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Abstract
A key challenge in pseudo-boolean solving is the efficient detection and processing of unit literals. In SAT
solving this is done by using the watched literal scheme, but for general pseudo-boolean constraints there is no
dominant method. This paper introduces the significant literal framework to generalize existing watched literal
schemes for pseudo-boolean solvers, which is implemented in a modification of the RoundingSAT solver. For this
modification, small improvements can be observed on the instances from the decision and optimization tracks of
the 2024 Pseudo-Boolean Competition, and a substantial improvement in instances with large coefficients like
Knapsack.
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1. Introduction

Contemporary satisfiability (SAT) solvers achieve efficiency by conflict driven clause learning (CDCL)
and unit propagation, making them a powerful tool for boolean problems like model checking in chip
development, formal software verification and scheduling problems. On the other hand, Integer Linear
Programming (ILP) solvers use integer relaxation and the branch-and-cut procedure to dominate in
industrial applications including production planning, network optimization and portfolio selection.
Pseudo-boolean solving has emerged as a promising middle ground between the two approaches, aiming
to combine the advantages of both methods. SAT methods like unit propagation and conflict analysis
are now applied to the powerful cutting plane system underlying ILP solvers.

However, neither unit propagation nor conflict analysis can be generalized to arbitrary pseudo-
boolean constraints without careful considerations. The latter received significant attention, with
various papers discussing different methods of constructing conflict constraints [1, 2, 3]. For unit
propagation, the focus is on adapting the watched literal scheme introduced in the SAT solver Chaff [4],
which is part of almost all modern CDCL solvers. However, many teams developing competitive pseudo-
boolean solvers observed none to only minimal improvement compared to the simpler counting method
[1, 3, 5]. This changed when Devriendt [6] obtained a significant performance increase for his watched
literal scheme, which replaces the computation of the maximum coefficient of unassigned literals used
to determine the watched literal set by a fixed upper bound. This method has been implemented in the
RoundingSAT solver, which is currently considered the fastest pseudo-boolean solver [7]. Recently it
has been observed that the performance improvement of watched literals can be amplified by caching
optimizations and a hybrid unit propagation approach [8].

This paper aims to demonstrate that the watched literal scheme of RoundingSAT can be further
improved by introducing significant literals, which are especially effective for constraints with large
coefficient sizes. Our approach uses a tighter upper bound by finding the maximum coefficient of
unassigned significant literals, but keeps the fixed upper bound as in Devriendt’s scheme [6] for
constraints without significant literals. The significance criterion for literals is determined in such a
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way that we strike a balance between time savings from having fewer watched literals and the higher
cost of updating the new watched literal scheme. Additionally, we attempt to explain a connection of
the performance differences between the various watched literal schemes and the size distributions of
the constraint coefficients.

We give a detailed description of the algorithm behind the significant literal approach in section 3,
and then in section 4 present performance comparisons with the current RoundingSAT implementation
across various datasets.

2. Preliminaries

A pseudo-boolean problem consists of variables 𝑥𝑖 ∈ {0, 1}, with literals 𝑙𝑖 representing either 𝑥𝑖 or
𝑥𝑖 := 1− 𝑥𝑖 and pseudo-boolean constraints 𝐶 of the form

∑︀𝑛
𝑖=1 𝑎𝑖𝑙𝑖 ≥ 𝑏 for 𝑎𝑖, 𝑏 ∈ N.

Without loss of generality we will assume that the coefficients are in descending order, so ∀𝑖 : 𝑎𝑖 ≥
𝑎𝑖+1. A cardinality constraint is a pseudo-boolean constraint with ∀𝑖 : 𝑎𝑖 = 1. If additionally 𝑏 = 1,
the constraint is a clause.

We denote the current (partial) assignment of the variables 𝑙𝑖 with 𝜌, identified with the set of
literals set to 1. The slack of a pseudo-boolean constraint with the current assignment 𝜌 is defined as
𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) = −𝑏+

∑︀
𝑙𝑖 /∈𝜌 𝑎𝑖.

