
Revisiting Clause Vivification
Florian Pollitt1, Mathias Fleury1, Armin Biere1, Marijn Heule2, Karem Sakallah3,
Jiawei Chen3 and Yonathan Fisseha3

1University of Freiburg
2Carnegie Mellon University
3University of Michigan

Abstract
We explain in detail how we reimplemented vivification in our award winning solvers and then, focusing on
Kissat, report on experiments on an interesting scalable factoring benchmark suite which helped us to find and
remove a subtle performance regression in the vivification code.

Keywords
SAT solving, inprocessing, simplification, vivification

1. Introduction

While SAT solvers spend most of their time running the conflict-driven clause learning (CDCL) proce-
dure [1], all winners of the SAT Competition since 2014 interleave this “search” procedure with other
procedures globally transforming the formula, i.e., techniques collectively referred to as inprocessing [2].
They aim either to simplify the formula in ways that CDCL cannot or help it to run faster.

There are different types of inprocessing techniques. Some like variable elimination [3] and variable
addition [4] do not preserve models, but only equisatisfiability (requiring models to be fixed). Other
techniques reduce duplicated information over variables, like equivalent literal substitution (ELS) [5].
Finally, many different techniques remove duplicated information within clauses, including subsumption
or self-subsuming resolution. They are based on combining two clauses, either to show that one
subsumes the other or to generate a shorter subsuming clause by resolving the two clauses.

The focus of this work is one of the key inprocessing techniques, referred to as distillation [6], which
also has been independently discovered and described as vivification [7]. We adopt the term “vivification”
for this paper, in line with more recent literature [8, 9]. This technique generalizes self-subsuming
resolution by utilizing multiple clauses to produce a shorter subsuming clause, rather than just resolving
two. The process leverages the optimized unit propagation component of a SAT solver. In particular it
is useful to simplify and remove learned “glue clauses” [10] which otherwise are kept indefinitely.

The vivification algorithm must differentiate among various scenarios involving the detection of
subsumed clauses, their deletion, or their strengthening (aka. shrinking). We discuss how vivification
has been implemented in our solvers, Kissat [11], since 2023, and in CaDiCaL (part of version 2.2-rc2)
both with respect to how exactly clauses are “vivified” and vivification is scheduled.

While working on a new scalable family of benchmarks factoring (Sec. 3), based on proving that
no factorization of a prime number is possible, we observed an interesting performance regression in
Kissat. After quite some debugging effort, we noticed that fewer clauses were deleted, which we then
traced down to keeping more clauses during vivification. This lead to a solver slowdown accumulating
over time, yielding much worse performance on these remarkable benchmarks.

16th Pragmatics of SAT International Workshop 2025 (POS’25)
$ pollittf@cs.uni-freiburg.de (F. Pollitt); fleury@cs.uni-freiburg.de (M. Fleury); fleury@cs.uni-freiburg.de (A. Biere);
marijn@cmu.edu (M. Heule); karem@umich.edu (K. Sakallah); chenjw@umich.edu (J. Chen); yonathan@umich.edu
(Y. Fisseha)
� 0009-0001-4337-6919 (F. Pollitt); 0000-0002-1705-3083 (M. Fleury); 0000-0001-7170-9242 (A. Biere); 0000-0002-5587-8801
(M. Heule); 0000-0002-5819-9089 (K. Sakallah)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

153

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:pollittf@cs.uni-freiburg.de
mailto:fleury@cs.uni-freiburg.de
mailto:fleury@cs.uni-freiburg.de
mailto:marijn@cmu.edu
mailto:karem@umich.edu
mailto:chenjw@umich.edu
mailto:yonathan@umich.edu
https://orcid.org/0009-0001-4337-6919
https://orcid.org/0000-0002-1705-3083
https://orcid.org/0000-0001-7170-9242
https://orcid.org/0000-0002-5587-8801
https://orcid.org/0000-0002-5819-9089
https://creativecommons.org/licenses/by/4.0/deed.en

Florian Pollitt et al. PoS 2025: Pragmatics of SAT 153–167

In this paper, we discuss our new vivification algorithm implemented in both CaDiCaL and Kissat
and how it is scheduled. A major difference to our original vivification implementation in CaDiCaL [12]
in 2018 is that the old version of vivification first worked on irredundant (original) clauses before
vivifying redundant ones. Further, now, overall scheduling as well as the time-budget allocated to
vivification is based on ticks (as a deterministic proxy of running time – similar to Knuth’s “mems” [13]),
and total vivification effort is explicitly split between clauses with different clause quality, i.e., redundant
tier-1, tier-2, tier-3, and irredundant clauses (Sec. 4). We further present how our new vivification
algorithm detects subsumed clauses on-the-fly, but otherwise mostly focus on clause deletion (Sec. 5).

Our experiments (Sec. 6) show that considerable run-time variation can be observed for different
choices of removing or keeping a redundant clause during vivification. We also show that vivification
candidates are frequently subsumed. Still, the most common case of successful vivification are shorter
clauses as well as removing clauses due to finding an implied literal. Finally, we show that ticks-based
scheduling and limiting vivification effort is effective across different benchmarks.

2. Vivification Algorithm

For background on SAT, we refer to the Handbook of Satisfiability [14]. Vivification relies mostly on unit
propagation of literals and on a dedicated conflict analysis similar to “analyze-final” in MiniSat [15]
producing decision-only learned clauses. For related work on pre- and inprocessing (simplification before
running and during running CDCL), we also refer to the corresponding chapter of the Handbook [14].

Given a candidate clause the idea of vivification [6, 7] is to iteratively assume all its literals to be
false. Between each assumption / decision, the solver fully propagates all other clauses, ignoring the
candidate clause. Otherwise, the candidate clause would propagate the last unset literal.

As in CDCL (actually as in DPLL already), if a conflict is found with the decisions ¬ℓ1,¬ℓ2, . . . ,¬ℓ𝑘 ,
we know that the clause 𝐷 := ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓ𝑘 is entailed by the formula. Therefore, it can be used to
strengthen the candidate clause 𝐶 as follows:

• if the clause 𝐷 is a strict subset of 𝐶 , then 𝐷 subsumes 𝐶 , so we can strengthen the candidate
clause 𝐶 by simply replacing 𝐶 with the shorter clause 𝐷 (also called “shrinking” 𝐶);

• similarly, if the negation of one literal of 𝐶 is propagated instead before being assigned as decision,
we can remove it from 𝐶 , i.e., also strengthening the candidate clause;

• otherwise, if a literal ℓ𝑖 of 𝐶 is propagated positively, then ℓ𝑖 is implied, we assume that the
propagation power of 𝐶 is covered by others, it is redundant and can be removed.

