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Abstract
Essay examinations are widely used to assess expressive ability and logical thinking skills, but grading by humans
incurs significant costs and presents challenges in ensuring reliability. To address these issues, automated essay
scoring (AES) using artificial intelligence technologies has gained considerable attention. Although deep neural
network-based AES methods have demonstrated high accuracy in recent years, constructing highly performing
models requires training on large-scale, high-quality datasets of graded essays. In addition, rater biases and
grading errors can introduce noisy data, which may negatively impact model performance. To address this,
machine learning-based methods for detecting noisy data by estimating the value of each training sample have
been proposed. In this study, we propose a method for constructing an AES model that leverages data valuation
techniques to exclude noisy data. Furthermore, we integrate our method with a large language model-based data
augmentation approach, enabling the selection of high-quality augmented data to further enhance AES accuracy
in low-resource scenarios.
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1. Introduction

In recent years, there has been a growing emphasis on not only knowledge retention but also the
development of practical skills such as expressive ability and logical thinking skills in education. Essay
examinations have received significant attention as an approach to evaluating these higher-order
abilities [1, 2, 3]. However, large-scale essay examinations incur substantial cost for manual grading
due to the high volume of essays. Furthermore, factors such as rater biases and grading errors pose
challenges in ensuring fairness and reliability in scoring [4].

To address these issues, automated essay scoring (AES) using artificial intelligence technologies
has gained increasing attention in recent years [5, 6]. In particular, deep neural network-based AES
models have been widely proposed and have demonstrated high accuracy [7, 8]. These neural AES
models process essay texts as sequences of words and automatically extract latent features for score
prediction within the model. A representative approach in neural AES is based on bidirectional
encoder representations from transformers (BERT) [9], and numerous extended models have been
developed [10, 11].

Although these neural AES models have achieved highly accurate scoring, the construction of highly
performing models requires large-scale, high-quality datasets of scored essays. However, creating such
high-quality datasets is not a trivial task. As mentioned earlier, factors such as rater biases and grading
errors can lead to incorrect score assignments during the manual grading process, and these erroneous
scores introduce noise into the training data, potentially degrading the performance of AES models.
Therefore, a method for identifying and removing such noisy data during model training is highly
desirable.

To address these challenges, machine learning research has actively explored techniques for filtering
noisy data through data valuation, which estimates the value of each training data sample [12, 13,
14, 15, 16]. Data value is a concept that quantifies the contribution of each training sample to model
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performance. In data valuation, samples that positively influence model performance are assigned
higher values, while those that negatively impact performance receive lower values.

The simplest method for estimating data value is leave-one-out (LOO) [12], which evaluates the
impact of removing a single data sample on model performance. Additionally, data Shapley [14], inspired
by game theory, is another widely used data valuation method. More recently, a reinforcement learning-
based approach called data valuation using reinforcement learning (DVRL) [15] has demonstrated
both high accuracy and computational efficiency of data valuation. While these techniques have been
employed in various machine learning domains, their use in AES remains highly limited.

Therefore, in this study we investigate a method that applies three representative data valuation
methods, namely, LOO, data Shapley, and DVRL, to detect and remove noisy samples for training neural
AES models. Through experiments using a benchmark dataset, we demonstrate that our method can
identify noisy training samples, thereby improving score prediction accuracy.

In addition, we explore integration of our proposed method with data augmentation techniques,
which are widely used in machine learning tasks, including AES. While data augmentation is often
employed to increase the number of training samples, particularly in low-resource scenarios [17, 18, 19,
20, 21, 22, 23, 24], the quality of augmented data is not always guaranteed and may introduce noise.
Therefore, we hypothesize that applying our method can effectively filter out noisy augmented data,
leading to improved scoring accuracy. In our experiments, we apply our method to a data augmentation
approach based on a large language model (LLM) [19, 24] and demonstrate its effectiveness.

2. Automated Essay Scoring

AES has evolved rapidly in recent years, driven by advancements in artificial intelligence [5, 6, 25,
26]. This section provides an overview of AES tasks and conventional AES methods, followed by an
introduction to the AES model used in the present study.