Informally, the slack represents the amount by which the left-hand side can exceed the right-hand
side without unassigning literals. Thus, if 𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) < 0, the constraint 𝐶 can not be satisfied with 𝜌,
and we need to backtrack.

A literal 𝑙𝑖 is called a unit literal, if 𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) < 𝑎𝑖. This means that 𝑙𝑖 must be set to 1 in order to
satisfy the constraint 𝐶 , as otherwise 𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌 ∪ {𝑙𝑖}) < 0.

For a pseudo-boolean constraint 𝐶 we denote its watched literals with 𝑊 (𝐶), a subset of its non-
falsified literals, i.e. 𝑊 (𝐶) ⊆ {𝑙𝑖 ∈ 𝐶 : 𝑙𝑖 /∈ 𝜌}. Note that 𝑊 (𝐶) depends on the current assignment 𝜌.
The maximum coefficient 𝑎𝑚𝑎𝑥 of a constraint 𝐶 is defined as 𝑎𝑚𝑎𝑥 := max{𝑎𝑖 ∈ 𝐶 : 𝑙𝑖, 𝑙𝑖 /∈ 𝜌}. If all
literals of 𝐶 are assigned, we define it as 𝑎𝑚𝑎𝑥 = 0.

The watch slack is the slack restricted to 𝑊 (𝐶): 𝑤𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) = −𝑏+
∑︀

𝑙𝑖∈𝑊 (𝐶) 𝑎𝑖. By definition
𝑤𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) ≤ 𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) holds.

Lemma 1. 𝐶 contains a unit literal if and only if no watched literals set 𝑊 (𝐶) exists such that
𝑤𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) ≥ 𝑎𝑚𝑎𝑥.

Proof. If 𝐶 contains a unit literal, then by definition we have an unassigned literal 𝑙𝑖 with 𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) <
𝑎𝑖 and 𝑎𝑚𝑎𝑥 ≥ 𝑎𝑖. So we arrive at 𝑎𝑚𝑎𝑥 ≥ 𝑎𝑖 > 𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) ≥ 𝑤𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌). Thus, no watched literal
set 𝑊 (𝐶) with 𝑤𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) ≥ 𝑎𝑚𝑎𝑥 can exist.

If for all sets of literals 𝑊 (𝐶) we have 𝑤𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) < 𝑎𝑚𝑎𝑥, this also holds true for 𝑊 (𝐶) =
{𝑙𝑖 | 𝑙𝑖 /∈ 𝜌}, i.e. if we watch all non-falsified literals. In that case we have 𝑤𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) = 𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌),
leading us to 𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) < 𝑎𝑚𝑎𝑥, and therefore the literal corresponding to 𝑎𝑚𝑎𝑥 must be unit.

If we replace 𝑎𝑚𝑎𝑥 with an upper bound, a weaker version of Lemma 1 still holds:

Lemma 2. Let 𝑎𝑢𝑝 be an upper bound, i.e. 𝑎𝑢𝑝 ≥ 𝑎𝑚𝑎𝑥. If 𝐶 contains a unit literal, then no watched
literals set 𝑊 (𝐶) exists such that 𝑤𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) ≥ 𝑎𝑢𝑝.

Proof. By Lemma 1 we know that if 𝐶 contains a unit literal, then we can not choose watched literals
𝑊 (𝐶) such that 𝑤𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) ≥ 𝑎𝑚𝑎𝑥. Since 𝑎𝑢𝑝 ≥ 𝑎𝑚𝑎𝑥, this immediately implies that we also can
not find 𝑊 (𝐶) with 𝑤𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) ≥ 𝑎𝑢𝑝.