Vivification had minor impact in 2007 and 2008, when it was originally described, but started to
shine in 2017 [9, 8], where a solver with a new variant of vivification won the SAT Competition 2017.
The important idea was that vivification should not only be applied to irredundant (equisatisfiable to
the original) clauses but also to redundant (learned) clauses, i.e., during inprocessing. In contrast to
our implementation and description of vivification above, Li et al. [8] propose to use a dedicated but
more general conflict analysis, which potentially can learn a completely different new clause, instead of
focusing on decision-only learned clauses, i.e., sub-sets of the candidate clause, as we do.

Vivification was subsequently implemented in various solvers including Glucose (in the version that
entered the 2018 SAT Competition as the first and currently only inprocessing technique implemented
in Glucose [16]) and CaDiCaL [12] in 2018.

3. Factoring Benchmarks

We created a new set of unsatisfiable benchmarks based on factoring prime numbers available at
https://github.com/m-fleury/sat-factoring-generator. For a fixed prime number (represented by a bit
vector of an appropriate bitwidth), we assert that there are two numbers (greater than one) whose
product generates said prime number (Alg. 1). We then simply use Bitwuzla [17] to bit-blast this
SMT-LIB bit vector problem into CNF.

154

https://github.com/m-fleury/sat-factoring-generator

Florian Pollitt et al. PoS 2025: Pragmatics of SAT 153–167

generate-factoring-smt (prime, bitwidth) // C++ like output stream with “<<”
1 << "(set-info :smt-lib-version 2.6)"
2 << "(set-logic QF_BV)"
3 << "(declare-fun a () " << bv-type (bitwidth) << ")" // SMT-LIB constants for inputs and output
4 << "(declare-fun c () " << bv-type (bitwidth) << ")"
5 << "(declare-fun d () " << bv-type (bitwidth) << ")"
6 << "(assert (= a (bvmul c d)))"
7 << "(assert (= a #b" << binary (prime, bitwidth) << "))" // fix the output to “prime”
8 << "(assert (not (= c #b" << binary (1, bitwidth) << ")))" // avoid “one” as one of the factors
9 << "(assert (not (= d #b" << binary (1, bitwidth) << ")))"

10 << "(assert (not (bvumulo c d)))" // ensure no overflow during multiplication
11 << "(check-sat)"
12 << "(exit)"

Algorithm 1: Generating SMT Formula

create-benchmarks (lower-bitwidth, upper-bitwidth, primes-per-bitwidth)
1 for current-bitwidth from lower-bitwidth to higher-bitwidth

2 low = (1 << current-bitwidth) // “<<” = bit-shifting
3 high = (1 << (current-bitwidth + 1))
4 increment = (high - low) / primes-per-bitwidth // (non-random) uniform distribution
5 for 𝑘 from 1 to primes-per-bitwidth

6 lower-limit = (1 << current-bitwidth) + increment * (𝑘 - 1)
7 upper-limit = (1 << current-bitwidth) + increment * 𝑘
8 prime = find-smallest-prime-between (lower-limit, upper-limit)
9 if prime generate-factoring-smt (prime, current-bitwidth)

Algorithm 2: Generating Factoring Family

To obtain a benchmark set scaling in size and difficulty to solve, we generate a fixed number of
primes for each bitwidth (primes-per-bitwidth), uniformly distributed in the entire range which can be
expressed by this number of bits, forcing the most-significant bit to true (Alg. 2). To our surprise (see
Fig. 1), this actually created a remarkable family of unsatisfiable benchmarks scaling very nicely: the
runtime increases slowly and predictably, and it is easy to produce more benchmarks by increasing the
number of generated instances for each bitwidth, as well as harder benchmarks with larger bit-width.

We attempted to produce scalable satisfiable benchmarks too by taking as starting point the product
of two prime numbers (prime numbers that are close to each other). However, the generated problems
turned out to be too easy (even for large numbers). A related benchmark set of satisfiable instances was
evaluated in [18] using [19] to generate CNF, while we rely on SMT-based bit blasting.

4. Scheduling and Ordering

There are three major questions when implementing vivification:

• How often to vivify?
• Which clauses should be vivified?
• In which order should the literals of a clause be assumed?

We answer these questions on an abstract level and dive into some additional details below. The
next Section 5 provides concrete pseudo-code with a more detailed discussion, high-lighting specific

155

Florian Pollitt et al. PoS 2025: Pragmatics of SAT 153–167

1e+10 1e+11 1e+12 1e+13 1e+14

5
10

50
20

0
10

00

prime number to factor

so
lv

in
g

tim
e

in
 s

ec
on

ds

Figure 1: Scaling of the factoring benchmarks (𝑥-axis logarithmic prime numbers, 𝑦-axis solving time in seconds).

implementation aspects. Ultimately the reader is invited to explore the actual implementation in Kissat
or CaDiCaL (available for instance on GitHub1).

How often? How often vivification should be scheduled could be considered to be part of the “black
art” of SAT solver design. In CaDiCaL and Kissat, probing (including vivification) is scheduled in
increasing 𝒪(𝑛 log 𝑛) conflict intervals. The duration of running one vivification round during probing
inprocessing is limited by the number of “ticks” taken during propagation while vivifying in relation
to the number of ticks consumed by CDCL search since the last time vivification was run. Ticks refer
to an estimation of memory access and are used as a deterministic proxy to actual time. For instance
visiting a clause during propagation counts as one tick. Ticks correlate well with running time, but
still allow fully deterministic behavior of the solver. Limiting time spent in vivification is necessary, as
unbounded vivification until completion is too costly on most instances.

Which clauses? Li et al. [8] advocate to vivify only clauses with low LBD [10], because larger LBD
clauses are expected to be less relevant and more expensive to vivify. Both CaDiCaL (2.2-rc2) and
Kissat work differently: they determine a fixed budget of ticks spent on each kind of clauses; the
budget is split between irredundant, tier-1, tier-2, and tier-3 clauses, where the tiers are defined by fixed
(or dynamically calculated) LBD thresholds. Therefore, fewer tier-3 (high LBD) clauses are vivified
achieving a similar limiting effect, but without completely disregarding them.

