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Abstract
Formula simplification in the form of pre- and inprocessing is a crucial part of modern SAT solvers. While

most inprocessing techniques focus on eliminating redundant clauses, significant performance improvements

have recently been achieved with clause addition techniques. However, not all inprocessing techniques can

be employed in incremental use cases. In particular, combining incremental reasoning with clause addition

techniques based on more general redundancy properties in a sound and efficient way is an open challenge. In this

paper, we extend the incremental inprocessing calculus for SAT solvers to facilitate some of these clause addition

techniques and reason about the soundness and completeness of such systems. The resulting framework formally

defines sufficient conditions for efficiently implementing in incremental SAT solvers such beyond resolution

techniques, including Bounded Variable Addition (BVA) and certain Blocked Clause Addition (BCA) steps.
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1. Introduction

Modern SAT solvers often implement a diverse repertoire of different inprocessing techniques in an effort

to simplify the notoriously complex NP-complete decision problems they seek to solve. Most of these

techniques focus on reducing the search space by eliminating certain redundant parts of the formula

while preserving its satisfiability. Some notable examples include Blocked Clause Elimination (BCE) [1],

Bounded Variable Elimination (BVE) [2], and Equivalent Literal Substitution (ELS) [3, 4, 5, 6]. In contrast

to these techniques, other approaches focus on introducing redundant clauses and new variables in a

way that preserves satisfiability, rather than eliminating them (see for example [7, 8, 9]). Such clause

addition techniques gained renewed attention after SBVA-CaDiCaL [10] won the SAT Competition in

2023 [11]. This winner tool combined CaDiCaL, a modern state of the art SAT solver, with an efficient

implementation of Bounded Variable Addition (BVA) [12] as a preprocessing technique. Beyond BVA,

many other clause addition techniques, such as Blocked Clause Addition (BCA) [13] and reasoning

over cardinality constraints [9] or decision diagrams [7], require a proof system based on some form

of extended resolution [14, 15, 16] to certify. Nevertheless, an abstract framework that captures in a

unified way and reasons about the usual inprocessing techniques of SAT solvers, including both clause

addition and elimination techniques, was introduced by Järvisalo et al. in [17].

There are many use cases for SAT solvers, for example in model checking [18], or in sub-reasoning

steps of MaxSAT [19] and Satisfiability modulo Theories (SMT) solvers [20, 21], where a sequence of

similar SAT problems are solved rather than a single decision problem. Such use cases can greatly

benefit from incremental SAT solving [22, 23] where the results of previous solver runs can be reused

during reasoning, potentially avoiding much repeated work. However, in order to be able to reuse the

previous solver steps, formula simplification in incremental SAT solvers requires additional care [24].

Nadel at al. [25] showed how to handle certain clause elimination techniques in incremental solvers.

A refinement of the inprocessing rules for incremental use cases was introduced in [26], where all

clause elimination techniques are supported, but only implied clauses can be learned. In this paper, we
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extend the incremental inprocessing rules of [26] so that clause addition techniques based on extended

resolution [15, 16] are enabled. This extension allows to capture on an abstract level incremental

inprocessing in the presence of a variety of clause addition techniques, including forms of BVA, BCA

and extended resolution.

The paper is organized as follows: Section 2 provides an overview of the used notation and background,

while Section 3 presents our new derivation rule that captures clause addition techniques based on

more general redundancy properties and reasons about its correctness. In Section 4 we illustrate the

use of the new calculus and Section 5 concludes the paper.

2. Preliminaries

Boolean Satisfiability We assume the standard semantics and syntax of propositional logic and

its decision problem (SAT). Given a set of Boolean variables 𝒱 , a propositional formula 𝐹 over 𝒱 in

conjunctive normal form is a conjunction of clauses, where each clause is a disjunction of literals and a

literal is a Boolean variable or its negation. A (partial) truth assignment 𝜏 over a set of variables 𝒱 is

a set of non-contradicting literals over 𝒱 . An assignment 𝜏 satisfies (resp. falsifies) a literal 𝑙 if 𝑙 ∈ 𝜏
(resp. ¬𝑙 ∈ 𝜏 ). If neither 𝑙 ∈ 𝜏 nor ¬𝑙 ∈ 𝜏 , then the literal is unassigned and the truth assignment is

partial. A clause is satisfied by a truth assignment 𝜏 if at least one of its literals is satisfied. A truth

assignment satisfies a CNF formula 𝐹 , noted as 𝜏(𝐹 ) = ⊤, if it satisfies every clause of it. We use

𝜏1 ∘ 𝜏2 to denote the composition of truth assignments 𝜏1 and 𝜏2, i.e., (𝜏1 ∘ 𝜏2) (𝐹 ) = 𝜏1(𝜏2(𝐹 )). Note

that if 𝑑𝑜𝑚(𝜏1) ∩ 𝑑𝑜𝑚(𝜏2) = ∅, then (𝜏1 ∘ 𝜏2) (𝐹 ) = 𝜏1(𝜏2(𝐹 )) = 𝜏2(𝜏1(𝐹 )) = (𝜏2 ∘ 𝜏1) (𝐹 ).