The problem of using Lemma 1 as a criterion for finding unit literals is that 𝑎𝑚𝑎𝑥 needs to be known
for all constraints. So every time a variable 𝑥𝑖 is assigned or unassigned, we have to update 𝑎𝑚𝑎𝑥 in all
constraints that contain 𝑥𝑖 or 𝑥𝑖. This procedure can take up to two thirds of the total unit propagation
runtime [3], and defeats the original purpose of watched literals.
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RoundingSAT instead uses a criterion based on Lemma 2 with 𝑎𝑢𝑝 = 𝑎1 [6]. As 𝑎1 is constant,
no updates are necessary to preserve 𝑎𝑢𝑝 ≥ 𝑎𝑚𝑎𝑥. One downside of this approach is that now our
unit propagation methods can encounter false positives, as the converse of Lemma 2 does not hold
true. Additionally, it often leads to a larger 𝑊 (𝐶), increasing the work necessary for maintaining the
watched literal scheme.

3. Watched Literal Propagation with Significant Literals

The idea behind significant literals is finding a middle ground between always updating 𝑎𝑚𝑎𝑥 and
replacing it with a constant upper bound. For that we choose an arbitrary criterion determining if 𝑙𝑖 is
significant for a constraint 𝐶 . We denote the set of all significant literals for 𝐶 with 𝑆(𝐶). Since the
criterion does not depend on 𝜌, 𝑆(𝐶) is constant.

Now we define 𝑎𝑠𝑚𝑎𝑥 := max{𝑎𝑖 ∈ 𝐶 : 𝑙𝑖, 𝑙𝑖 /∈ 𝜌 ∨ 𝑙𝑖 /∈ 𝑆(𝐶)}, i.e. 𝑎𝑠𝑚𝑎𝑥 is the largest coefficient
of a literal which is either unassigned or not significant. As with 𝑎𝑚𝑎𝑥, if all literals are assigned and
significant, we simply define 𝑎𝑠𝑚𝑎𝑥 = 0. By definition 𝑎𝑠𝑚𝑎𝑥 ≥ 𝑎𝑚𝑎𝑥, so we can apply Lemma 2 with
𝑎𝑢𝑝 = 𝑎𝑠𝑚𝑎𝑥.

This framework generalizes the two previously mentioned methods. If we choose a significance
criterion which declares all literals as significant, we have 𝑎𝑠𝑚𝑎𝑥 = 𝑎𝑚𝑎𝑥 and recover the method which
calculates 𝑎𝑚𝑎𝑥 for all constraints. If we instead declare no literal to be significant for any constraint,
we have 𝑎𝑠𝑚𝑎𝑥 = 𝑎1 and recover the current method in RoundingSAT [6].

To elaborate what significance criteria are useful, we look at the following “worst case” constraint
for the current RoundingSAT unit propagation system: 100𝑦 +

∑︀100
𝑖=1 𝑥𝑖 ≥ 10.

Starting with 𝜌 = ∅, we have 𝑎1 = 𝑎𝑚𝑎𝑥 = 100 and 𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) = 190. Then the implementation
iteratively adds watched literals until 𝑤𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) ≥ 100, which results in 𝑊 (𝐶) = {𝑦, 𝑥1, . . . 𝑥10}.
If the next decision of the solver is 𝜌 = {𝑦}, all 100 𝑥𝑖 literals will be added to 𝑊 (𝐶) without achieving
𝑤𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) ≥ 100. This means that until the solver reverses the assignment of 𝑦, the watched set
𝑊 (𝐶) will be unnecessarily large, and no unit literal can exist until at least 90 of the 𝑥𝑖 variables are
assigned.

When we instead use significant literals and a criterion which declares 𝑦 to be significant for the
constraint, we only need 𝑤𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) ≥ 1 after 𝜌 = {𝑦}. This allows for the much smaller watched
set 𝑊 (𝐶) = {𝑥1, . . . 𝑥11}, which reduces the workload for updating the watched literal scheme in
further assignments.