2.1. AES Tasks

AES tasks can be categorized based on their scoring scope and prompt dependency. In terms of scoring
scope, AES is broadly divided into summative and analytical scoring [5, 27, 28, 29, 30, 31]. Summative
scoring, also called holistic scoring, refers to single-aspect scoring, where an overall score is assigned to
an essay. In contrast, analytical scoring, also known as trait scoring, evaluates multiple aspects of an
essay, such as content, organization, language use, and mechanics, assigning separate scores to each
dimension.

Another key classification of AES tasks is based on prompt dependency, where prompts refer to
specific essay assignments [5, 32, 33, 34, 35]. Prompt-specific AES is the task of constructing scoring
models that are trained on essays from a single prompt to predict scores for essays written in response
to the same prompt. In contrast, cross-prompt AES is the task of achieving generalized scoring across
different prompts by utilizing training data from multiple prompts to build a model capable of scoring
essays written in response to unseen prompts.

In this study, we focus on the most fundamental AES task: prompt-specific and summative scoring.
This setting ensures that we train and test a single-aspect scoring model on essays responding to the
same prompt.

2.2. Conventional AES Methods

Conventional AES methods under prompt-specific summative scoring settings have relied on feature-
engineering approaches, which use manually designed features, such as essay length and the number
of grammatical errors, to predict scores through regression or classification models [36, 37, 38]. While
these methods offer interpretability, they require significant effort in feature selection and engineering,
often necessitating customization for each specific essay prompt.



To address this limitation, deep neural network-based approaches have become increasingly popular.
These methods automatically extract relevant features from data, eliminating the need for manual feature
design. Early neural AES models have primarily utilized convolutional neural networks or recurrent
neural networks [39, 40, 41, 42, 43, 44]. More recent studies have focused on leveraging pretrained
transformer-based models [45], particularly BERT [9], which have demonstrated high performance and
accuracy in AES tasks [11, 46, 47]. BERT and its variants undergo extensive pretraining on large-scale
corpora, and fine-tuning on relatively small scored datasets has allowed them to achieve high accuracy
in AES tasks.

Recently, LLMs have emerged as the next frontier in AES research. A key advantage of LLMs is
their ability to perform various natural language processing (NLP) tasks, including AES, by processing
task instructions with optional few-shot examples [48]. LLMs are highly adaptable across different
NLP tasks while reducing the dependence on large labeled datasets for each specific task. Recent
studies have explored the use of LLMs for AES, demonstrating that they can achieve reasonable scoring
performance [26, 49, 50, 51, 52].

Although LLM-based AES has demonstrated acceptable accuracy under certain conditions, these
models generally underperform compared with fine-tuned scoring models based on pretrained trans-
formers [49, 50, 52, 53]. Given these trends, this study focuses on a fine-tuned BERT-based AES model
as the foundation for our research.

2.3. BERT-based AES Model

BERT-based AES models are typically designed by incorporating a linear output layer with a sigmoid
activation function into the BERT architecture. Specifically, let z denote the output vector of BERT
corresponding to the [CLS] token, which is added at the beginning of each essay. The predicted score 𝑦
is then computed through the following output layer:

𝑦 = 𝜎(Wz+ 𝑏) (1)

where W and 𝑏 represent the weight matrix and bias parameter, respectively, and 𝜎() denotes the
sigmoid function. Fine-tuning is conducted using backpropagation with the following mean squared
error (MSE) loss function.

ℒ =
1

𝑁

𝑁∑︁
𝑛=1

(𝑦𝑛 − 𝑦𝑛)
2 (2)

where 𝑦𝑛 and 𝑦𝑛 denote the gold-standard and model-predicted scores for the 𝑛-th training sample,
respectively, and 𝑁 represents the total number of samples. Note that, because sigmoid activation is
applied to the output layer, gold-standard scores 𝑦𝑛 must be standardized into the range [0,1] during
model training. Furthermore, during the inference stage, predicted scores must be linearly transformed
back to the original score scale.

Although such neural AES models have achieved high accuracy, their performance can degrade when
training datasets contain noisy data. To address this issue, this study proposes a method for filtering
out potentially noisy samples from the training dataset by leveraging data valuation techniques.