Li et al. [8] further suggest re-vivifying a clause only once when its LBD has decreased twice, in order
to avoid spending too much time in vivification. We do not explicitly limit our vivification procedure in
this way, but prioritize clauses that could not be vivified in the previous inprocessing round (as the
corresponding ticks budget was exhausted). As our solvers rarely manage to vivify all clauses, this
achieves a similar effect of not retrying a clause before the formula changed considerably.

Initially we vivified first tier-3, followed by tier-2, tier-1 and finally irredundant clauses. The argument
was that vivification might remove redundant clauses and potentially promote shrunken clauses to a
smaller tier, e.g., larger clauses from tier-2 could be shrunken to size 3 and thus become part of tier-1. It
seemed natural to schedule them again immediately during the same vivification round.

However, in practice there are usually fewer tier-1 than tier-2 followed by tier-3 clauses and many
more irredundant clauses. If vivification completes vivification of one tier with fewer clauses it is
beneficial to use the remaining vivification ticks budget for the next tier with more clauses. Otherwise
the ticks budget is wasted. As consequence of this argument, our latest version of vivification first
vivifies tier-1, then tier-2, followed by tier-3 clauses, and finally irredundant clauses.

1https://github.com/arminbiere/kissat/blob/master/src/vivify.c and https://github.com/arminbiere/cadical/blob/rel-2.2.0-rc2/src/vivify.cpp

156

https://github.com/arminbiere/kissat/blob/master/src/vivify.c
https://github.com/arminbiere/cadical/blob/rel-2.2.0-rc2/src/vivify.cpp

Florian Pollitt et al. PoS 2025: Pragmatics of SAT 153–167

What order? Finally, the question remains in which order the decisions should be picked, when
vivifying a candidate clause. Instead of choosing a heuristic based on the best expected result, CaDiCaL
and Kissat build an implicit prefix tree (or trie) of the clauses, which allows us to reuse decisions and
propagations over different candidate clauses, i.e., we do not necessarily backtrack between vivification
of two candidates. The order of decisions follows the prefix tree, maximizing reusability (throughput).

In fact, this simulates the trie-data-structure in distillation [6], without the need to explicitly transform
the CNF into a trie. Reusing propagation effort has also been the target of other related techniques [20, 21].
To maximize the effect, the candidate clause (and prefix tree) is sorted by literal occurrences (number
of positive or negative occurrences). Note, however, that CaDiCaL until version 2.1 used a weighted
occurrence count similar to the Jeroslow-Wang heuristic [22] instead.

Further, sorting the candidate stack lexicographically (also with respect to literal occurrence – taking
into account separately positive and negative occurrences of variables) would maximize reusability,
however this can be too costly. Instead, we can only consider the first literal (or first two literals in
CaDiCaL) in each clause for sorting the stack, which allows us to use the faster radix sort (faster
compared to C++’s default stable std::stable_sort).

Our experiments show, that building a prefix tree saves roughly 30% of decisions (median for both
the factoring benchmarks as well as the SAT Competition 2024 benchmarks is 33%). This also saves
propagations and makes it possible to vivify many more clauses within the same ticks budget.

Further discussion. A minor subtlety is that the propagation of vivification should ignore the
candidate clause but should still update it to make sure that the watched literals invariants are valid.
Otherwise, propagations might be missed for subsequent clauses. Similarly, if the candidate clause was
propagating, the solver cannot reuse the last decision level (without loosing propagations). Not doing
so does not lead to issues in the subsequent CDCL loops, because at the end of vivification, the solver
backtracks to decision level zero, implicitly restoring watch invariants of the ignored clauses.

To reiterate on sorting candidate clauses, it is of course important that sorting is fast. Considering
only one or two literals gives big speed-ups. However, one also looses certain potential advantages
compared to sorting lexicographically as was done in CaDiCaL previously. Actually the Kissat version
considered in the experiments uses a mixed strategy of lexicographic sorting for redundant clauses, i.e.,
tier-1, tier-2, and tier-3 clauses, and sorting irredundant clauses with respect to a single most occurring
literal in a clause (the considered fixed number of literals is a compile-time parameter). Storing these
one or two literals separately has another advantage: we keep the clauses watched without reordering
it, leading to hopefully good watches and no very long watch lists which you would need if you put
literals appearing the most often first.

It is important to use a stable sorting algorithm for determinism and debugging (which is substantially
slower than default non-stable algorithms). When sorting with respect to the complete prefix tree,
uniquely determining the position of each clause, it is possible to use a non-stable algorithm. The only
issue in this regard is if the same clause occurs multiple times. This however can be detected cheaply
and solved by removing one of them (vivifyflush option in CaDiCaL, activated by default).

It is also possible to detect subsumed clauses during candidate sorting: when comparing clauses with a
shared prefix and one clause is identical to that shared prefix the longer clause is subsumed by the shorter.
This technique requires sorting each individual clause first and updating watches accordingly. We did
not see any performance improvements in CaDiCaL due to employing this subsumption technique.

Other solvers use different sorting scheme: For instance Glucose 4.2.1 [16] does not sort the candidate
clauses but simply takes the current order. Alternatively CryptoMiniSat [23] uses either the number
of occurrences or the order induced by the VSIDS decision heuristic [24]. The ParaFROST solver [25]
vivifies tier-1 and tier-2 clauses separately but within one tier sorts candidate clauses by literals.

157

Florian Pollitt et al. PoS 2025: Pragmatics of SAT 153–167

vivify (CNF 𝐹) // CNF updated in place / passed by reference
1 ticks-budget = search-ticks-since-last-vivificationstats × relative-vivification-effortoption

2 tier-1-budget = ticks-budget × relative-tier-1-budgetoption

3 tier-2-budget = ticks-budget × relative-tier-2-budgetoption

4 tier-3-budget = ticks-budget × relative-tier-3-budgetoption

5 irredundant-budget = ticks-budget × relative-irredundant-budgetoption

6 remaining-ticks = vivify-tier(𝐹 , tier-1 clauses of 𝐹 , tier1-budget)
7 remaining-ticks = vivify-tier(𝐹 , tier-2 clauses of 𝐹 , tier2-budget + remaining-ticks)
8 remaining-ticks = vivify-tier(𝐹 , tier-3 clauses of 𝐹 , tier3-budget + remaining-ticks)
9 vivify-tier(𝐹 , irredundant clauses of 𝐹 , irredundant-budget + remaining-ticks)

Algorithm 3: Main vivification inprocessing algorithm scheduled from CDCL loop.

vivify-tier (CNF 𝐹 , CNF 𝐺, ticks-budget) // update subset of clauses in original CNF in place
1 limit = ticksstats + ticks-budget // global variable “ticksstats” updated during propagation
2 sort literals in clauses 𝐶 ∈ 𝐺 by number of occurrences (more occurrences first)
3 let 𝐺1 be the sub-set of clauses of 𝐺 which were not tried during vivification last time
4 let 𝐺2 = 𝐺∖𝐺1 // new clauses or clauses already tried last time
5 sort 𝐺1 and separately 𝐺2 lexicographically w.r.t. literal occurrences (more first)

// decision level set to zero at this point
6 for all clauses 𝐶 in the sequence 𝐺1, 𝐺2 sorted as in line 5 as long ticksstats < limit

7 if vivify-clause (𝐹 , 𝐶) then increment vivifiedstats

8 backtrack to decision level zero
9 if ticksstats > limit return 0 // incomplete – remember untried clauses

10 return limit − ticksstats // return unused ticks budget – no untried clauses remembered

Algorithm 4: Vivifying one “tier” of clauses under a given ticks budget.