Here the difference between the two watched literal schemes is exaggerated, as the example constraint
is deliberately chosen to amplify this problem. Simply choosing the equivalent constraint 10𝑦 +∑︀100

𝑖=1 𝑥𝑖 ≥ 10 allows the current RoundingSAT implementation to watch only roughly twice as many
literals as the significant literal approach. However, it still illustrates that the difference between the
two watched literal schemes is mainly dependent on the size of the constraint coefficients. This will
also be supported by empirical evidence in the following section.

3.1. Algorithm

Algorithm setSmax demonstrates how to set 𝐶.𝑎𝑠𝑚𝑎𝑥 to the value of 𝑎𝑠𝑚𝑎𝑥. Here 𝐶.𝑙[𝑘] is a reference
to a literal 𝑙𝑘 occurring in 𝐶 , 𝐶.𝑎[𝑘] denotes its corresponding coefficient, and size(𝐶) denotes the
number of literals in 𝐶 . We also count the number of backjumps which occurred so far with 𝑏𝑘𝑗𝑚𝑝𝑠.
In the while loop we search for an unassigned or non-significant literal, and finish immediately if we
found one. Since the literals in 𝐶 are sorted by descending order of their coefficients, the first found
literal is guaranteed to have the largest coefficient, and we have found 𝑎𝑠𝑚𝑎𝑥.

To further optimize this procedure, we remember the index 𝑘 at which we left the loop in the last call
to setSmax. If no backtracking occurred in the meantime, no literals have been unassigned and so all
literals before 𝑘 are still assigned and significant. Thus, the first condition in algorithm setSmax ensures
that we only restart the search from the beginning if a backjump occurred. This idea is directly inspired
by the algorithm propagate first presented by Devriendt [6]. Each time the algorithm propagates the
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Algorithm 1 setSmax (constraint 𝐶)
1: Input: Constraint 𝐶
2: if 𝐶.lastset < 𝑏𝑘𝑗𝑚𝑝𝑠 then
3: 𝐶.𝑘 ← 1

4: 𝐶.lastset← 𝑏𝑘𝑗𝑚𝑝𝑠
5: while 𝐶.𝑘 ≤ size(𝐶) do
6: 𝑙𝑘 ← 𝐶.𝑙[𝑘]
7: if 𝑙𝑘, 𝑙𝑘 /∈ 𝜌 or 𝑙𝑖 /∈ 𝑆(𝐶) then
8: 𝐶.𝑎𝑠𝑚𝑎𝑥 ← 𝐶.𝑎[𝑘]
9: return

10: 𝐶.𝑘 ← 𝐶.𝑘 + 1
11: 𝐶.𝑎𝑠𝑚𝑎𝑥 ← 0

literal 𝑙𝑖 in the constraint 𝐶 it calls propagate with the constraint and 𝑖𝑑𝑥 being set to 𝑖 to indicate the
index of the propagated literal in 𝐶 .

When we now assign a literal we check in each constraint in which it is significant, if its corresponding
coefficient is equal to 𝑎𝑠𝑚𝑎𝑥 of that constraint. Only if that it is the case, we need to call algorithm
setSmax to update the value. For unassigning we only need to check for each significant constraint if
its corresponding coefficient is bigger than 𝑎𝑠𝑚𝑎𝑥 and if so set 𝑎𝑠𝑚𝑎𝑥 to its coefficient.

Now we need to integrate the new 𝐶.𝑎𝑠𝑚𝑎𝑥 into the unit propagation of RoundingSAT, which
consists of propagateOpt, processWatches and backjump [6]. Luckily only the first routine needs to
be modified into algorithm propagate, since it is the only one dependent on the choice of 𝑎𝑢𝑝. This
independence of 𝑎𝑢𝑝 also holds for proof of the watch slack invariant [6], which means that all routines
correctly preserve 𝐶.wslk = 𝑤𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌).

However, one has to be careful which optimizations of propagateOpt are still logically sound for a
non-constant 𝑎𝑢𝑝. The first optimization can be kept, as the following lemma shows.