3. Data Valuation

This section provides an overview of the three representative data valuation methods used in this
study, namely, LOO, data Shapley, and DVRL. These methods assume that the training dataset 𝒟𝑡 and
validation dataset 𝒟𝑣 are given, both of which consist of labeled samples (𝑥, 𝑦), where 𝑥 represents the
explanatory variable and 𝑦 denotes the corresponding label. Data values are assigned to the training
samples in 𝒟𝑡 based on their contribution to the performance of a predictor on the validation dataset
𝒟𝑣 .



3.1. Leave-One-Out

LOO is the simplest method for data valuation [12]. In this approach, the value of a specific training
sample is determined by measuring the difference in the performance of a predictor when trained with
and without that particular sample. More specifically, let 𝑉 (𝒟𝑡) denote the performance of a predictor
trained on the training dataset 𝒟𝑡 when evaluated on the validation dataset 𝒟𝑣 . The value of the 𝑛-th
training sample is then computed as follows:

𝜑𝑛 = 𝑉 (𝒟𝑡)− 𝑉 (𝒟𝑡 − {𝑛}) (3)

where 𝒟𝑡 − {𝑛} refers to the set obtained by removing the 𝑛-th sample from 𝒟𝑡.
A known limitation of LOO is that if a removed sample was originally beneficial but the remaining

training samples still enable the predictor to achieve sufficient performance, its value may be underesti-
mated. Consequently, accurately estimating the value of individual training samples in large datasets
remains challenging. To address this issue, the data Shapley method [14] was proposed.

3.2. Data Shapley

The data Shapley method applies Shapley values [54, 55] from game theory to estimate data values.
In data Shapley, the power set of the training dataset is considered. The predictor is then trained and
evaluated on all possible subsets to compute the value of each training sample. Letting 𝒮 be any subset
of 𝒟𝑡 − {𝑛}, the value of the 𝑛-th training sample is computed as follows:

𝜑𝑛 = 𝐶
∑︁

𝒮⊆𝒟𝑡−{𝑛}

𝑉 (𝒮 ∪ {𝑛})− 𝑉 (𝒮)(︀|𝒟𝑡|−1
|𝒮|

)︀ (4)

where 𝒮 ∪ {𝑛} represents the set obtained by adding the 𝑛-th sample of 𝒟𝑡 to 𝒮 , and 𝐶 is a scaling
constant. Unlike LOO, the data Shapley accounts for contributions across all subsets, leading to
more precise data valuation. However, since the computation requires evaluating 2𝑁−1 combinations
for a dataset of size 𝑁 , the computational cost increases exponentially. To mitigate this issue, an
approximation method called gradient Shapley (GS) has been proposed, which employs Monte Carlo
sampling and gradient-based optimization. See [14] for the detailed algorithm.

Although GS reduces computational cost compared with the original data Shapley method, it re-
mains computationally expensive. DVRL was therefore proposed to further enhance efficiency while
maintaining high accuracy of data valuation [15].

3.3. Data Valuation Using Reinforcement Learning

DVRL consists of two components, namely, a predictor and a data value estimator, which are jointly
optimized within a reinforcement learning framework. The DVRL training process is formulated as the
following optimization problem:

max
𝜑

E(𝑥,𝑦)∼𝒟𝑣 [𝑅𝜑(𝜃
*)] s.t. 𝜃* = argmin

𝜃
E(𝑥,𝑦)∼𝒟𝑡 [ℎ𝜑(𝑥, 𝑦) · ℒ(𝑓𝜃(𝑥), 𝑦)]

where 𝑓𝜃 and ℎ𝜑 represent the predictor and data value estimator, respectively, with 𝜃 and 𝜑 as their
corresponding parameters. The predictor and data value estimator are both implemented as multilayer
perceptrons (MLPs) with a few fully connected layers to reduce computational costs. 𝑅𝜑 denotes the
performance of the predictor on the validation dataset and serves as the reward function in reinforcement
learning, while ℒ is the training loss function.

The outline of the DVRL training procedure is as follows:

1. Compute the value for each training sample 𝑝𝑛 ∈ [0, 1] using the data value estimator, where 𝑝𝑛
is given by 𝑝𝑛 = ℎ𝜑(𝑥𝑛, 𝑦𝑛), and 𝑥𝑛 and 𝑦𝑛 denote the input and corresponding label respectively
of the 𝑛-th sample. A sigmoid activation is used on the output layer of ℎ𝜑.



