SAT-Web: A Web-Based Educational SAT Visualisation Tool
James Madgwick™, Martin Mariusz Lester’

JUniversity of Reading, PO Box 217, Reading, Berkshire, RG6 6AH, United Kingdom

Abstract

Provision of tools for explaining SAT solvers and visualising SAT instances helps to facilitate easier entry to
the field for newcomers, yet this remains an under-explored area. In this tool paper we present SAT-Web, a
web-based educational tool for explaining SAT solving, and the first tool of its kind which can be used entirely
from a web-browser. Our tool provides visualisations with search trees and variable interaction graphs, and
includes a DPLL solver with tracing. We explain the design, techniques and implementation details behind the
tool. We also review approaches and tools for instance visualisation and existing pedagogical tools designed to
explain solvers. Finally, we discuss potential future improvements and opportunities for SAT visualisation and
pedagogical tools.

Keywords
visualisation, pedagogical tools, explaining solving, web-based tools

1. Introduction

The volume and significance of SAT research has continued to increase throughout the past quarter
century, yet there has been comparably little focus on educational materials and tools for explaining
SAT concepts and the operation of key algorithms.

While some earlier visualisation tools have claimed a secondary educational use, the first dedicated
tool for educational SAT solving [1] was only published in 2018. Although other tools have been
developed since, this area remains underdeveloped when compared to the wider field of SAT tools and
mature solvers.

Educational tools have been aimed at an audience who have limited prior knowledge of SAT funda-
mentals and solver algorithms, such as undergraduate university students.

These tools all generally implement the older and simpler DPLL algorithm [2], with most also
supporting CDCL approaches, which have been adopted by all modern SAT solvers [3] since being
introduced in 1999 [4]. They focus on explaining algorithms, by providing tracing and visualisations to
demonstrate and explain the steps taken (e.g. variable assignments) when an instance is evaluated to
determine satisfiability. By helping to develop an understanding of SAT, these tools hope to stimulate
additional interest in the field more generally.

We introduce a new educational SAT tool (SAT-Web) which builds on the concepts introduced by
prior tools, while being accessed entirely from within a web-browser. The source code is available on
GitHub and also archived on Zenodo [5]. SAT-Web can be accessed online via GitHub Pages.

This use of web technologies to provide easier access is unique compared to previous tools, which all
require a downloaded application to be run locally. The tool also provides an instance structure graph
visualisation and a dynamic representation of problem formulae using mathematical notation, features
not found in prior educational tools.

We examine techniques for visualising instances and discuss previous work on the development
of educational tools in Section 2. In Section 3 we present the SAT-Web tool itself, detailing the tool’s
features, design decisions, and implementation details. After comparing the features of SAT-Web against
existing tools in Section 4, we conclude with some ideas for future work in Section 5.

CEUR-WS.org/Vol-4008/POS_paper08.pdf

16th Pragmatics of SAT International Workshop, August 11, 2025, Glasgow, Scotland
*Corresponding author.
A james@madgwick.xyz (J. Madgwick); m.lester@reading.ac.uk (M. M. Lester)

4 https://www.reading.ac.uk/computer-science/staff/dr-martin-lester (M. M. Lester)
® 0009-0009-4900-0515 (J. Madgwick); 0000-0002-2323-1771 (M. M. Lester)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

CEUR
E Workshop
Proceedings

168

https://github.com/JMadgwick/SAT-Web
https://github.com/JMadgwick/SAT-Web
https://jmadgwick.github.io/SAT-Web/
mailto:james@madgwick.xyz
mailto:m.lester@reading.ac.uk
https://www.reading.ac.uk/computer-science/staff/dr-martin-lester
https://orcid.org/0009-0009-4900-0515
https://orcid.org/0000-0002-2323-1771
https://creativecommons.org/licenses/by/4.0/deed.en

James Madgwick, Martin Mariusz Lester PoS 2025: Pragmatics of SAT 168-176

2. Visualisation techniques and Educational tools

There are generally two motivations for visualising instances and the solving process. The primary
reason has been to improve understanding of the internal structure of problems; to identify why some
instances are easier to solve than others in order to develop optimisations for solvers. A secondary pur-
pose is for explaining SAT and helping those unfamiliar with its concepts through use of visualisations.
These techniques include textual representations of the solving process, diagrams, and graphs.