Lemma 3. If no backtracking occurred, the while loops in line 7 and 19 can be restarted at the index where
they left off in the last call, without changing the behaviour of the algorithm.

Proof. Without backtracking any literal assigned in 𝜌 at the last call to function propagate remain
assigned. Thus, if 𝑖 is the index, where the while loop of line 7 left off, the literals 𝑙1, . . . 𝑙𝑖−1 either
remain false or are already watched, and we can safely skip them.

Similarly, if the while loop of line 19 terminates with index 𝑗, then all literals 𝑙1, . . . 𝑙𝑗−1 are already
assigned. Without backtracking this still holds true now, and we can restart the search with index 𝑗.

The second optimization, which skips the search for new watched literals if 𝐶.wslk + 𝐶.𝑎[𝑖𝑑𝑥] ≥
𝐶.𝑎𝑢𝑝, does not work for non-constant 𝑎𝑢𝑝. The idea behind it is that if at some assignment the while
loop of line 7 terminates because of the condition 𝐶.wslk < 𝐶.𝑎𝑠𝑚𝑎𝑥, all non-falsified literals are
watched. Until we have backtracked so far that this specific assignment is reversed, all non-falsified
literals remain watched, and any further search for new literals to watch will be unnecessary. However,
with a non-constant 𝑎𝑢𝑝 further assignments can make it possible to fulfil 𝑤𝑠𝑙𝑎𝑐𝑘(𝐶, 𝜌) ≥ 𝑎𝑢𝑝, even if
that was not possible at some past call. Thus, the optimization can only be applied if 𝑎𝑢𝑝 is constant
in the constraint. In our case we simply check this when 𝑆(𝐶) = ∅, since we have 𝑎𝑠𝑚𝑎𝑥 = 𝑎1 if no
literals are significant for a constraint.

3.2. Significance Criteria

We experiment with various significance criteria, which aim to identify literals where the increased
cost of updating 𝑎𝑠𝑚𝑎𝑥 is outweighed by allowing for a smaller watched literal set 𝑊 (𝐶). Let 𝑐 ∈ N be
a fixed cut-off value, and 𝑠 ∈ R a fixed scaling factor . We consider the following criteria, where the
literal 𝑙𝑖 with coefficient 𝑎𝑖 is significant for a constraint 𝐶 if:
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Algorithm 2 propagate (constraint 𝐶 , integer 𝑖𝑑𝑥), modification of propagateOpt [6]
1: Input: assignment 𝜌, literal 𝑙, constraint 𝐶
2: if 𝐶.lastprop < 𝑏𝑘𝑗𝑚𝑝𝑠 then
3: 𝐶.𝑖← 1

4: 𝐶.𝑗 ← 1
5: 𝐶.lastprop← 𝑏𝑘𝑗𝑚𝑝𝑠
6: if 𝐶.wslk + 𝐶.𝑎[𝑖𝑑𝑥] ≥ 𝐶.𝑎𝑠𝑚𝑎𝑥 ∨ 𝑆(𝐶) ̸= ∅ then
7: while 𝐶.𝑖 ≤ size(𝐶) and 𝐶.wslk < 𝐶.𝑎𝑠𝑚𝑎𝑥 do
8: if 𝐶.𝑙[𝑖] /∈ 𝜌 and 𝐶.𝑙[𝑖] /∈𝑊 (𝐶) then
9: ◁ Add 𝐶.𝑙[𝑖] to watched literals