Incremental SAT Instead of solving a single satisfiability problem, we are interested in solving a

sequence of SAT formulae ⟨𝐹 0, 𝐹 1, . . . , 𝐹𝑛⟩ over a global variable set Γ ⊆ 𝒱 , where each formula

extends the previous one with new clauses, i.e., starting from an initial SAT problem 𝐹 0
, for each phase

𝑖 = 0 . . . 𝑛 − 1 we have that 𝐹 𝑖+1 = 𝐹 𝑖 ∧Δ𝑖+1 over the variable set Γ. As each phase extends the

previous formula with further clauses, if 𝐹 𝑖
is unsatisfiable, then 𝐹 𝑗

for all 𝑗 > 𝑖 is unsatisfiable as

well. Incremental SAT solvers also support assumptions, literals temporarily assumed to be true in a

given phase. In practice they are frozen variables [23, 24], thus we do not consider them explicitly in

this paper.

Existentially Quantified SAT We further introduce Λ ⊆ 𝒱 , a (sufficiently large) set of latent Boolean

variables, s.t. Γ∩Λ = ∅. Given a SAT problem 𝐹 over 𝒱 = Γ∪Λ, we denote with ∃Λ (𝐹 ) the quantified

Boolean formula (QBF) where all Λ-variables are existentially quantified, all Γ-variables are free and

the formula matrix is 𝐹 . Further, we assume every truth assignment to be a total function over Λ and Γ,

unless stated otherwise. For an introduction of standard QBF syntax and semantics, see for example [27],

while here we define explicitly the most relevant related concepts that are used throughout this paper.

Definition 1 (Projected satisfaction). Let 𝜏 be a truth assignment over Γ, we say that 𝜏 satisfies ∃Λ (𝐹 )
iff there exists a truth assignment 𝜆 over Λ, such that (𝜏 ∘ 𝜆) (𝐹 ) = ⊤.

Definition 2 (Projected implication). Given a formula 𝐹 and a clause 𝐶 , both over variables Γ ∪ Λ, we

say that 𝐹 Λ-implies 𝐶 , denoted as 𝐹 |=Λ 𝐶 , iff all satisfying truth assignments (according to Def. 1 over

Γ) of ∃Λ (𝐹 ) satisfy ∃Λ (𝐹 ∧ 𝐶) as well.

Definition 3 (Projected equivalence). Given formulas 𝐹 and 𝐺 over variables Γ ∪ Λ, we say that 𝐹
is logically equivalent to 𝐺 under Λ, denoted as 𝐹 ≡Λ 𝐺, iff exactly the same truth assignments over Γ
satisfy ∃Λ (𝐹 ) and ∃Λ (𝐺).

In other words, for all 𝜏 over Γ s.t. there exists 𝜆 over Λ with (𝜏 ∘ 𝜆) (𝐹 ) = ⊤, it holds that there

exists also a 𝜆′
over Λ s.t. (𝜏 ∘ 𝜆′) (𝐺) = ⊤. Note that 𝜆 and 𝜆′

can be different, but in certain cases

they are the exact same truth assignment, as the following proposition shows.
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Proposition 4. Given a formula 𝐹 and a clause 𝐶 over Γ ∪ Λ, if 𝐹 |= 𝐶 , then both |= ∃Λ (𝐹 → 𝐶)
and 𝐹 |=Λ 𝐶 holds.

The following proposition makes explicit the relation between projected equivalence and implication.

Notice that projected equivalence and implication are both transitive properties, i.e., if 𝐹 ≡Λ 𝐺 and

𝐺 ≡Λ 𝐻 , then 𝐹 ≡Λ 𝐻 (resp. if 𝐹 |=Λ 𝐺 and 𝐺 |=Λ 𝐻 , then 𝐹 |=Λ 𝐻).

Proposition 5. Given a formula 𝐹 and a clause 𝐶 over Γ ∪ Λ, 𝐹 |=Λ 𝐶 iff 𝐹 ≡Λ 𝐹 ∧ 𝐶 .

Though these definitions and propositions first may seem to be straightforward, they include several

subtle details that were refined and exploited through a long line of previous research, see for example

in [28, 29, 30, 31, 32, 33].

Incremental Inprocessing This paper extends the incremental inprocessing calculus that was

introduced in [26] and later slightly refined in [34, Section 6.3]. To make the paper more self contained,

here we sum up the most important terminology and notation with minor adjustments to our current

concerns. Formula pre- and inprocessing steps are concerned about efficiently identifying redundant

clauses (see Def. 7), that we define based on the most general redundancy property introduced in [35].

To make explicit the reason of found redundancies when it is necessary, we use the notion of witness

labelled clauses (see Def. 6).

Definition 6 (Witness Labelled Clause [26]). A set of literals 𝜔 and a clause 𝐶 such that 𝜔 ∩ 𝐶 ̸= ∅ is

called a witness labelled clause and written as (𝜔 : 𝐶).