Graphs have always been a popular technique for visualisation of instances, with one of the first
examples of visualisation (due to Slater in 2004) using connected graphs drawn using the popular dot
tool [6]. Shortly afterwards, Sinz and Dieringer developed a dedicated tool called DPvis [7] to gain
insight into instance structure and provide “hints on why solving a particular instance is hard or easy”.
At this time, Brien and Malik described understanding of solver run-time behaviour as “lacking”, as it
was mostly limited to examining metrics [8]. More recently, Newsham and others have identified the
concept of communities inside instance structure (partly through visualisations) and directly linked it to
solver run time [9].

Over the last 20 years a variety of SAT visualisation tools have been developed; Table 1 shows a
summary of visualisations and related features supported by a selection of tools.

Table 1
Visualisations and related features across a selection of tools.
DPVIS [7] E’ 3‘]"5 '[f’?]T ;’gGraf LearnSAT [1] ;’g‘“z

Search Tree X X
Variable Interaction Graph | X X X X X
Implication Graph X X
Animations X X X
Interactive X X X X

Varieties of graphs include search tree graphs, variable interaction graphs' and implication graphs.
Others, such as the common variable graph, hypergraph, and bipartite variable clause graph® can also be
used. However, these are not often used in tools because they lack useful information, represent similar
information to other graphs, or for hypergraphs, because they are difficult to render visually [10]. It
should be noted that with the exception of hypergraphs, the conversion from an original problem to the
graph is lossy, preventing reconstruction of an original SAT instance [10]. See Figure 1 for examples.

Variable interaction graphs show relationships between variables across all instance clauses. Each
variable is represented as a node, with edges drawn between variables which exist in the same clause [10].
These graphs can be drawn without making any assignments or needing any information from a solver;
this ease of generation may explain why they are featured in many visualisation tools. They are
also helpful for understanding an instance’s structure, with some instances exhibiting specific shapes,
clusters, and other visual patterns. The graph layout is often computed using the force-directed
placement algorithm to generate node positions [7], with 3D graphs using a multi-level extension of
this method [10]. The layout can also be arranged to highlight communities of related nodes [12].

Implication graphs are used to show how the value of one variable implies the value of another,
either between variables in a single clause or across a subset of clauses. They are primarily used for
demonstrating the operation of unit propagation. Implying values for solving directly is possible only
for 2SAT problems [14], but they can still be useful to determine an implication within a clause where
all but one variable has been assigned.

In addition to a visualisation of the initial problem, some tools provide an animation of the solving
process to demonstrate the reduction in complexity caused by variable elimination. This is implemented

'Sometimes called variable instance graphs [9].
®Also known as a bipartite graph [13] or factor graph [10].

169

James Madgwick, Martin Mariusz Lester PoS 2025: Pragmatics of SAT 168-176

using either a built-in solver or by communicating with an external solver [12]. Other tools use a textual
output to show a log of events, such as assignment and backtracking [15]. The most advanced tools
include playback features, such as a pause or rewind [7]. Occasionally tools feature plots of metrics
gathered during the solving process, such as decision depth, number of implications and details of
learned conflict clauses [8].

Search trees are a form of graph representing the sequence of variable assignments, beginning from
a root node and branching downwards as variables are assigned. They are effective for intuitively
visualising backtracking as moving upwards through branches in the tree. Assignments implied by unit
propagation can be shown as additional nodes within the tree [1]. Learnt clauses in CDCL can also be
shown [16], although this creates a busy diagram.