10: 𝑊 (𝐶)←𝑊 (𝐶) ∪ {𝐶.𝑙[𝑖]}
11: 𝐶.wslk← 𝐶.wslk + 𝐶.𝑎[𝑖]
12: 𝐶.𝑖← 𝐶.𝑖+ 1
13: if 𝐶.wslk ≥ 𝐶.𝑎𝑠𝑚𝑎𝑥 then
14: ◁ Enough watched literals, unwatch propagated literal
15: 𝑊 (𝐶)←𝑊 (𝐶) ∖ {𝐶.𝑙[𝑖𝑑𝑥]}
16: return OK
17: if 𝐶.wslk < 0 then return CONFLICT
18: ◁ A unit literal could exist
19: while 𝐶.𝑗 ≤ size(𝐶) and 𝐶.wslk < 𝐶.𝑎[𝑗] do
20: 𝑙𝑗 ← 𝐶.𝑙[𝑗]
21: if 𝑙𝑗 , 𝑙𝑗 /∈ 𝜌 then
22: ◁ Enqueue new unit literal
23: 𝜌← 𝜌 ∪ {𝑙𝑗}
24: 𝐶.𝑗 ← 𝐶.𝑗 + 1
25: return OK

• (Absolute size) 𝑎𝑖 > 𝑐

• (Absolute size of maximum coefficient) 𝑎1 > 𝑐

• (Relative size) 𝑎1 > 𝑠
∑︀𝑛

𝑗=2 𝑎𝑗

It should be noted that for the latter two criterion always either all or none of the literals are declared
to be significant, since the definition does not depend on 𝑖. Additionally, each of the three criteria can
also be restricted to only input constraints, which we will mark as “𝐶 input ∧ criterion” in the legends
of runtime plots. If no criterion is specified, we simply define all literals in input constraints to be
significant.

4. Experimental Evaluation

To perform the evaluation we use commit d34b6bed of the RoundingSAT solver, which is the latest
version as of December 2024 [7]. We extended RoundingSAT to implement the unit propagation with
significant literals. The implementation and the data presented in the following plots are publicly
available [9]. It should be noted that - as in the current RoundingSAT implementation - the respective
watched literal scheme is only applied to “true” pseudo-boolean constraints, while clauses and cardinality
constraints are treated separately. Since ∀𝑖 : 𝑎𝑖 = 1 applies to clauses and cardinality constraints by
definition, one can simply use the standard watched literal approach from SAT solving with 𝑏 + 1
watched literals for each constraint.

All runtime measurements are done without proof logging, although we verified all certificates of
an independent run using the VeriPB verifier [10]. The benchmark was run on an AMD Ryzen 5950X
CPU with a timeout of 3600𝑠.
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Figure 1: Runtime comparison on the DEC-LIN track. The number of instances solved is given in parentheses.

Our first dataset will consist of the 398 selected instances of the DEC-LIN track in the Pseudo-
Boolean Competition 2024 [11], which aim to be a representative sample of pseudo-boolean decision
problems. We evaluate the unmodified RoundingSAT solver (R-SAT) without the optional SoPlex
Linear Programming integration and without the hybrid mode suggested by Robert Nieuwenhuis et al.
[8], as both actually reduce the number of instances solved for this specific dataset. Additionally, we
evaluate the counting method - which explicitly calculates the slack of each constraint - by disabling
watched propagation in RoundingSAT. Finally we present the best performing significance criteria
and “Standard Watched”, which uses a significance criterion declaring every literal to be significant for
all its constraints, in order to represent the traditional watched literal scheme with 𝑎𝑢𝑝 = 𝑎𝑚𝑎𝑥.

Figure 1 demonstrates that the counting method is less efficient than the unit propagation by Devriendt
[6], although faster than the naive way of implementing watched literals. We also observe that some
significance criteria already gain a small advantage over the existing RoundingSAT implementation on
the DEC-LIN instances. An extensive evaluation of different significance criteria on these instances is
given in appendix B.

As shown in appendix A, the most successful criteria for DEC-LIN also perform well on the OPT-
LIN track in the Pseudo Boolean Competition 2024, which comprises a collection of 487 optimization
problems. Here again, a small improvement compared to RoundingSAT can be observed.

Across both datasets we notice that unit propagation with significant literals works best when it
is only applied to the input constraints and not to the learned constraints. Our explanation for this
behaviour is the difference in the distribution of coefficient sizes as shown in Figures 2 and 3.

