend to essential knowledge-building, the newly introduced open-ended 
questions aim to elevate learners further along Bloom’s taxonomy and into a more “constructive” 
mode within the ICAP framework.  

The student-authored exam questions direct students to “Write a test question for the section 
‘[Textbook Section Title]’ as if you are the instructor preparing an exam.” This templated prompt is 
placed at the end of each major section of the textbook. This aims to promote higher-order thinking 
by requiring students to reflect on and synthesize key concepts. Having students compose their own 
exam questions fosters metacognitive awareness and shifts them from simply receiving content to a 
more constructive level of engagement. Research has found this type of student question creation 
can increase engagement and significantly enhance comprehension and academic performance, 
particularly when feedback is provided [24, 25]. 



 

Figure 1: Examples of a FITB question, exam question, and C&C question. 

The compare-and-contrast (C&C) questions focus on conceptual clarity by having students 
compare related glossary terms. The system automatically identifies pairs of “coordinate” terms that 
share a common final word (e.g., “lactate threshold” and “ventilatory threshold”) appearing close to 
each other in the same textbook section. It then inserts the standardized question stem, “Explain the 
difference between [Term 1] and [Term 2].” This task asks students to identify subtle distinctions, 
thereby engaging them in elaboration and deeper processing consistent with the “analyze” cognitive 
process dimension [15] and constructive engagement [20]. Research on C&C tasks suggests that 
recognizing similarities and differences and drawing comparisons improves conceptual clarity, 
facilitates retention beyond mere recall, supports the formation of conceptual categories, and aids in 
establishing meaningful links among ideas [26, 27, 28]. 

These new question types do not supplant the standard items; rather, they fulfill complementary 
roles. The standard questions help ensure students do not passively skim the text without active 
reflection of foundational content. The new open-ended questions require students to produce new 
representations of knowledge. This higher-order interaction can bridge connections between 
concepts more effectively and strengthen long-term retention. 

Once a student submits an answer, the platform gathers that response along with relevant 
textbook passages or glossary entries and forwards them to an LLM-based evaluator. The evaluation 
process proceeds as follows: 

1. An excerpt from the textbook or glossary is supplied to the LLM, ensuring feedback remains 
grounded in the source material and aligned with the textbook’s terminology. This “textbook-
centered” approach is designed to minimize hallucinations and maintain consistency with 
established vocabulary. 

2. The LLM is instructed to gauge the accuracy, completeness, and clarity of the student’s 
submission. In the case of a C&C question, for example, the LLM checks whether the 
student’s explanation clearly differentiates the two related concepts. Because these question 
types are intrinsically open-ended, the system does not classify answers as strictly “correct” 
or “incorrect.” Instead, the evaluator identifies strengths in the student’s work and points out 
areas that might need additional clarification or elaboration. 

3. The LLM produces a concise textual critique, which may include praise for effectively 
capturing key points, suggestions for further detail, or corrections if inaccuracies are evident. 
In the current implementation, GPT-4o [29] is used for feedback generation, with the 
temperature parameter set to 0 to decrease the likelihood of hallucinations. Since these 
question types often call for a higher level of cognitive engagement than the standard items, 



the feedback is intended to encourage iterative refinement, allowing students to revise and 
resubmit their answers if they choose. 

2.2. Data Collection 

The dataset consists of all student-question interaction events for the LLM-enabled questions 
gathered from August 15, 2024, through February 9, 2025. The ereader platform stores the raw 
clickstream data with anonymous identifiers. Student consent for research and analytics is obtained 
through acceptance of the platform’s terms of use and privacy policy. No student characteristics are 
collected and the learner context is in general not known, though the majority of data comes from 
higher education institutions in the United States. Data were grouped into student-question sessions, 
consisting of all actions of an individual student on a single question, ordered chronologically. A 
session may include multiple attempts on the question and, optionally, a thumbs up or down rating 
by the student (see Section 3.1.4). 