While a few early visualisation tools (such as DPvis) were presented as having an educational
aspect, most tools were targeted at only SAT researchers. Only more recently have tools with a purely
educational purpose been developed.

LearnSAT is arguably the most prominent educational tool, being built specifically for the purpose of
explaining and teaching SAT solving [1]. It uses a command line interface and can export search trees
and implication graphs. The implementation uses Prolog with built in solvers for DPLL and CDCL, with
a tutorial and example problems provided. The recent pedagogical tool EQuSAT [17] is supplied as a
Python library with a DPLL solver and offers an understanding through coding approach using Jupyter
notebooks. The similarly recent Interactive SAT Tracer (SAT-IT) [15] is a Java app with a graphical
user interface providing a trace of the solving process and details of conflict analysis. Users can step
through every part of the process using buttons and load problems using the standard DIMACS CNF
format, which is used for the provided example problems.

The educational tools described above all run locally, requiring downloads and additional runtime
dependencies to be installed on the user’s system before they can be used. With the exception of SAT-IT,
they also require prior knowledge of specific programming languages and lack a simple user interface.
The authors of EQuSAT [17] and SAT-IT [15] specifically highlight these downsides of LearnSAT.

(@) |

®|®

2
C1

C>2

hypergraph variable interaction graph

Figure 1: Hypergraph and variable interaction graph for the SAT instance S = (C1,02,C3) =
({y, —z, 2}, {a,~z,y}, {—-x, z}). Based on examples by Sinz [10].

3. Design and implementation

As described above, the relatively new field of educational SAT tools lacks an application which can
easily be accessed and used without requiring additional setup. We therefore decided to implement a new
tool to address these limitations. This section covers the feature selection, design, and implementation
of SAT-Web, our browser based educational SAT tool.

The tool is built as a single page application (SPA) style interactive web app, using a layout similar to
SAT-IT with all components visible on the screen at the same time. Users can access the tool simply

170

James Madgwick, Martin Mariusz Lester PoS 2025: Pragmatics of SAT 168-176

by navigating to a URL where the site is hosted, without any downloads or runtimes being required.
Similar to existing tools, a panel based layout is used with separate spaces set aside for each feature.

Figure 2 shows the web app interface. It has the following components: CNF input area (using
DIMACS format), example SAT problem selection, solver control panel, log for solver tracing, instance
representation using mathematical notation, solver information panel, search tree graph visualisation,
and variable interaction graph visualisation.

The CNF input area allows manual entry of problems and loading problems directly from a local file
on the user’s computer. The example SAT problem selector provides problems ranging from very simple
(solvable by hand), to some well known more complex problems which cannot be solved by backtracking
solvers in a reasonable time. This selection allows users to get started without needing to find any
problems themselves. The mathematical notation panel (Figure 3) uses colour to indicate the currently
assigned boolean value of literals and clauses within the current problem. The variable interaction
graph visualisation (Figure 5) can be zoomed, panned, and nodes in the graph can be moved around.
These features are also present in the search graph visualisation (Figures 6 and 7). The solver control
panel controls all aspects of the app, such as parsing CNF input, selecting algorithms, and viewing final
variable assignments. The solver log (Figure 4) displays traces explaining the internal operations of the
solver as the user steps through a problem, with colour used to emphasise assignments and conflicts.
The solver information panel displays details such as how many times backtracking has occurred and
the number of assignments made by unit propagation or pure literal elimination. Most components
have an associated explanatory tooltip box, shown when hovering over the component or its heading.

SAT-Web operates entirely as a client-side web app without any remote server components. This
decision was made to simplify deployment and use, allowing the app to be hosted using a basic web-
server. This also accelerated the software development process by removing the requirement to write
an API for client-server interaction. A downside to this approach is all code needs to run in the user’s
browser, which significantly reduces the selection of programming languages and libraries compared to
a client-server app.