5. Revisited Algorithm

The revisited vivification algorithm vivify in Alg. 3 is called in Kissat from the probing inprocessing
procedure, after clausal congruence closure [26], equivalent literal substitution (ELS) [5] and binary
backbone computation [27]. It is followed by bounded clausal SAT sweeping [28], another round of ELS,
transitive reduction of the binary implication graph [29], a second round of binary backbone computation
and finally bounded variable addition (BVA) [4]. Probing is called in increasing conflict intervals from
the main CDCL search loop, i.e., the conflict interval before it is rerun after its 𝑛-th invocation is set
to “probe-intervaloption · 𝑛 · log10(𝑛+ 9)” for some base conflict interval probe-intervaloption (default is
100 conflicts, which is also the initial conflict interval before the first probing round).

The ticks-budget computed at (line 1 in Alg. 3) is then split (line 2-4) into a fixed fraction for each
of the tiers (according to run-time options). We hand over any remaining-ticks of the budget to the
next tier, with vivification of irredundant clauses last (line 9), as it is usually the most costly tier to run
vivification until completion (at least initially, for bigger formulas). The four calls to vivify-tier in Alg. 3
(line 6-9) consider only specific tier clauses as candidates to vivify as second argument. We formally also
give a reference to the global formula 𝐹 as argument, to emphasize that Boolean constraint propagation
(unit-resolution) is always performed on the whole formula (line 12 in Alg. 5).

The vivify-tier function is shown in Alg. 4. It first, as already discussed in the previous Sect. 4,
determines a total ticks limit on propagation effort for all considered candidate clauses 𝐺, based on
the given budget (line 1). Then all candidates have their literals sorted by the number of occurrences
(line 2) in order to subsequently (line 5) allow sorting the clauses lexicographically w.r.t. the literal
occurrences. Before the candidates 𝐺 are split into two sets 𝐺1 and 𝐺2 (line 3-4) prioritizing left-over

158

Florian Pollitt et al. PoS 2025: Pragmatics of SAT 153–167

vivify-clause (CNF 𝐹 , clause 𝐶) // update 𝐹 and 𝐶 in place
1 mark 𝐶 as having been tried // puts it in 𝐺2 next time
2 let 𝐶 = ℓ1 ∨ · · · ∨ ℓ𝑛 sorted by number of occurrences (more occurrences first)
3 find maximal 𝑚 such that ℓ𝑖 is assigned to false at decision level 𝑖 for all 𝑖 < 𝑚 // reuse trail
4 if 𝑚 > 0 and decision level larger than 𝑚− 1 backtrack to decision level 𝑚− 1
5 add 𝑚− 1 to both probesstats and reusedstats // reused 𝑚 decisions / probes
6 literal implied = ⊥, clause conflict = ⊥ // initialize both to be undefined denoted as “⊥”
7 for 𝑖 = 𝑚. . . 𝑛 as long conflict = ⊥ // and implied = ⊥
8 if ℓ𝑖 is assigned to false continue
9 if ℓ𝑖 is assigned to true then implied = ℓ𝑖 and break

10 increase decision level and assign ℓ𝑖 to false, increment probesstats

11 // temporarily disable propagation over 𝐶 , i.e., 𝐶 is simply skipped during propagation
12 conflict = propagate (𝐹 , 𝐶) // update global assignment and ticksstats

// now we have either implied ̸= ⊥, conflict ̸= ⊥, or 𝐶 is falsified by the current assignment
13 (subsuming, learned, irredundant) = vivify-analyze (𝐶 , conflict, implied)
14 if subsuming ̸= ⊥
15 remove 𝐶 from 𝐹 , increment subsumedstats and return true

// . . . and need to make “subsuming” irredundant if it was redundant but 𝐶 not
16 if |learned| < |𝐶| // actually “learned ⊂ 𝐶” as it is a decision learned clause
17 replace 𝐶 in 𝐹 by learned, increment shrunkenstats and return true
18 if implied ̸= ⊥ and 𝐶 redundant
19 // regression version “without-implied” would only return false but the “default” version has:
20 remove 𝐶 from 𝐹 , increment impliedstats and return true
21 conflicting = conflict ̸= ⊥ ∨ implied ̸= ⊥
22 if conflicting and 𝐶 irredundant as well as analysis resolved only irredundant clauses
23 remove 𝐶 from 𝐹 , increment asymmetricstats and return true
24 if implied ̸= ⊥ and vivify-instantiate (𝐹 , 𝐶 , ℓ𝑛) // 𝐶 falsified at decision level 𝑛
25 remove ℓ𝑛 from 𝐶 , increment instantiatedstats and return true
26 return false

Algorithm 5: Vivifiying a single clause candidate.

candidates not tried last time vivification was run. This prioritization makes sure that all clauses of a
tier are vivified in a round-robin fashion, i.e., clauses are tried at least once before being attempted to
be vivified again. Note, that this scheme of vivification by tiers in combination with separate but fixed
relative ticks budgets allows to complete vivification of tiers with fewer clauses earlier and more often.

Alg. 5 gives a high-level overview on our revisited clause vivification algorithm vivify-clause for
vivifying a single candidate clause. It maintains a global assignment that is not reset between different
candidates, i.e., subsequent calls to this function. Instead it reuses the trail as much as possible, in order
to reduce the number of necessary propagations to vivify the candidate.