This resulted in a dataset of 83,624 LLM-enabled question sessions (56,944 exam question and 
26,680 C&C), encompassing 92,719 interaction events, 23,750 questions, 14,696 students, and 1,929 
textbooks. (Because only 544 of these textbooks included a glossary, C&C questions could only be 
generated for those particular books.) For comparative purposes, data from the standard FITB 
questions were retrieved for the same textbooks and timeframe, resulting in 1,142,891 sessions 
spanning 236,511 questions. The datasets are made available in our open data repository [30].  

These usage data reflect real-world learning contexts in which some courses assigned the 
questions as part of a participation grade, while in other cases the questions remained optional. 
Questions were categorized as either assigned or unassigned based on whether they were part of a 
known classroom implementation. Specifically, 21 course sections across four institutions were 
identified in which instructors explicitly required students to complete the practice questions; these 
constitute the assigned group. All other usage is considered unassigned and typically reflects 
voluntary student engagement, allowing for comparative analysis between contexts. 

2.3. Analysis 

2.3.1. Question Performance Metrics 

Previous research on AI-generated questions has relied on several core metrics to characterize 
question performance, including engagement, difficulty, persistence, non-genuine response rates [9, 
10], and student ratings [31]. The present study adopts these metrics to compare the performance of 
new LLM-enabled items and standard FITB questions (detailed in the Results and Discussion section). 
We adopt an exploratory approach for this study, using mean rates or proportions and quartiles for 
each metric. If notable differences emerge, future investigations may employ more advanced 
statistical approaches (e.g., mixed effects regression) to address variables such as subject domain or 
student-level factors. 

However, because the new question types lack predefined correct answers, an LLM-based 
approach was used to determine correctness (for C&C items) and to detect non-genuine responses 
(for both types). GPT-4o mini [32] was used to examine each C&C response and its accompanying 
feedback to decide whether a typical college instructor would reasonably consider it “complete and 
correct.” Exam questions receive no correctness label but are checked for non-genuine attempts. Any 
submission that does not address the prompt meaningfully (e.g., random text, “idk”) was flagged as 
non-genuine. To ensure reliability, the prompts were iteratively developed using a subset of 
responses, refining them until the LLM’s outputs were consistent with typical college-level 
evaluation. It was verified that the LLM correctly identified non-genuine answers and assessed C&C 
accuracy in a way that reflected domain-reasonable expectations. After prompt refinement, spot 
checks were performed on additional cases in the full dataset to confirm the LLM was applying these 
criteria consistently. While not a formal validation study, this process ensured that the LLM's 
classifications were consistent with our instructional intent. Although sufficient for the present 



analysis, we acknowledge that a more systematic validation, such as expert annotation of a sample 
set, would further strengthen the reliability of these measures. This remains an area for future work. 

2.3.2. Feedback Usage 

To examine how students might use the LLM-generated feedback, the time interval until a second 
attempt was computed. Specifically, if a student’s initial attempt was incorrect or non-genuine and 
a follow-up attempt occurred, the elapsed time (in seconds) between the submissions was calculated. 
This is similar to prior work in intelligent tutoring systems, where response latency often serves as 
a proxy for reflection or cognitive engagement [13, 28]. Because these intervals tend to be skewed, 
we report the first quartile, median, and third quartile (Q1–Q3). 

To assess whether LLM feedback fosters learning, the analysis focuses on sessions in which the 
first attempt was incorrect or non-genuine. The time interval data are stratified by the initial attempt 
category and the outcome of the second attempt (correct, incorrect, or non-genuine). This framework 
highlights pivotal transitions, such as moving from a non-genuine to a correct response, and 
establishes a basis for comparing revision times with textual overlap of the revised attempt with the 
feedback. Because the LLM’s feedback can occasionally provide near-complete model answers, 
recognizing such overlap is relevant for distinguishing between independent construction of new 
text and reuse of provided material. 

For this analysis, the LLM’s feedback and the student’s second answer were lowercased and 
stripped of punctuation to help mitigate superficial differences, then tokenized on whitespace. A 
token-level gestalt sequence-matching approach [33], implemented via Python’s 
difflib.SequenceMatcher, produced a similarity percentage score, where 100% indicates a 
verbatim match. Reordered text reduces the similarity score, penalizing partial rearrangements. This 
method is intended to capture literal copying more effectively than simpler distance metrics, as it 
identifies matching subsequences across the entire submission. These findings are then related to the 
time interval results, exploring whether rapid resubmission coincides with higher textual overlap. 