The Svelte JavaScript web framework (used with the Vite frontend build tool) provides the backbone
of the app, controlling all user input and UI events. All the features listed above form individual Svelte
components. The Cytoscape.js [18] library is used for providing the visualisations. This library is aimed
at an academic audience and has a specific focus on graphs, with good support for force-directed layout
algorithms and trees.

User instruction manual

Load DIMACS from file Example SAT problems: [Selectaproblem v

SAT solving log

DIMACS CNF Input:

SAT instance in mathematical notation:

€ https://waw. csubc. ca/~hoos/SATLIB/Benchnarks/SAT/
NG/

c wff: anomaly.cnf
c map: anomaly.map

c type: wff
b cnf 48 261

340

5680

790
51

T T R T D
(T | M IR, (WO i)
(BN [ESvil [l [t (RSt [
(T o) (ol [[(i |

(ks) (x5 V@) (v 83) (32 Vx5) & (k20 V303 Vo v x25) [y V53 Vke) 1

S 5) (B) » (S V) (G mn) (S A (k]
(=11 v=xan) A (=311 v axas) A (=12 v =xaa) A (302 v =x11) A (%02 v =x1s) A (%03 v =x1a)
B B v lerov=ra W erov—c B Erovs W v
(3w 20)a o) (v v (omav v (s v) (v)

L VL \ N \ \

Search Graph

1)

a3 X39, X2

[Assigning false to x3

Unit propagation assignments: x17 x4 x5 x6

|Assigning true to x18

Conflict during unit propagation. Caused by assignment of true to 44.
|Assigning false to x18

[Etiminating pure literals: x22

unit propagation assignments: x24 x20

|Assigning true to x19

[Eliminating pure literals: x23

Conflict during unit propagation. Caused by assignment of False to 4.
|Assigning false to x19

Unit propagation assignments: x39 x32

|Assigning true to x21

[Eliminating pure literals: x23

Conflict during unit propagation. Caused by assignment of False to 46.
|Assigning false to x21

Unit propagation assignments: x40 x28 x42 x44 x41 x45 x43 x46 x47 x38 x33 x31 x48 x37 x26 x30 x29 x27 x25
[x23 x34 x35 x36

Solved (satisfiable)

DPLL. v Parselnput
Next Step: DPLL.

Solve (Single Step) || SolveAll || Benchmark View Assignments.

Solver Information

[Decision Count: 9

tep Count: 19

[Backtrack Count: 0

[Remaining Clause Count: 0

[Remaining Variable Count: 0

Pure Literal Elimination Count: 3

Unit Propagation Count: 42

Figure 2: The SAT-Web interface after an example problem has been loaded and solved successfully.

171

James Madgwick, Martin Mariusz Lester PoS 2025: Pragmatics of SAT 168-176

SAT instance in mathematical notation:

(<21 ¥ X17) A (%23 ¥ 2X17) A (¥2m ¥ ~X21) A (0 v ~aa) A
X6V ﬁxu) A (ﬁxzo v ﬁxu) A (ﬁxzo v ﬁxls) A [ﬁng v ﬁxlz) A

(ﬁ"m v ﬁxla] A

(Q

(%22 v =x20) A (=14 V=xg) A (=x20 V oxg) A (—x20 ¥ =x1a) A (—xag V xg) A
()| A

()»

—Xgg V X9
—Xg5 VX3

()
()
(-'X24V—'X16)
()
()
(

—Xp5 V X9

ﬂXZSVﬁX14 —\X26Vﬁ}(20

—Xq vﬁx—,) (ﬁxls vﬁx7) A (ﬁxls Y ﬁxu] A (ﬁxlg vﬁx7) A

—X1g V =Xy —X1g V 2Xy5 AXp3 V aXg | A[=Xag VaXpg | A (=Xs ¥V aXgg) A [—Xpg VaXg) A

—.xlo\w—.xﬁ)f\(—.xmv—.x6 A(—.xldv—‘xlg A[=x18 v =xg) A (=x1g Voxgg) A (2X1g VoXgg) A