The propagation procedure called at line 12 ignores the candidate clause 𝐶 given as argument and
further updates the global ticksstats statistics counter. It approximates non-local cache line access, similar
to Knuth’s “mems” statistics (counting the number of pointer dereferences instead). Counting ticks is
only an approximation and the result of profiling runs and inspecting the code, i.e., the programmer
adds instructions which increase the ticks counter whenever the program reaches a point, where a
non-local memory access is expected. Access to the same cache line (e.g., propagating many virtual
binary clauses for the same literal) is counted only once. Even though less automatic to implement,
ticks are more precise than mems, i.e., correlate better with actual running time.

The function vivify-analyze (line 13) is a standard conflict analysis routine, similar to “analyze-final”

159

Florian Pollitt et al. PoS 2025: Pragmatics of SAT 153–167

in MiniSat. It returns a decision-only learned clause, which is a subset of the negations of decisions, that
lead to the given conflict, derive the implied literal or (if both are undefined) to falsify the given candidate
clause. It further checks on-the-fly whether any of the resolved clauses subsumes the candidate clause.
In this case it aborts the analysis and returns the subsuming clause. Otherwise it returns the learned

clause and determines whether all resolved clauses in deriving the learned clause are irredundant.
The function vivify-instantiate (line 24) originates from a CaDiCaL hack CaDiCaL _vivinst [30]

submitted to the SAT Competition 2023, taking first place in the hack track and third place in the main
track on satisfiable instances. After all the literals in the candidate clause are assigned and the clause
could not be subsumed nor shrunken, i.e., the candidate clause is falsified and all its literals are decisions,
we backtrack one level and assign the last literal ℓ𝑛 to true. If then propagation fails we know that
we can remove ℓ𝑛. This is similar to variable instantiation [31], targeting to remove literals with few
occurrences, such that they become pure or can be eliminated by variable elimination later.

What is missing in the high-level description of Alg. 5 is when (if at all) and to which level to backtrack
to after shrinking a clause and successful instantiation. If the procedure fails but a conflict was deduced
we might need additional backtracking too, as well as explicitly reestablish clause-watching invariants
for the candidate clause (as it was skipped during propagation). Further note, that sorting literals within
clauses during scheduling in vivify-tier (line 2 in Alg. 4) as well as during candidate clause vivification
in vivify-clause (line 2 in Alg. 5) should be done on copies of the clauses in separate data-structures to
keep watch-invariants intact (or as alternatives either reestablish them before propagation or use an
approximate short list of literals only – cf. Sect. 4).

The procedure has 5 positive cases in which a candidate clause is vivifiedstats (line 7 in Alg. 4) and thus
the candidate clause is shrunken (replaced by a strict subset of literals) or removed. These correspond to
incrementing in Alg. 5 the statistics counters subsumedstats (line 15), shrunkenstats (line 17), impliedstats

(line 20), asymmetricstats (line 23) and instantiatedstats (line 25) with returning true. Otherwise the
procedure fails returning false (line 26) and keeps the candidate as is. The next section evaluates how
often these cases occur in practice (cf. Fig. 6 and 7).

6. Experiments

We ran Kissat version sc2024 as submitted to the SAT Competition 2024 on all 400 problems of the SAT
Competitions 2023 and 2024 and our 750 factoring benchmarks using the bwForCluster Helix with AMD
Milan EPYC 7513 CPUs and a time limit of 5000 seconds. More precisely we used four configurations of
Kissat: the default configuration, matching the description in Fig. 5 (including removing implied literal
candidates - keeping line 18-20 in Alg. 5 as is); versus the keep-implied configuration which keeps
implied clauses (returning false at line-20 in Alg. 5 without removing the candidate); the discard-both

configuration (replacing the condition “implied ̸= ⊥” with “implied ̸= ⊥ ∨ conflict ̸= ⊥” at line-18 in
Alg. 5 which, if triggered, not only removes clauses with an implied literal but also conflicting candidate
clauses); finally the no-vivify configuration which disables vivification completely.

On the 400 problems of the SAT Competitions 2023 and 2024 (Figures 2 and 3), the performance
does not differ much, but the default version performs best. Interestingly, it seems that completely
deactivating vivification does not make much of a difference on these instances anyhow. However, on
our factoring benchmarks the difference between the configurations is important (Fig. 4). For these
benchmarks, the discard-both configuration performs slightly better than the default configuration.

In an intermediate version of Kissat we accidentally introduced the keep-implied variant, probably, as
it might appear that implied literal candidates should be treated the same way as conflicting candidates.
Note, that the difference only becomes relevant if a redundant clause candidate is not subsumed nor
shrunken during vivification (we reach line 18 in Alg. 3 and a literal is implied or we found a conflict).
These factoring benchmarks however revealed, that these two cases should be differentiated.

On competition benchmarks keeping conflicting but discarding implied literal candidates works best
(default), while for the factoring benchmarks, discarding implied literal candidates is a must (default

vs. keep-implied even though discard-both is even better). After we observed this regression empirically,

160

Florian Pollitt et al. PoS 2025: Pragmatics of SAT 153–167

finding the root cause was rather difficult. Only after realizing that the regression version would keep
for long running benchmarks many more learned clauses, it became clear that we should search for
code where clauses are removed in one version and kept in the other. Furthermore, it was the first time
we observed such an almost linear line in a run-time scatter-plot of SAT solvers (cf. Fig. 5, right plot).

To give more insight into the impact of vivification and how often specific cases of Alg. 5 occur we
have extracted statistics for the default configuration. Figure 6 shows the ratio and amount of time
the solver spends in vivification with respect to search and overall time on the factoring benchmarks.
These quantities scale very nicely on this benchmark set, as is evidenced by the fact that we can sort by
just one criterion, always plotting the same benchmark in one cross-section. Looking at the vivification
statistics (cf. end of Sect. 5), the percentages between the different cases are almost constant, only
asymmetricstats seems to tail off for the harder instances. The impliedstats clauses make out almost 40%
of all positive vivified clauses, explaining the regression we can observe in the previous plots. These
statistics on the SAT Competition 2024 benchmarks vary more but similar trends can be observed
(Fig. 8, 9). A difference overall seems to be the number of subsumed clausesstats, which is similar to
shrunkenstats and impliedstats on these instances, compared to about half for the factoring benchmarks.

7. Conclusion

We gave a deep dive into technical details of the implementation of our latest version of vivification in
our SAT solvers Kissat and CaDiCaL. Beside explaining the novel feature of on-the-fly subsumption
we further reported on an interesting performance regression we observed due to a subtle difference
of two versions of vivification, differing only in the choice of removing a vivification candidate with
an implied literal or not. Keeping them lead to a regression. It was detected on a new set of factoring
benchmark which by itself is quite remarkable as it yields very smooth run-time scaling behavior. Our
experiments reveal that all the considered special cases during vivification do occur in practice, but
most frequently, successfully vivified clauses are either shrunken, subsumed or have an implied literal,
while successful instantiation or asymmetric literal elimination in irredundant clauses occurs rarely.