3. Results and Discussion 

3.1. Performance Metrics 

3.1.1. Engagement 

Engagement measures whether students choose to attempt a given question upon encountering it. It 
serves as a proxy for how appealing or approachable a question is to students in a given context. 
Lower engagement may indicate a question type is perceived as more time-consuming, overly 
difficult, or less beneficial. Because engagement serves as a core driver of the doer effect in formative 
practice, it remains a critical baseline for understanding how new question types fare relative to 
standard items. In this analysis, engagement is measured as the number of students who answered 
each question, which provides a straightforward indicator of how often a question drew student 
participation when encountered.  

Table 1 reports student engagement for each question type. For the assigned group, where 
engagement was more substantial, the mean and Q1–Q3 are reported. For the unassigned group, 
engagement was consistently low, so only the mean is reported. (In Tables 1–3, all cells represent 
over 1,000 sessions.) For unassigned questions, most were answered by only a few students. The 
mean number of students answering each exam question was 2.4, and 2.8 for C&C. The assigned 
courses show a very different pattern of behavior. A Mann–Whitney U test confirmed that 
significantly more LLM-enabled questions were answered in assigned contexts than in unassigned 
contexts (U = 1.23 × 106, p < .001). The mean numbers of students answering the exam and C&C 
questions are very close (51.7 and 55.5, respectively), which seems reasonable given the similarity in 
effort involved. The FITB questions are considerably higher at 84.5, and indeed are answered at a 
much higher rate at each quartile.  



Across the assigned group, FITB questions were answered at a substantially higher rate than exam 
questions at every quartile, with more than double the number of students answering at the 75th 
percentile. C&C questions showed stronger engagement than exam questions as well, with 75th 
percentile participation nearly 50% higher. These patterns suggest that students were more 
consistently willing to attempt FITB and C&C items when assigned. Faculty practices may contribute 
to this behavior; for example, many instructors assign participation credit for completing a portion 
(e.g., 80%) of the available questions, which could lead students to selectively skip certain question 
types. 

Table 1  
Number of students answering per question by type and assignment context. Assigned questions 
include mean and quartiles; unassigned questions include only the mean. 

3.1.2. Difficulty and Persistence 

Difficulty is reflected by the percentage of correct first attempts (sometimes referred to as the 
difficulty index). While the open-ended exam questions are less amenable to an objective correctness 
classification, C&C responses can be more readily evaluated because they involve specific key 
distinctions. GPT-4o mini [32] was employed post hoc to analyze each student’s submission together 
with its LLM-generated feedback, instructed to determine whether a typical college professor would 
regard it as “complete and correct.” This offline classification does not affect the real-time feedback 
students receive, but rather serves as a means to compare overall difficulty of the C&C items to that 
of standard FITB questions. As shown in Table 2, the results for C&C and FITB confirm trends from 
prior research [9, 10] that the mean difficulties are higher when the practice is assigned, meaning 
students get the questions correct more frequently in a classroom context when they are assigned. 
Specifically, a chi-square test showed that the proportion of correct first attempts for C&C was 
significantly higher in the assigned context compared to unassigned (χ² = 207.87, p < .001). The C&C 
questions had lower mean scores than the FITB questions, which is not unexpected given the higher 
level of cognitive effort and content comprehension required to answer the C&C compared to a 
single-term FITB. However, the difficulty index of 59.8 for the assigned C&C is within a reasonable 
range for such a complex question type.  