—_

—Xip V—-xe)f\ —.xgv—.xs)f\(ﬂxmv—‘xs)/\(—.xlavﬂxg A —.x“v—.xs)/\(ﬂx”v—.xs)f\(—.xnv—‘xu]

A(ﬁxsvﬁxtl)n(ﬁxmvﬁx,l)f\ “X1g V Xy) A ﬁxlevﬁxlo)n(ﬁxﬂ vﬁx4)/\(ﬁx22vﬁx10)/\

Figure 3: Mathematical notation component. Literals are coloured based on their resultant boolean value, with
clauses highlighted based on if they are satisfied or not.

SAT solving log

Assigning true to x28

Assigning true to x29

Conflict during unit propagation. Caused by assignment of false to 31.
Assigning false to x29

Conflict during unit propagation. Caused by assignment of false to 31.

Assigning false to x28
Conflict during unit propagation. Caused by assignment of true to 46.

Assigning false to x27
Conflict during unit propagation. Caused by assignment of true to 30.

Assigning false to x26

Unit propagation assignments: x56 x65 x57 x66 x34 x36 x37 x40 x42 x43 x45 x48 x33 x44 x46
Assigning true to x27

Assigning true to x28

Assigning true to x29

Unit propagation assignments: x31 x32 x59 x30 x60 x39 x41 x47 x38 x35 x54 x63 x53 x62
Solved (Satisfiable)

Figure 4: SAT tracing log component showing entries after solving the ii8a1.cnf problem [19].

Variable Interaction Graph

X R
2
J

-~

X
.‘,A_/Lfr»_ﬂ IS
2 TN
K

Figure 5: Variable interaction graph generated before solving has started for the ii8a1. cnf problem [19].

172

James Madgwick, Martin Mariusz Lester PoS 2025: Pragmatics of SAT 168-176

Search Graph

N

j—l{)

)

Py
(2)

/\

o (3)

) /o:g;\
/ g
—

[

N

¢ \(\
./\-’7‘-) /\\? ‘

NAL NN
NGNS N

Figure 6: Search graph component showing a small problem solved using backtracking. The green node indicates
that satisfiability was achieved, red nodes represent conflicts.

 —{ =)

{m\

Search Graph

=X23 X39, 71X32

Xao, mX28, Xa2, Xaa,
=1X41, "X45, 1X43,
=1X46, ©1X47, ©1X38,

—X23 =1X33, X31, Xas, " X37,

X26, X30, X29, 2 X27,

=X25, =X23, ©1X34,
—X3s5, X36

Figure 7: Search graph component showing part of the tree produced when solving a problem using DPLL.
Assignments made by unit propagation have a cyan outline, with pure literal elimination assignments indicated

by a green outline.

173

James Madgwick, Martin Mariusz Lester PoS 2025: Pragmatics of SAT 168-176

While using an existing SAT solver within the app was considered, this was ruled out because all
well known solvers are written using compiled languages (e.g. C, C++) which can only be used in
a browser with WebAssembly [20]. This would have greatly increased complexity, coupled with the
modifications required to existing solvers for extracting traces [7]. Instead of reusing existing solver
code, backtracking and DPLL solver implementations were written using TypeScript. The solver code for
DPLL uses the repeating loop approach [15], rather than a recursive function [10] because this is more
suited to running a single iteration of the algorithm before pausing solving to render visualisations.

Tracing represents the tracking of internal activities within a solver algorithm. To store and handle
traces an event architecture was developed, where an event is a single item of solver activity. For
example, a variable assignment and the detection of a conflict are both types of event in this architecture.
Events are added to an event log in order of occurrence as the user steps through the solving process.
All possible solver activity has an event representation; event objects can also contain complex object
types. Information is extracted from events and used by the Ul and visualisations, e.g. entries in the
solver log correspond with an event or multiple related events.