2. Referring to the estimated value 𝑝𝑛 as the probability of selecting the data, determine the selection
indicator 𝑠𝑛 by sampling from a Bernoulli distribution: 𝑠𝑛 ∼ Bernoulli(𝑝𝑛).

3. The predictor 𝑓𝜃 is trained using only the selected training samples.
4. Evaluate the performance of the trained predictor on the validation dataset and update the

parameters 𝜑 of the data value estimator using the obtained reward 𝑅𝜑. The parameter update is
performed using the REINFORCE algorithm [56]: 𝜑← 𝜑+ 𝛼∇𝜑𝑅𝜑, where 𝛼 is the learning rate,
and the gradient of the reward function is given by:

∇𝜑𝑅𝜑 = 𝑅𝜑 · ∇𝜑 log𝑃 ({𝑠} | 𝜑) . (5)

In this equation, 𝑃 ({𝑠} | 𝜑) represents the likelihood of data selection indicators computed as:

𝑁∏︁
𝑛=1

(ℎ𝜑(𝑥𝑛, 𝑦𝑛))
𝑠𝑛 (1− ℎ𝜑(𝑥𝑛, 𝑦𝑛))

1−𝑠𝑛 .

5. Repeat the above steps iteratively to train the data value estimator ℎ𝜑.

See the original paper [15] for further technical details.

4. Proposed Method

This study proposes a method that applies the above three data valuation methods to detect and remove
noisy training samples for training neural AES models. The proposed method consists of two main
steps:

1. Estimating the value of each sample in the scored essay dataset based on a data valuation technique.

2. Removing potentially noisy training samples based on the estimated values and constructing an
AES model.

The details of step (1) are described in Section 4.2, while those of step (2) are described in Section 4.3.
Furthermore, an overview of the proposed AES training pipeline employing data valuation is illustrated
in Fig. 1.

Figure 1: Overview of the proposed AES training pipeline using data valuation.



4.1. Task Setting

This study assumes that the given dataset is pre-split into a training dataset and a validation dataset.
Specifically, let the given dataset be 𝒟 = {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1, where 𝑥𝑛 denotes the 𝑛-th essay for a specific
essay prompt, 𝑦𝑛 is its corresponding gold-standard score, and 𝑁 represents the total number of samples.
The score 𝑦𝑛 takes an ordered categorical value 𝑘 ∈ 𝒦 = {1, . . . ,𝐾}, where 𝐾 denotes the number
of score categories for the given prompt. We assume that the dataset is divided into training 𝒟𝑡 and
validation 𝒟𝑣 subsets. Note that, because the validation dataset 𝒟𝑣 serves as the basis for identifying
noisy samples in the training data, the validation dataset must be of high quality. Therefore, we assume
that the accuracy of the scores assigned to essays in 𝒟𝑣 has been verified in advance.

The data valuation process assigns data values to the training samples in 𝒟𝑡 by evaluating the
performance of an AES model on the validation dataset 𝒟𝑣 . We then aim to construct a highly
performing AES model by using high-value training data. It is important to note that the architecture
of the AES model used as a predictor during the data valuation process does not necessarily have to be
the same as the final AES model.

4.2. Data Valuation for AES

As described above, we apply the three conventional data valuation methods to the AES task. To achieve
this, we design a predictor AES model, which is required for all data valuation methods, and a data value
estimator, which is specifically needed for DVRL. The following sections provide detailed descriptions
of their architectures.

4.2.1. Architecture of Predictor AES

All the data valuation methods require constructing an AES model as a predictor and evaluating its
performance on the validation dataset. Since the predictor is trained repeatedly during the data valuation
process, it is essential to use a computationally efficient model.

Therefore, as the predictor, this study employs an MLP that consists of two fully connected layers,
with the final output layer applying a sigmoid activation function, as defined in Eq. (1). The hidden layer
dimension of the middle layer is set to 512. The model input consists of distributed representation vectors
of essay texts obtained from the pre-trained decoding-enhanced BERT with disentangled attention
(DeBERTa) model1.