Persistence occurs when a learner continues after an initial incorrect attempt until they 
eventually arrive at a correct response. As with difficulty, persistence applies only to question types 
where correctness is defined (C&C and FITB). Although the system’s generative feedback focuses on 
iterative improvement rather than binary correctness, persistence nevertheless provides insight into 
how willing students are to revise more demanding items. The persistence data are a subset of the 
difficulty dataset, as it is only the students who were incorrect on their first attempt. Also consistent 
with prior research [9, 10], persistence increases when questions are assigned. For C&C questions, a 
chi-square test indicated that persistence was significantly higher in assigned contexts (χ² = 204.21, 
p < .001). Persistence for C&C is much lower than for FITB. This could be related to two factors. First, 
the effort to answer C&C questions is much higher than for FITB, so it is not unexpected students 
would be less inclined to attempt them more than once. Second, the post-submission experience 
differs considerably: FITB initially provides correctness without revealing answers, prompting 
retries or answer reveals, whereas incorrect C&C responses immediately receive comprehensive 
LLM-generated corrective feedback, reducing incentives to retry. Given this, students who persist 
may show added effort to rephrase the correct response on their own, but students who don’t persist 
have still received personalized corrective feedback—both beneficial learning experiences. 

 Unassigned Assigned 
 Mean Mean Q1 Q2 Q3 
Exam 2.4 51.7 4 21 62 
C&C 2.8 55.5 3.8 28 90.5 
FITB 3.9 84.5 24 60 143 



Table 2 
Difficulty and persistence rates by question type and assignment context. Difficulty is defined as the 
percentage of first attempts marked correct; persistence is the percentage of initially incorrect 
attempts that were ultimately followed by a correct one. 

3.1.3. Non-Genuine Responses 

Non-genuine answers are those that do not constitute a legitimate effort. For FITB items, a rule-
based filter detects obviously invalid submissions (e.g., single character, “idk”). As previously 
discussed, an LLM was used to evaluate whether a response substantively engaged with the C&C 
terms or proposed a meaningful exam question; if not, the answer is flagged as non-genuine. Non-
genuine responses are lower for students in the assigned group for the open-ended questions: exam 
questions 11.7% assigned versus 16.8% unassigned and C&C questions 15.2% assigned compared to 
19.1% unassigned. Chi-square tests confirm these differences are statistically significant for both 
exam questions (χ² = 200.01, p < .001) and C&C questions (χ² = 63.86, p < .001). The FITB questions 
have 6.6% non-genuine responses for assigned versus 3.9% unassigned. C&C questions had the 
highest non-genuine response rate for both groups. Given the cognitive demand combined with the 
need for understanding of two domain-specific terms, this is perhaps not surprising. 

3.1.4. Student Ratings 

Student “thumbs up/down” ratings (Figure 1) provide a mechanism for detecting problematic 
questions. Students could give a rating after submitting an answer, with one rating opportunity per 
question session. Table 3 shows higher overall rating frequency for unassigned questions. This 
initially seems counter-intuitive given the engagement is much lower for unassigned. We attribute 
this finding to rating fatigue [31]; students are more willing to rate early questions, but decline as 
they continue to answer. The students in the assigned group answer dramatically more questions, 
driving down their rating frequency. We also see an inverse relationship between the groups. The 
unassigned group has more thumbs up than thumbs down ratings while the assigned group has more 
thumbs down ratings. This could be attributed to students in the assigned group becoming more 
selective in motivation for rating, letting questions they like go by and negatively rating ones they 
liked less. These findings are consistent with prior research analyzing aggregate ratings [10, 34]. 
Exam questions have the highest thumbs up and down ratings for both groups. However, because 
the exam questions use only a templated prompt, they are not susceptible to some of the reasons 
FITB questions often get thumbs down, such as coming from an example or content students consider 
less helpful. Therefore, the thumbs down reasoning for exam questions is more likely related to not 
liking the question type itself. 

Table 3  
Thumbs up and thumbs down ratings per 1,000 student-question sessions, by question type and 
assignment context. 

 Difficulty Persistence 
 Unassigned Assigned Unassigned Assigned 
C&C 50.6 59.8 8.2 16.9 
FITB 65.9 79.9 61.2 94.7 

 Thumbs Up Thumbs Down 
 Unassigned Assigned Unassigned Assigned 
Exam 3.67 0.57 2.08 0.64 
C&C 2.22 0.21 0.93 0.42 
FITB 2.30 0.06 1.45 0.09 



3.2. Feedback Usage 

To investigate how students engaged with the personalized feedback, we examined both how quickly 
they revised their answers and how extensively they incorporated the LLM’s feedback text. Short 
intervals may indicate minimal attention to the feedback, whereas longer intervals could suggest 
more deliberate review. This also facilitates assessing whether rapid resubmissions align with 
potential “copy-paste” behavior. 