The variable interaction graph component is rendered by processing instance clauses to generate an
array of Cytoscape elements, with all duplicate links removed as only one edge is drawn between each
pair of variables in the graph. When first drawn, the graph is formatted using the cose Cytoscape layout
(a force-directed physics layout algorithm). The nodes and edges shown are then updated with every
step of the solver algorithm. The visual styling applied to nodes and edges was based on the variable
interaction graphs produced by DPvis [7]. Figure 5 shows the panel after an example problem has been
loaded.

The search graph component uses the dagre Cytoscape layout, which provides a hierarchical directed
acyclic graph. It shows all decisions and variable assignments made while solving an instance. Cytoscape
allows for configurable styling based on the class of an element or on the contents of the element
object itself. This was used to apply dynamic styles mimicking the concise appearance of the search
trees presented by Fichte and others [16]; compared to the more verbose appearance of the trees used
in LearnSAT [1]. Cytoscape elements in the graph are generated using events, with each event type
associated with an edge or node, except for backtracking events which are used to track the current
position in the tree.

4. Comparison

Compared with existing educational SAT tools, SAT-Web provides a unique feature set. A high-level
comparison of the features of existing tools and SAT-Web is shown in Table 2. The existing tools
described previously mostly relied on command line input and manually writing scripts. LearnSAT was

Table 2
Comparison of educational SAT tool features.

SAT-IT [15] LearnSAT [1] | EuSAT [17] | SAT-Web

Built in examples X X X X
Textual output X X X X
Mathematical notation X
Search tree/graph X X
Implication graph X

Variable interaction graph X
Backtracking solver X X X
DPLL solver X X X X
CDCL solver X X

Graphical User Interface X X
Usable without download X

174

James Madgwick, Martin Mariusz Lester PoS 2025: Pragmatics of SAT 168-176

the only tool to provide visualisation outputs, but only in the form of image files placed into a separate
folder, as it uses a terminal interface. All existing tools also require additional runtime dependencies
to be installed before being downloaded and run locally. Representing a problem using mathematical
notation is a unique feature of SAT-Web, not found in any previous tool. While solver performance is a
less important aspect of educational tools, testing showed the DPLL implementation in SAT-Web to be
least 10 times quicker than SAT-IT when solving problems from the AIM benchmark set [19].

5. Future Work and Conclusion

While SAT-Web contains the primary educational components of previous tools, there are a variety of
additional concepts which could be explored to enhance the tool’s usefulness. In particular, making the
practical applications of SAT more apparent by demonstrating the link between a real world problem
and the SAT instance encoding it. Visualising problems in their original format is demonstrated in
Clingraph [21], where a Sudoku grid is filled up interactively as variable assignments are made to
an Answer Set Programming problem representing the puzzle. A more innovative concept involves
transforming instances into a visual maze [22], where the path through the maze represents a set of
variable assignments and a path to the exit shows satisfiability.

We plan to improve SAT-Web by adding further features and functionality. The most useful of these
would be support for the CDCL algorithm, bringing SAT-Web in line with most other tools. As the
existing components are not sufficient to explain the operation of CDCL, this would require the addition
of at least an annotated implication graph to demonstrate visually how learnt clauses are formed. The
tabular representation used in [23] for explaining CDCL trails could also be considered. The tool’s basic
step by step animation could be enhanced by adding an option to run a set number of steps together
with a specified delay between each, creating a smooth animation — similar to the functionality in
DPvis [7]. Another feature could be the ability to export video files, as used by SATViz [13]. It would
also be useful to make existing visualisations more interactive, such as collapsible nodes in search trees
and clicking on graph nodes to show further information. 3D rendering could be added as an option
for the variable interaction graph, as shown in [10], although this would require a suitable JavaScript
library supporting real time 3D.

Considering that many of the early visualisation tools can no longer be downloaded, or are reliant
on legacy runtime dependencies, we hope to inspire SAT researchers to consider using the web as a
platform for building future SAT visualisation tools.