0 1000 2000 3000 4000 5000

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0 400 instances (100%)

297 instances (74%)

lim
it

of
 5

00
0

se
co

nd
s

297 default
291 discard−both
290 keep−implied
288 no−vivify

Figure 2: Performance of various Kissat configuration as CDF (number of solved instances on the 𝑦-axis versus

the time-limit on the 𝑥-axis) on all 400 instances of the SAT Competition 2023. The default configuration is best.

161

Florian Pollitt et al. PoS 2025: Pragmatics of SAT 153–167

0 1000 2000 3000 4000 5000

26
0

28
0

30
0

32
0

400 instances (100%)

325 instances (81%)

tim
e

lim
it

of
 5

00
0

se
co

nd
s

325 default
324 discard−both
320 no−vivify
319 keep−implied

Figure 3: Performance of various Kissat configuration on all 400 instances of the SAT Competition 2024. The

performance difference between the configurations is limited, but the default configuration works best. Axis are

as for the SAT competition and in Fig. 2, i.e., solved instances on the 𝑦-axis versus the time limit on the 𝑥-axis.

0 1000 2000 3000 4000 5000

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

750 instances (100%)

tim
e

lim
it

of
 5

00
0

se
co

nd
s

750 discard−both
750 default
750 keep−implied
712 no−vivify

Figure 4: Performance of various Kissat configuration on our new 750 factoring benchmarks described in Sect. 3.

Again axis follow the common practice how results of the SAT competition are presented (as in Fig. 2+3 too).

Acknowledgments

This work was supported in part by the state of Baden-Württemberg through bwHPC, the German
Research Foundation (DFG) through grant INST 35/1597-1 FUGG, and by a gift from Intel Corporation.

Declaration on Generative AI

The authors partially used Mistral AI with a "fix typos" prompt for grammar and spell-checking. After
using that tool, the authors reviewed and edited content as needed and take full responsibility for the
publication’s content.

162

Florian Pollitt et al. PoS 2025: Pragmatics of SAT 153–167

0 1000 2000 3000 4000 5000

0
10

00
20

00
30

00
40

00
50

00

keep−both (time in seconds)

de
fa

ul
t (

tim
e

in
 s

ec
on

ds
)

tim
e

lim
it

of
 5

00
0

se
co

nd
s

satisfiable
unsatisfiable

0 1000 2000 3000 4000 5000

0
10

00
20

00
30

00
40

00
50

00

keep−both (time in seconds)

de
fa

ul
t (

tim
e

in
 s

ec
on

ds
)

tim
e

lim
it

of
 5

00
0

se
co

nd
s

linear regression

unsatisfiable

Figure 5: Comparing the default version of Kissat which keeps conflicting redundant clauses during vivification

but discards those with an implied literal with the regression version which keeps both clauses (keep-both) on

SAT Competition 2024 benchmarks on the left and the factoring benchmarks on the right.

 0
 2

0
 4

0
 6

0
 8

0
 1

00

 0 100 200 300 400 500 600 700

search percent
simplify percent

vivify percent

pe
rc

en
t o

f s
ol

vi
ng

 ti
m

e

factoring instances (sorted by search percent)

 0
.1

 1
 1

0
 1

00
 1

00
0

 0 100 200 300 400 500 600 700

solving time
search time

simplify time
vivify time

to
ta

l t
im

e
in

 s
ec

on
ds

factoring instances (sorted by solving time)

Figure 6: Solving statistics of the default version of Kissat on the factoring benchmarks (cf. Fig. 1).

 0
 2

0
 4

0
 6

0
 8

0
 1

00

 0 100 200 300 400 500 600 700

implied
shrunken

subsumed
instantiated
asymmetric

pe
rc

en
t o

f v
iv

ifi
ed

 c
la

us
es

factoring instances (sorted independently)

 1
00

0
 1

00
00

 1
00

00
0

 1
x1

06
 1

x1
07

 0 100 200 300 400 500 600 700

vivified
implied

shrunken
subsumed

instantiated
asymmetric

nu
m

be
r o

f c
la

us
es

factoring instances (sorted by number of vivified clauses)

Figure 7: Vivification statistics of the default version of Kissat on the factoring benchmarks (cf. Sect. 5).

163

Florian Pollitt et al. PoS 2025: Pragmatics of SAT 153–167

 0
 2

0
 4

0
 6

0
 8

0
 1

00

 0 50 100 150 200 250 300 350 400

search percent
simplify percent

vivify percent

pe
rc

en
t o

f s
ol

vi
ng

 ti
m

e

sc2024 instances (sorted independently)

 0
.1

 1
 1

0
 1

00
 1

00
0

 0 50 100 150 200 250 300 350 400

solving time
search time

simplify time
vivify time

to
ta

l t
im

e
in

 s
ec

on
ds

sc2024 instances (sorted independently)

Figure 8: Solving statistics of the default version of Kissat on the SAT Competition 2024 benchmarks. Search

time starts only after the preprocessing and hence can be 0 for some instances.

 0
 2

0
 4

0
 6

0
 8

0
 1

00

 0 50 100 150 200 250 300 350 400

shrunken
subsumed

implied
asymmetric
instantiated

pe
rc

en
t o

f v
iv

ifi
ed

 c
la

us
es

sc2024 instances (sorted independently)

 1
00

0
 1

00
00

 1
00

00
0

 1
x1

06
 1

x1
07

 0 50 100 150 200 250 300 350 400

vivified
shrunken

subsumed
implied

instantiated
asymmetric

nu
m

be
r o

f c
la

us
es

sc2024 instances (sorted independently)

Figure 9: Vivification statistics of the default version of Kissat on the SAT Competition 2024 benchmarks.

164

Florian Pollitt et al. PoS 2025: Pragmatics of SAT 153–167

References

[1] J. Marques-Silva, I. Lynce, S. Malik, Conflict-driven clause learning SAT solvers, in: A. Biere,
M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability - Second Edition, volume 336
of Frontiers in Artificial Intelligence and Applications, IOS Press, 2021, pp. 133–182. doi:10.3233/
FAIA200987.