The analysis focuses on cases in which the first attempt was incorrect (C&C 28.4%) or non-
genuine (exam question 15.5%, C&C 17.7%). Although FITB items show high persistence (61.2% 
unassigned, 94.7% assigned), only 18.2% of exam-question sessions and 13.2% of C&C sessions with 
a non-correct first attempt proceeded to a second attempt. In Tables 4 and 5, which group data by 
first and second answer attempt categories, every cell comprises more than 100 sessions unless 
otherwise noted in the corresponding discussion. Tables 4 and 5 present the elapsed time between 
first and second attempts and the overlap score between each second attempt and the LLM feedback, 
disaggregated by question type, answer pattern (e.g., incorrect → correct), and assignment context. 
Second attempts on exam questions are classified only as genuine or non-genuine. All cells represent 
more than 100 sessions, except in the case of most incorrect or non-genuine second attempts (37–
107 sessions), and two specific cells, incorrect → non-genuine for unassigned and assigned, contain 
just 9 and 11 sessions, respectively. 

Table 4 
Time interval (s) between first and second student attempts, by question type, answer pattern (e.g., 
incorrect → correct), and assignment context. 

Table 5 
Token-level textual overlap (percentage) between initial LLM-generated feedback and student 
second attempt, by question type, answer pattern (e.g., incorrect → correct), and assignment context. 

   Unassigned Assigned 
 First  

Attempt 
Second  
Attempt 

Q1 Q2 Q3 Q1 Q2 Q3 

Exam Non-Genuine Genuine 15 24 56 11 14 28 
Non-Genuine 16.25 40.5 114 9 21 52 

C&C Incorrect Correct 39 73 125.5 18 29 59 
Incorrect 51 79 157 36.75 49 83.5 
Non-Genuine 15 58 162 24.5 55 115 

Non-Genuine Correct 17 26.5 53 12 15 22 
Incorrect 50 77 112 28 60 91 
Non-Genuine 11 18.5 44.25 7 11 21.5 

   Unassigned Assigned 
 First  

Attempt 
Second  
Attempt 

Q1 Q2 Q3 Q1 Q2 Q3 

Exam Non-Genuine Genuine 28.0 79.2 84.5 59.6 77.6 83.1 
Non-Genuine 0.0 3.9 9.2 0.0 4.5 10.4 

C&C Incorrect Correct 25.1 39.4 78.7 35.4 63.9 84.8 
Incorrect 16.0 23.3 29.2 15.7 19.3 22.5 
Non-Genuine 0.0 0.0 13.8 4.2 12.0 20.4 

Non-Genuine Correct 69.9 85.2 95.7 71.2 81.8 95.1 
Incorrect 15.4 20.3 29.1 18.8 28.1 38.0 
Non-Genuine 0.0 0.0 8.0 0.0 0.0 5.1 



There are several overall patterns noticeable from the time intervals. The first is that for every 
response pattern—across each quartile except one—the assigned group took less time to respond the 
second time. In many cases, they took roughly half the time, as seen in the C&C incorrect → correct 
response pattern. At first this seemed counterintuitive, as it could be assumed that students in the 
unassigned group would put less effort (i.e., time) than their assigned peers. However, when we 
consider the number of questions students in these groups answer, that changes the interpretation. 
Students in the unassigned group only answer a mean of 2.4 exam questions and 2.8 C&C, while the 
students in the assigned group answer a mean of 51.7 exam questions and 55.5 C&C. Students in the 
assigned group, familiar with expectations, respond faster, whereas the unassigned group likely 
requires additional time due to limited experience with the question type. 

Another intriguing finding is how similar the elapsed times are each quartile for both assigned 
and unassigned for the exam question non-genuine → genuine and C&C non-genuine → correct 
response patterns. Prior research established that a percentage of students who input non-genuine 
responses for FITB follow it up with the correct response, indicating a strategy to reveal feedback as 
scaffolding [9, 10]. The similarity of elapsed times for the non-genuine to genuine/correct response 
patterns suggests a similar strategy is being employed here. 