To conclude, we have presented a new pedagogical SAT tool which is the first of its kind to use web
technologies. Our tool compares favourably with previous tools, supporting a unique set of features.
Easy access to the tool online will hopefully allow students to understand SAT more efficiently and
generate further interest in the field of educational SAT tools.

Declaration on Generative Al

The authors have not employed any Generative Al tools.

References

[1] M. Ben-Ari, LearnSAT: A SAT solver for education,]J. Open Source Softw. 3 (2018). doi:10.21105/
joss.00639.

[2] M. Davis, G. Logemann, D. Loveland, A machine program for theorem-proving, Commun. ACM 5
(1962) 394-397. doi:10.1145/368273.368557.

[3] A.Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability, IOS Press, 2009.

[4] J. Marques-Silva, K. Sakallah, GRASP: a search algorithm for propositional satisfiability, IEEE
Trans. Comput. 48 (1999) 506-521. doi:10.1109/12.769433.

175

http://dx.doi.org/10.21105/joss.00639
http://dx.doi.org/10.21105/joss.00639
http://dx.doi.org/10.1145/368273.368557
http://dx.doi.org/10.1109/12.769433

James Madgwick, Martin Mariusz Lester PoS 2025: Pragmatics of SAT 168-176

[5] J. Madgwick, M. Lester, SAT-Web: A web based educational SAT visualisation tool (software source
code), 2025. do0i:10.5281/zenodo.15801988.

[6] A. Slater, Visualisation of satisfiability problems using connected graphs, Technical Report, Aus-
tralian National University, 2004. URL: https://users.cecs.anu.edu.au/~andrews/problem2graph/
problem2graph.html.

[7] C. Sinz, E.-M. Dieringer, DPvis: a tool to visualize the structure of SAT instances, in: Theory and
Applications of Satisfiability Testing: 8th Int. Conf., 2005, p. 257-268.d0i:10.1007/11499107 _19.

[8] C.Brien, S. Malik, Understanding the dynamic behavior of modern DPLL SAT solvers through
visual analysis, in: Formal Methods in Computer Aided Design (FMCAD), San Jose, CA, USA,
2006, pp. 49-50. doi:10.1109/FMCAD. 2006 . 35.

[9] Z.Newsham, V. Ganesh, S. Fischmeister, G. Audemard, L. Simon, Impact of community structure
on SAT solver performance, in: Theory and Applications of Satisfiability Testing: 17th Int. Conf.,
2014, pp. 252-268. doi:10.1007/978-3-319-09284-3_20.

[10] C. Sinz, Visualizing SAT instances and runs of the DPLL algorithm, J. Autom. Reason. 39 (2007)
219-243. doi:10.1007/s10817-007-9074-1.

[11] E. Orbe, C. Areces, G. Infante-Lopez, iSat: Structure visualization for SAT problems, in: Logic
for Programming, Artificial Intelligence, and Reasoning: 18th Int. Conf., 2012, p. 335-342. doi:10.
1007/978-3-642-28717-6_26.

[12] Z.Newsham, W. Lindsay, V. Ganesh, J. H. Liang, S. Fischmeister, K. Czarnecki, SATGraf: Visualizing
the evolution of SAT formula structure in solvers, in: Theory and Applications of Satisfiability
Testing: 18th Int. Conf., 2015, pp. 62-70. doi:10.1007/978-3-319-24318-4_6.

[13] T. Holzenkamp, K. Kuryshev, T. Oltmann, L. Wildele, J. Zuber, T. Heuer, M. Iser, SATViz: Real-time
visualization of clausal proofs, in: Pragmatics of SAT: 13th Int. Workshop, 2022. doi:10.48550/
arXiv.2209.05838.

[14] G. Kusper, C. Bird, B. Nagy, Resolvable networks — a graphical tool for representing and solving
SAT, Mathematics 9 (2021). doi:10.3390/math9202597.