Model training during the data valuation process is conducted using Adam [57] with backpropagation
and the MSE loss function. The learning rate is set to 1× 10−3, and the model is trained for 100 epochs.
Furthermore, the AES performance of the trained model on the validation dataset is evaluated using
quadratic weighted kappa (QWK), a widely adopted metric in AES research [5, 6, 58].

4.2.2. Data Value Estimator in DVRL

DVRL requires a data value estimator in addition to the predictor. Since the data value estimator is
trained repeatedly alongside the predictor, it must also be computationally efficient.

Therefore, we construct the data value estimator as an MLP consisting of five fully connected layers,
with a linear output layer using a sigmoid activation function. The hyperparameters are set to match
those used in [15]. The input to the data value estimator consists of distributed representation vectors
of essays obtained from the pre-trained DeBERTa model, along with their corresponding gold-standard
scores.

4.3. Construction of the Final AES Model Using High-Value Data

To detect noisy data based on the calculated data values, we apply a clustering approach. Specifically, a
𝐾-means clustering algorithm with 𝐾 = 2 is used to partition the dataset into a high-value cluster

1We used microsoft/deberta-v3-large from Hugging Face in our experiments.



Table 1
Summary of the ASAP dataset

Prompt 1 2 3 4 5 6 7 8

Num. of essays 1,783 1,800 1,726 1,772 1,805 1,800 1,569 723
Avg. length 350 350 150 150 150 150 250 650
Score range 2-12 1-6 0-3 0-3 0-4 0-4 0-30 0-60

and a low-value cluster. The final AES model is then trained using the essay samples in the high-value
cluster.

As the final AES model constructed from the selected data, we adopt the BERT-based model2 intro-
duced in Section 2.3. The optimization is performed using AdamW, with the number of training epochs
set to 10.

5. Evaluation Experiments

This section describes the experiments conducted to evaluate the effectiveness of the proposed method.

5.1. Experimental Procedure

In this experiment, we used the automated student assessment prize (ASAP) dataset, a benchmark
dataset for AES. The ASAP dataset consists of scored English essays written in response to eight different
essay prompts. Table 1 provides an overview of the dataset.

Using this dataset, we conducted the following experimental procedure:

1. The scored essay dataset for each prompt in the ASAP dataset was split into 60% training data,
20% validation data, and 20% test data.

2. For 20% of the training samples randomly selected, a perturbation was applied to the corresponding
normalized score by adding or subtracting a value randomly sampled from the range [0.4, 0.6]. If
the resulting score exceeded the range [0, 1], it was rounded to fit within the range.

3. The proposed method was applied to the training data containing noisy samples to select high-
value, noise-free samples.

4. A BERT-based AES model was trained using the selected high-value samples, and its prediction
accuracy was evaluated using the test dataset, with QWK as the evaluation metric.

5. While changing the data partitioning process in step 1, we repeated steps 1 to 4 five times. The
final prediction accuracy was obtained as the average of these runs.

For comparison, we also conducted the same experiments without applying data selection in step 3,
where the BERT-based AES model was trained using all training data with artificially generated noisy
samples along with the validation data.

5.2. Experimental Results

The experimental results are shown in Table 2 with the highest accuracy for each setting highlighted in
bold. The results indicate that the proposed methods consistently outperform the model trained on all
data, regardless of the data valuation method applied. This demonstrates that removing noisy data by
using the proposed approach effectively improves AES accuracy.

Furthermore, the average accuracy follows the order DVRL > GS > LOO, suggesting that DVRL
provides the most accurate data valuation among the tested methods.



Table 2
Comparison of scoring accuracy (QWK) with and without the proposed method

Prompt
Avg.

1 2 3 4 5 6 7 8

All data 0.529 0.403 0.501 0.692 0.655 0.673 0.521 0.308 0.535
LOO 0.621 0.410 0.549 0.705 0.688 0.675 0.662 0.410 0.590
GS 0.787 0.641 0.649 0.749 0.792 0.735 0.776 0.665 0.724
DVRL 0.781 0.644 0.678 0.738 0.786 0.735 0.821 0.700 0.735

Table 3
Detection accuracy of noisy data (F1-scores)

Prompt
Avg.