To produce Figure 2 we have collected all constraints in the selected instances of the DEC-LIN track,
which are not clauses or cardinality constraints and group all their coefficients by absolute values in
buckets. For Figure 3 we did the same for all learned constraints RoundingSAT on the dataset, but
excluded instances which are not solved within the 3600𝑠 timeout.

We observe that coefficients in input constraints are far more unevenly distributed. Thus, 𝑎𝑠𝑚𝑎𝑥

can often be far smaller than 𝑎1, leading to a smaller and therefore less expensive watched literal set.
On learned constraints with a more even distribution, 𝑎𝑠𝑚𝑎𝑥 remains similar to 𝑎1, thus the cost of
updating 𝑎𝑠𝑚𝑎𝑥 outweighs the benefit of only marginally smaller watched literal sets.

While significant literals already yield a small improvement on general instances, they are substan-
tially better if the instances mainly consist of constraints with large coefficients. One example are the
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Figure 2: Distribution in input constraints.
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Figure 3: Distribution in learned constraints.
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Figure 4: Runtime comparison of significant literal schemes on Knapsack instances. The number of instances
solved is given in parentheses.

783 Knapsack instances submitted to the OPT-LIN track of the Pseudo Boolean Competition 2024, as
Figure 4 shows.

The plot demonstrates that the two criteria clearly outperform the unmodified RoundingSAT solver,
both in the number of instances solved and the general runtime of hard instances.

We further support this observation by looking at another application with large coefficient in the
benchmark dataset of the Pseudo Boolean Competition, the “Virtual Machine Consolidation” problem
[12]. The dataset includes 27 decision and 27 optimization problems submitted as benchmarks for the
Pseudo Boolean Competition 2015 and is thus significantly smaller than the other datasets. However
we can still observe in Figure 5, that the significance criteria, which performed best for the Knapsack
instances, also outperform the current RoundingSAT implementation here.
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Figure 5: Runtime comparison of significant literal schemes on the PBFVMC instances.

5. Conclusion

It has been successfully demonstrated how significant literals can speedup unit propagation for pseudo-
boolean constraints. Especially for applications with a large average coefficient size we have observed a
substantial improvement compared to the current RoundingSAT watched propagation scheme.

In addition, an avenue for future improvements is indicated by the observation that the performance
differences between the watched literal schemes is mainly determined by the distribution of coefficients.
One possibility could be to select the significance criterion itself during the preprocessing step based on
the coefficients of the individual instance. Another improvement could be the adaptation of the logging
method developed by Robert Nieuwenhuis et al. [8], which ensures that the search behavior of the
solver is completely independent of the exact unit propagation scheme chosen. This would make it
easier to identify small performance improvements from different significant literal definitions.
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A. Comparison with OPT-LIN Instances

The comparison for the OPT-LIN track of the Pseudo-Boolean Competition 2024 is shown in figure 6.

B. Comparison of different Significance Definitions

In figures 7 through 12, we compare the runtime of different significance criteria on the DEC-LIN
instances of the Pseudo-Boolean Competition 2024.
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Figure 6: Runtime comparison of significant literal schemes on the OPT-LIN Track.
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Figure 7: Cut-off value comparison for absolute size criterion on input constraints on the DEC-LIN Track.
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Figure 8: Cut-off value comparison for absolute size criterion on the DEC-LIN Track.
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Figure 9: Cut-off value comparison for absolute size of maximum coefficient criterion on input constraints on
the DEC-LIN Track. 𝑐 = 1 is redundant since it would be equivalent to standard watched literal scheme.
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Figure 10: Cut-off value comparison for absolute size of maximum coefficient criterion on the DEC-LIN Track.
𝑐 = 1 is redundant since it would be equivalent to the standard watched literal scheme.
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Figure 11: Cut-off value comparison for relative size criterion on input constraints on the DEC-LIN Track.
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Figure 12: Cut-off value comparison for relative size criterion on the DEC-LIN Track.
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