[15] M. Cané, J. Coll, M. Rojo, M. Villaret, SAT-IT: The interactive SAT tracer, in: Catalan Association
for Artificial Intelligence: 25th Int. Conf., volume 375 of Frontiers in Artificial Intelligence and
Applications, 2023, pp. 337-346. doi:10.3233/FATA230704.

[16] J. K. Fichte, D. L. Berre, M. Hecher, S. Szeider, The silent (r)evolution of SAT, Commun. ACM 66
(2023) 64-72. doi:10.1145/3560469.

[17] Y. Zhao, Z. An, M. Ma, T. Johnson, EduSAT: A pedagogical tool for theory and applications of
boolean satisfiability, arXiv e-prints (2023). doi:10.48550/arXiv.2308.07890.

[18] M. Franz, C. T. Lopes, D. Fong, M. Kucera, M. Cheung, M. C. Siper, G. Huck, Y. Dong, O. Sumer,
G. D. Bader, Cytoscape.js 2023 update: a graph theory library for visualization and analysis,
Bioinformatics 39 (2023). doi:10.1093/bioinformatics/btad031.

[19] DIMACS SAT benchmarks, in: Cliques, Coloring, and Satisfiability: Second DIMACS Implementa-
tion Challenge, 1993. URL: http://archive.dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf/.

[20] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner, A. Zakai,
J. Bastien, Bringing the web up to speed with webassembly, SIGPLAN Not. 52 (2017) 185-200.
doi:10.1145/3140587.3062363.

[21] S.Hahn, O. Sabuncu, T. Schaub, T. Stolzmann, Clingraph: A system for ASP-based visualization,
Theory Pract. Log. Program. 24 (2024) 533-559. d0i:10.1017/S147106842400005X.

[22] N. Manthey, An A-Maze-ing SAT solving visualization, Technical Report, Dresden University of
Technology, 2015. URL: https://iccLinf.tu-dresden.de/web/Techreport3031/en.

[23] D.E.Knuth, The Art of Computer Programming: Satisfiability, Volume 4, Fascicle 6, Pearson Ed.
Inc., 2015.

176

http://dx.doi.org/10.5281/zenodo.15801988
https://users.cecs.anu.edu.au/~andrews/problem2graph/problem2graph.html
https://users.cecs.anu.edu.au/~andrews/problem2graph/problem2graph.html
http://dx.doi.org/10.1007/11499107_19
http://dx.doi.org/10.1109/FMCAD.2006.35
http://dx.doi.org/10.1007/978-3-319-09284-3_20
http://dx.doi.org/10.1007/s10817-007-9074-1
http://dx.doi.org/10.1007/978-3-642-28717-6_26
http://dx.doi.org/10.1007/978-3-642-28717-6_26
http://dx.doi.org/10.1007/978-3-319-24318-4_6
http://www.pragmaticsofsat.org/2022/
http://dx.doi.org/10.48550/arXiv.2209.05838
http://dx.doi.org/10.48550/arXiv.2209.05838
http://dx.doi.org/10.3390/math9202597
https://doi.org/10.3233/FAIA375
https://doi.org/10.3233/FAIA375
https://ebooks.iospress.nl/bookseries/frontiers-in-artificial-intelligence-and-applications
https://ebooks.iospress.nl/bookseries/frontiers-in-artificial-intelligence-and-applications
http://dx.doi.org/10.3233/FAIA230704
http://dx.doi.org/10.1145/3560469
http://dx.doi.org/10.48550/arXiv.2308.07890
http://dx.doi.org/10.1093/bioinformatics/btad031
http://archive.dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf/
http://dx.doi.org/10.1145/3140587.3062363
http://dx.doi.org/10.1017/S147106842400005X
https://iccl.inf.tu-dresden.de/web/Techreport3031/en

	1 Introduction
	2 Visualisation techniques and Educational tools
	3 Design and implementation
	4 Comparison
	5 Future Work and Conclusion