The overlap for non-genuine → non-genuine responses for both question types for both assigned 
and unassigned groups was 10.4% or less. Students who continued to enter non-genuine responses 
after receiving feedback did not appear to be considering the feedback or attempting to enter it back 
in. For C&C questions when students were incorrect on both attempts, they had among the highest 
time interval across all quartiles, yet low overlap (≤  29.2%). This may reflect prolonged struggle or 
repeated guesswork. 

However, overlap scores for exam questions (non-genuine → genuine) and C&C questions 
(incorrect → correct) reveal a wider range. Although the upper end of the overlap range still suggests 
significant reliance on the LLM’s explanation, the lower overlap scores and longer time intervals 
may imply more genuine reflection and partial rewriting or paraphrasing rather than copying 
verbatim. The literal reuse of feedback does not necessarily impede learning—some learners may 
paraphrase or synthesize the feedback effectively—yet identifying instances of minimal revision can 
clarify the extent of students’ engagement with the system’s feedback. 

4. Conclusion 

Incorporating generative AI into educational technology should maintain focus on research-based 
methods that benefit student learning and adhere to responsible AI principles. The addition of open-
ended questions that engage higher-order cognitive processes combined with personalized feedback 
to an existing AQG system provides students with a robust formative learning tool. This large-scale 
investigation of open-ended question types with LLM-enabled feedback provides a valuable 
comparison of performance metrics to established AG practice benchmarks. Addressing our second 
research question, we find that assigning questions has a profound effect on engagement, with clear 
impact on the rest of the performance metrics, indicating that structured classroom use encourages 
students to invest more effort in tackling these cognitively demanding tasks. Identifying effective 
strategies to encourage engagement in unassigned contexts remains an important direction for 
future research. Regarding research question one, assigned contexts showed higher difficulty and 
lower persistence for the new question types compared to FITB items, as expected given the greater 
effort required. The exam questions had notably less engagement, and combined with the thumbs 
down ratings, indicate a need for further consideration regarding the frequency of their appearance 
in the textbook. 

Studying the use of feedback (research question three) by using both time intervals between first 
and second attempts as well as text overlap percentages between the feedback and student responses 
revealed several patterns in student behaviors. The time interval between responses was shorter in 
assigned contexts, suggesting experience answering more open-ended questions decreased the time 
it took students to craft a second attempt. The overlap analysis shows that many learners who had 



incorrect or non-genuine first responses incorporate moderate to large portions of the LLM’s 
feedback into their next correct submission. However, this approach of rephrasing or revising after 
a copy-paste does not necessarily preclude learning. A promising area for future research is further 
analyzing subgroups of student responses, including non-genuine responses, to reveal additional 
ways LLM-enabled feedback could scaffold learners.  

As more domain-level, student-level, and other factors emerge from continued usage data, future 
work may employ more rigorous statistical modeling (e.g., mixed effects regression) to examine these 
factors in greater depth. In addition, because correctness and non-genuine responses were 
determined via an LLM-based evaluator, there is a possibility of classification errors or biases. Future 
analyses can consider sampling student responses for expert review and refining LLM prompts if 
necessary. Overall, these findings highlight both the promise and complexity of leveraging LLM 
technology to expand the cognitive range of automated practice. As generative AI continues to 
advance, maintaining rigorous analyses of usage patterns and performance metrics will remain 
crucial for ensuring that new capabilities genuinely advance student learning rather than merely 
accelerating the completion of tasks. In this case, we are satisfied that this first investigation shows 
a valid application of LLM abilities to provide the personalized feedback required by open-ended 
questions to support learning. 

Declaration on Generative AI 

During the preparation of this work, the authors used OpenAI o3 and GPT-4.5 for: refining draft 
content; paraphrasing and rewording; grammar and spelling checks. After using these tools, the authors 
reviewed and edited the content as needed and take full responsibility for the publication’s content. 
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