1 2 3 4 5 6 7 8

LOO 0.527 0.381 0.413 0.362 0.354 0.352 0.635 0.449 0.434
GS 0.970 0.900 0.574 0.689 0.817 0.819 0.775 0.936 0.810
DVRL 0.963 0.956 0.836 0.771 0.844 0.829 0.947 0.990 0.892

Table 4
Computation time (units: seconds)

Prompt
Avg.

1 2 3 4 5 6 7 8

LOO 53 53 50 50 51 51 44 20 46
GS 4,726 4,808 4,554 4,683 4,752 4,742 4,152 1,916 4,292
DVRL 106 106 106 106 107 107 106 100 105

5.3. Validation of Estimated Data Values

To evaluate the effectiveness of the proposed method in detecting noisy data, we assessed the accuracy
of noisy data detection using the F1-score. Specifically, we treated the low-value cluster, obtained
through clustering based on the estimated data values, as noisy data, and measured how well the
proposed method identified these samples.

The results are shown in Table 3, showing that DVRL achieved the highest detection accuracy,
followed by GS and LOO. This trend is consistent with the AES accuracy reported earlier, suggesting
that higher data valuation accuracy contributed to improved AES performance.

5.4. Comparison of Computation Time

Table 4 shows the average time required for data valuation by each method, indicating that GS incurred
substantially higher computational costs, while LOO and DVRL were almost comparable. This result
also suggests that DVRL is a reasonable choice in terms of both computational efficiency and accuracy.

6. Application of the Proposed Method to Data Augmentation

As discussed in Section 1, the proposed method is expected to be effective when combined with data
augmentation approaches. Data augmentation refers to techniques that artificially expand a training
dataset [18] and is commonly employed when the available training samples are limited. With recent
advancements in LLMs such as ChatGPT, LLM-based data augmentation has been explored in various
NLP tasks [18, 19, 20, 21, 22, 23, 24]. However, the quality of augmented data is not always guaranteed

2We used google-bert/bert-base-uncased from Hugging Face as the basis BERT in our experiments.



Figure 2: An overview of the proposed AES training method, which combines data augmentation using LLMs
with data valuation-based filtering.

to be high, and there is a high likelihood of introducing noisy data. To address this issue, we propose
applying our method to an augmented dataset and evaluating its effectiveness.

6.1. Task Settings and Methodology

In this section, we assume that the given dataset 𝒟 = {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 contains a very limited number
of samples. More specifically, we consider a scenario where only one essay per score category is
available, meaning that 𝑁 = 𝐾 . Based on this dataset, we aim to generate scored essays using a data
augmentation method. The overall process is outlined in Fig. 2.

The data augmentation is conducted using ChatGPT with a detailed instruction to generate an essay
with a specified score by referencing the given pairs of essay texts and scores for all 𝐾 score categories
in 𝒟 as few-shot samples. The model used for augmentation was gpt-4o-mini-2024-07-18 [59],
with the temperature parameter set to 1.1. The prompt given to ChatGPT is shown in Table 5.

Using the augmented data as the training dataset 𝒟𝑡 and the original human-labeled data as the
validation dataset 𝒟𝑣 (namely, 𝒟𝑣 = 𝒟), we apply our proposed method to identify and remove noisy
augmented data. The final BERT-based AES model is then trained using the selected high-value samples
from the training dataset.

6.2. Experiments Using Augmented Data

We evaluated the effectiveness of the above method by assessing scoring accuracy for each of the eight
essay prompts in the ASAP dataset through five-fold cross-validation. As the data valuation method, we

Table 5
Prompt given to ChatGPT

Your task is to generate an essay with a score of “{target_score}” based on the characteristics identified
from a given set of scored essays. The provided essays were written by American students in grades 7
to 10, each assigned a score ranging from {min_score} to {max_score}. Use these essays as a reference to
generate new essays that align with the characteristics of the target score: {target_score}. Specifically,
imitate features such as content, word count, grammatical and logical structure, wording, and spelling
mistakes to match the characteristics of the target score category.
## Output each essay in the following format:
- **score**: [The score category that the essay represents.]
- **essay**: [The generated essay as a single string without any line breaks.]
## Examples:
[Few-shot examples (pairs of essays and scores in the format described above) are given here]



Table 6
Evaluation results of data augmentation approach using the proposed method

Type of training data used
Prompt

Avg.
1 2 3 4 5 6 7 8

Original data 𝒟 0.720 0.473 0.056 0.024 0.516 0.421 0.732 0.676 0.452
All augmented data 0.693 0.591 0.508 0.544 0.699 0.546 0.673 0.645 0.612
Filtered augmented data 0.748 0.604 0.553 0.554 0.753 0.559 0.646 0.649 0.633

employed the DVRL approach, which demonstrated the best performance in previous experiments. The
number of augmented samples for each score category was set to 100. The accuracy metric was QWK.