[2] M. Järvisalo, M. Heule, A. Biere, Inprocessing rules, in: B. Gramlich, D. Miller, U. Sattler (Eds.),
Automated Reasoning - 6th International Joint Conference, IJCAR 2012, Manchester, UK, June
26-29, 2012. Proceedings, volume 7364 of Lecture Notes in Computer Science, Springer, 2012, pp.
355–370. doi:10.1007/978-3-642-31365-3_28.

[3] N. Eén, A. Biere, Effective preprocessing in SAT through variable and clause elimination, in:
F. Bacchus, T. Walsh (Eds.), Theory and Applications of Satisfiability Testing, 8th International
Conference, SAT 2005, St. Andrews, UK, June 19-23, 2005, Proceedings, volume 3569 of Lecture
Notes in Computer Science, Springer, 2005, pp. 61–75.

[4] N. Manthey, M. Heule, A. Biere, Automated reencoding of boolean formulas, in: A. Biere, A. Nahir,
T. E. J. Vos (Eds.), Hardware and Software: Verification and Testing - 8th International Haifa
Verification Conference, HVC 2012, Haifa, Israel, November 6-8, 2012. Revised Selected Papers,
volume 7857 of Lecture Notes in Computer Science, Springer, 2012, pp. 102–117. doi:10.1007/
978-3-642-39611-3_14.

[5] A. V. Gelder, Y. K. Tsuji, Satisfiability testing with more reasoning and less guessing, in: D. S.
Johnson, M. A. Trick (Eds.), Cliques, Coloring, and Satisfiability, Proceedings of a DIMACS Work-
shop, New Brunswick, New Jersey, USA, October 11-13, 1993, volume 26 of DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, DIMACS/AMS, 1993, pp. 559–586.
doi:10.1090/DIMACS/026/27.

[6] H. Han, F. Somenzi, Alembic: An efficient algorithm for CNF preprocessing, in: Proceedings of
the 44th Design Automation Conference, DAC 2007, San Diego, CA, USA, June 4-8, 2007, IEEE,
2007, pp. 582–587. doi:10.1145/1278480.1278628.

[7] C. Piette, Y. Hamadi, L. Sais, Vivifying propositional clausal formulae, in: M. Ghallab, C. D. Spy-
ropoulos, N. Fakotakis, N. M. Avouris (Eds.), ECAI 2008 - 18th European Conference on Artificial
Intelligence, Patras, Greece, July 21-25, 2008, Proceedings, volume 178 of Frontiers in Artificial Intel-
ligence and Applications, IOS Press, 2008, pp. 525–529. doi:10.3233/978-1-58603-891-5-525.

[8] C. Li, F. Xiao, M. Luo, F. Manyà, Z. Lü, Y. Li, Clause vivification by unit propagation in CDCL SAT
solvers, Artif. Intell. 279 (2020). doi:10.1016/J.ARTINT.2019.103197.

[9] M. Luo, C. Li, F. Xiao, F. Manyà, Z. Lü, An effective learnt clause minimization approach for CDCL
SAT solvers, in: C. Sierra (Ed.), Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, ijcai.org, 2017, pp.
703–711. doi:10.24963/IJCAI.2017/98.

[10] G. Audemard, L. Simon, Predicting learnt clauses quality in modern SAT solvers, in: C. Boutilier
(Ed.), IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2009, pp. 399–404. URL: http://ijcai.org/Proceedings/09/Papers/074.pdf.

[11] A. Biere, T. Faller, K. Fazekas, M. Fleury, N. Froleyks, F. Pollitt, CaDiCaL, Gimsatul, IsaSAT and
Kissat entering the SAT Competition 2024, in: M. Heule, M. Iser, M. Järvisalo, M. Suda (Eds.),
Proc. of SAT Competition 2024 – Solver, Benchmark and Proof Checker Descriptions, volume
B-2024-1 of Department of Computer Science Report Series B, University of Helsinki, 2024, pp. 8–10.

[12] A. Biere, CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT Entering the SAT Competition
2018, in: M. Heule, M. Järvisalo, M. Suda (Eds.), Proc. of SAT Competition 2018 – Solver and
Benchmark Descriptions, volume B-2018-1 of Department of Computer Science Series of Publications
B, University of Helsinki, 2018, pp. 13–14.

[13] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 4: Generating All Trees–
History of Combinatorial Generation (Art of Computer Programming), Addison-Wesley Profes-
sional, 2006.

165

http://dx.doi.org/10.3233/FAIA200987
http://dx.doi.org/10.3233/FAIA200987
http://dx.doi.org/10.1007/978-3-642-31365-3_28
http://dx.doi.org/10.1007/978-3-642-39611-3_14
http://dx.doi.org/10.1007/978-3-642-39611-3_14
http://dx.doi.org/10.1090/DIMACS/026/27
http://dx.doi.org/10.1145/1278480.1278628
http://dx.doi.org/10.3233/978-1-58603-891-5-525
http://dx.doi.org/10.1016/J.ARTINT.2019.103197
http://dx.doi.org/10.24963/IJCAI.2017/98
http://ijcai.org/Proceedings/09/Papers/074.pdf

Florian Pollitt et al. PoS 2025: Pragmatics of SAT 153–167

[14] A. Biere, M. Järvisalo, B. Kiesl, Preprocessing in SAT solving, in: A. Biere, M. Heule, H. van
Maaren, T. Walsh (Eds.), Handbook of Satisfiability, volume 336 of Frontiers in Artificial Intelligence
and Applications, 2nd edition ed., IOS Press, 2021, pp. 391 – 435.

[15] N. Eén, N. Sörensson, An extensible SAT-solver, in: E. Giunchiglia, A. Tacchella (Eds.), Theory and
Applications of Satisfiability Testing, 6th International Conference, SAT 2003. Santa Margherita
Ligure, Italy, May 5-8, 2003 Selected Revised Papers, volume 2919 of Lecture Notes in Computer
Science, Springer, 2003, pp. 502–518. doi:10.1007/978-3-540-24605-3_37.

[16] G. Audemard, L. Simon, Glucose and Syrup: Nine years in the SAT competitions, in: M. Heule,
M. Järvisalo, M. Suda (Eds.), Proc. of SAT Competition 2018 – Solver and Benchmark Descriptions,
volume B-2018-1 of Department of Computer Science Series of Publications B, University of Helsinki,
2018, pp. 24–25.

[17] A. Niemetz, M. Preiner, Bitwuzla, in: C. Enea, A. Lal (Eds.), Computer Aided Verification
- 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part
II, volume 13965 of Lecture Notes in Computer Science, Springer, 2023, pp. 3–17. doi:10.1007/
978-3-031-37703-7_1.