For comparison, we conducted the same experiments without data selection, where all augmented
data were used as the training data. In addition, we evaluated the accuracy of the BERT-based AES
model trained only on the dataset 𝒟 = 𝒟𝑣 , which contains 𝑁 = 𝐾 human-labeled essays, through the
same prompt-wise five-fold cross-validation.

6.3. Experimental Results

The experimental results are presented in Table 6, which show that the use of augmented data positively
impacted scoring accuracy on average. Furthermore, selecting augmented data through the proposed
method further improved accuracy. This suggests that some augmented data may have inconsistencies
between the assigned scores and actual essay quality, which can negatively impact the training process
of the AES model. By effectively filtering out such unreliable augmented samples and retaining only
high-quality ones, the proposed method is expected to enhance prediction accuracy.

The conventional approach using only original data 𝒟 achieved higher accuracy on prompts 7 and 8.
One possible explanation is that these prompts have a larger number of score categories, allowing the
model to achieve sufficient performance with just a single essay per score category. Another possible
explanation is that the wider score range may have made it challenging for ChatGPT to accurately
capture subtle differences in essays corresponding to each score category during data augmentation.
Consequently, the proportion of noisy data increased, making it difficult to retain high-value data even
when the our method was applied.

In summary, the experiments demonstrate that applying the proposed method with a data augmenta-
tion approach is likely to be effective in cases where labeled data is substantially limited.

7. Conclusion

In this study, we proposed a method for detecting and removing noisy data from the training dataset
by utilizing data valuation techniques to construct an accurate AES model. Experimental results
demonstrated that the proposed method effectively filtered out noisy data, thereby enhancing the
accuracy of AES models. Furthermore, we investigated the integration of our method with a data
augmentation approach. The experimental results indicated that applying the proposed method allowed
for the selective utilization of beneficial augmented data, leading to improved AES performance, in
scenarios with very limited training data.

While the proposed method demonstrated effectiveness in filtering out noisy data and improving AES
accuracy, the experimental conditions in this study were limited, and further investigations are needed
to evaluate the generalizability of the proposed method. More specifically, in the simulation, strong
noise was introduced into 20% of the training data, with score perturbations ranging from 40% to 60%
of the score range. However, more detailed analysis is required to determine the extent to which the
proposed method can detect noisy data under varying noise intensities and proportions. Additionally,
in the data augmentation experiments, we assumed a setting where only one essay per score category
was available. It is necessary to evaluate the performance of the proposed method under more diverse



conditions. Furthermore, this study explored a simple data augmentation approach using ChatGPT.
To better understand the relative impact of different augmentation methods, future research should
investigate the effectiveness of the proposed method using alternative data augmentation techniques.

In addition to the aspects discussed above, there remain several limitations that should be addressed
in future work. First, the present study was conducted using only the English ASAP dataset under
a holistic scoring setting. To evaluate the generalizability of the proposed method, it is necessary
to examine its effectiveness in other scenarios, including analytic scoring, cross-prompt evaluation,
and essays written in different languages. Second, although we compared three representative data
valuation methods, we did not include other potentially relevant approaches, such as MentorNet [60]
and Meta-Weight-Net [16], which apply data-weighting strategies during training. Comparison with
these approaches would provide further insights into the relative advantages and limitations of our
method. Third, the data values assigned by the proposed method are represented as scalar scores,
making it difficult to interpret the reasons for data exclusion in linguistic or pedagogical terms. This
lack of interpretability may raise concerns regarding fairness and transparency, particularly in high-
stakes educational applications. Finally, the current method employs a fixed 𝐾-means clustering with
𝐾 = 2 to separate high- and low-value data. Since the choice of thresholding strategy may affect
model performance, it would be worthwhile to explore sensitivity analyses and alternative clustering
approaches.
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