[18] M. L. Ginsberg, Satsisfiability and systematicity, J. Artif. Intell. Res. 53 (2015) 497–540. doi:10.
1613/JAIR.4684.

[19] P. Purdom, A. Sabry, CNF generator for factoring problems, 2005. URL: https://cgi.luddy.indiana.
edu/~sabry/cnf.html.

[20] P. van der Tak, A. Ramos, M. Heule, Reusing the assignment trail in CDCL solvers, J. Satisf.
Boolean Model. Comput. 7 (2011) 133–138. doi:10.3233/SAT190082.

[21] M. Heule, M. Järvisalo, A. Biere, Revisiting hyper binary resolution, in: C. P. Gomes, M. Sellmann
(Eds.), Integration of AI and OR Techniques in Constraint Programming for Combinatorial Opti-
mization Problems, 10th International Conference, CPAIOR 2013, Yorktown Heights, NY, USA,
May 18-22, 2013. Proceedings, volume 7874 of Lecture Notes in Computer Science, Springer, 2013,
pp. 77–93. URL: https://doi.org/10.1007/978-3-642-38171-3_6.

[22] R. G. Jeroslow, J. Wang, Solving propositional satisfiability problems, Ann. Math. Artif. Intell. 1
(1990) 167–187. doi:10.1007/BF01531077.

[23] M. Soos, K. Nohl, C. Castelluccia, Extending SAT solvers to cryptographic problems, in: O. Kull-
mann (Ed.), Theory and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture
Notes in Computer Science, Springer, 2009, pp. 244–257. doi:10.1007/978-3-642-02777-2_24.

[24] Y. S. Mahajan, Z. Fu, S. Malik, zChaff 2004: An efficient SAT solver, in: H. H. Hoos, D. G. Mitchell
(Eds.), Theory and Applications of Satisfiability Testing, 7th International Conference, SAT 2004,
Vancouver, BC, Canada, May 10-13, 2004, Revised Selected Papers, volume 3542 of Lecture Notes in
Computer Science, Springer, 2004, pp. 360–375. doi:10.1007/11527695_27.

[25] M. Osama, A. Wijs, GPU acceleration of bounded model checking with parafrost, in: A. Silva,
K. R. M. Leino (Eds.), Computer Aided Verification - 33rd International Conference, CAV 2021,
Virtual Event, July 20-23, 2021, Proceedings, Part II, volume 12760 of Lecture Notes in Computer
Science, Springer, 2021, pp. 447–460. doi:10.1007/978-3-030-81688-9_21.

[26] A. Biere, K. Fazekas, M. Fleury, N. Froleyks, Clausal congruence closure, in: S. Chakraborty,
J. R. Jiang (Eds.), 27th International Conference on Theory and Applications of Satisfiability
Testing, SAT 2024, August 21-24, 2024, Pune, India, volume 305 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2024, pp. 6:1–6:25. doi:10.4230/LIPICS.SAT.2024.6.

[27] N. Froleyks, E. Yu, A. Biere, BIG backbones, in: A. Nadel, K. Y. Rozier (Eds.), Formal Methods
in Computer-Aided Design, FMCAD 2023, Ames, IA, USA, October 24-27, 2023, IEEE, 2023, pp.
162–167. doi:10.34727/2023/ISBN.978-3-85448-060-0_24.

[28] A. Biere, K. Fazekas, M. Fleury, N. Froleyks, Clausal equivalence sweeping, in: N. Narodytska,
P. Rümmer (Eds.), Formal Methods in Computer-Aided Design, FMCAD 2024, Prague, Czech Repub-
lic, October 15-18, 2024, IEEE, 2024, pp. 1–6. doi:10.34727/2024/ISBN.978-3-85448-065-5_
29.

[29] M. Heule, M. Järvisalo, A. Biere, Clause elimination procedures for CNF formulas, in: C. G.

166

http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-031-37703-7_1
http://dx.doi.org/10.1007/978-3-031-37703-7_1
http://dx.doi.org/10.1613/JAIR.4684
http://dx.doi.org/10.1613/JAIR.4684
https://cgi.luddy.indiana.edu/~sabry/cnf.html
https://cgi.luddy.indiana.edu/~sabry/cnf.html
http://dx.doi.org/10.3233/SAT190082
https://doi.org/10.1007/978-3-642-38171-3_6
http://dx.doi.org/10.1007/BF01531077
http://dx.doi.org/10.1007/978-3-642-02777-2_24
http://dx.doi.org/10.1007/11527695_27
http://dx.doi.org/10.1007/978-3-030-81688-9_21
http://dx.doi.org/10.4230/LIPICS.SAT.2024.6
http://dx.doi.org/10.34727/2023/ISBN.978-3-85448-060-0_24
http://dx.doi.org/10.34727/2024/ISBN.978-3-85448-065-5_29
http://dx.doi.org/10.34727/2024/ISBN.978-3-85448-065-5_29

Florian Pollitt et al. PoS 2025: Pragmatics of SAT 153–167

Fermüller, A. Voronkov (Eds.), Logic for Programming, Artificial Intelligence, and Reasoning -
17th International Conference, LPAR-17, Yogyakarta, Indonesia, October 10-15, 2010. Proceedings,
volume 6397 of Lecture Notes in Computer Science, Springer, 2010, pp. 357–371. doi:10.1007/
978-3-642-16242-8_26.

[30] A. Biere, M. Fleury, F. Pollitt, CaDiCaL_vivinst, IsaSAT, Gimsatul, Kissat, and TabularaSAT entering
the SAT competition 2023, in: T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, M. Suda
(Eds.), Proc. of SAT Competition 2023 – Solver and Benchmark Descriptions, volume B-2023-1 of
Department of Computer Science Report Series B, University of Helsinki, 2023, pp. 14–15.

[31] G. Andersson, P. Bjesse, B. Cook, Z. Hanna, A proof engine approach to solving combinational
design automation problems, in: Proceedings of the 39th Design Automation Conference, DAC 2002,
New Orleans, LA, USA, June 10-14, 2002, ACM, 2002, pp. 725–730. doi:10.1145/513918.514101.

167

http://dx.doi.org/10.1007/978-3-642-16242-8_26
http://dx.doi.org/10.1007/978-3-642-16242-8_26
http://dx.doi.org/10.1145/513918.514101

	1 Introduction
	2 Vivification Algorithm
	3 Factoring Benchmarks
	4 Scheduling and Ordering
	5 Revisited Algorithm
	6 Experiments
	7 Conclusion