Definition 7 (Redundancy [26, 35]). A witness labelled clause (𝜔 : 𝐶) is redundant w.r.t. a formula 𝐹 if

𝜔(𝐶) = ⊤ and 𝐹 |¬𝐶 |= 𝐹 |¬𝐶∘𝜔 . This is also denoted as 𝐹 ∧ 𝐶 ≡𝜔
𝑠𝑎𝑡 𝐹 .

As Def. 7 indicates, adding or removing redundant clauses is satisfiability preserving. Moreover,

knowing the witness of removed redundant clauses allows to transform a solution of the simplified

formula to a solution of the removed redundant clauses as well. Note that we use a stronger definition

𝐹 |¬𝐶 |= 𝐹 |¬𝐶∘𝜔 (essentially the same as in [36]) instead of the original version 𝐹 |¬𝐶 |= 𝐹 |𝜔 [35] used

in [26], as solution reconstruction otherwise requires larger witnesses, as the following example shows.

Example 8 (Total Models and Variable Elimination). Consider the clauses (𝑎 ∨ 𝑏) ∧ (¬𝑎 ∨ ¬𝑏). Variable

elimination on 𝑎 would find that both clauses are redundant. However, using only 𝑎 (resp. ¬𝑎) as a witness

does not satisfy the original redundancy criteria. One could always extend the witness to set all variables of

the clause, which however “taints” more literals than necessary (cf. “clean condition” of Restore in Fig. 1).

Example 8 was observed in a formalization of (non-incremental) reconstruction in Isabelle as part of

a Master thesis [37]. It is not a counterexample to incremental model reconstruction [26] (proofs remain

correct and transfer to the stronger version) but it shows that the original redundancy criteria is not

strong enough to cover the implementation in CaDiCaL. Practically it means that solution reconstruction

needs to work with total assignments and has to assign all variables initially and not on-the-fly during

the reconstruction procedure.

Lemma 9 (Satisfying Redundant Clauses). Assume 𝐹 ≡𝜔
𝑠𝑎𝑡 𝐹 ∧ 𝐶 and let 𝜏 be a total assignment over

Λ ∪ Γ s.t. 𝜏(𝐹 ) = ⊤ and 𝜏(𝐶) = ⊥. Then, (𝜏 ∘ 𝜔) (𝐹 ∧ 𝐶) = ⊤.

Proof Sketch. Very similar to the original proof in [26], but the stronger 𝜏 ∘ 𝛼 = 𝜏 (where 𝛼 = ¬𝐶)

holds and therefore 𝛼 vanishes everywhere in the proof.

Due to the refinement in Def. 7, hereafter we assume found models to be total. This change only

makes proofs easier, because the assumption is stronger than in the original reconstruction. In practice,

SAT solvers most often stop their search only once every variable was assigned without a conflict, thus

this change does not have practical consequences.
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𝜙 [ 𝜌 ] 𝜎

𝜙 [ 𝜌 ∧ 𝐶 ] 𝜎
♯

𝜙 [ 𝜌 ∧ 𝐶 ] 𝜎

𝜙 [ 𝜌 ] 𝜎

𝜙 [ 𝜌 ∧ 𝐶 ] 𝜎

𝜙 ∧ 𝐶 [ 𝜌 ] 𝜎

𝜙 [ 𝜌 ] 𝜎

𝜙 ∧Δ [ 𝜌 ] 𝜎
ℐ

Learn
−

Forget Strengthen AddClauses

𝜙 ∧ 𝐶 [ 𝜌 ] 𝜎

𝜙 [ 𝜌 ] 𝜎 · (𝜔 : 𝐶)
♭

𝜙 ∧ 𝐶 [ 𝜌 ] 𝜎

𝜙 [ 𝜌 ] 𝜎
ø

𝜙 [ 𝜌 ] 𝜎 · (𝜔 : 𝐶) · 𝜎′

𝜙 ∧ 𝐶 [ 𝜌 ] 𝜎 · 𝜎′ 𝜕

Weaken
+

Drop Restore

where ♯ is 𝜙 ∧ 𝜌 |= 𝐶 , ♭ is 𝜙 ∧ 𝐶 ≡𝜔
𝑠𝑎𝑡 𝜙, ø is 𝜙 |= 𝐶 , 𝜕 is 𝐶 is clean w.r.t. 𝜎′

and

ℐ is that vars(Δ) ⊆ Γ and each clause in Δ is clean w.r.t. 𝜎.

Figure 1: Incremental inprocessing rules as introduced in [26].

We capture inprocessing steps in an incremental SAT solver as derivation steps in a formal calculus

that operates on abstract states. An abstract state, denoted as 𝜙 [ 𝜌 ] 𝜎, consists of three parts: (i) 𝜙: a

set of irredundant clauses (ii) 𝜌: a set of learned redundant clauses and (iii) 𝜎: an ordered sequence

of witness labelled clauses representing the reconstruction stack of the solver where the previously

removed redundant clauses are stored. Given a sequence of incremental SAT problems ⟨𝐹 0, 𝐹 1, . . . , 𝐹𝑛⟩
over a set of variables Γ, the derivation starts from the initial state ∅ [ ∅ ] 𝜀 and the possible derivation

rules, together with their corresponding side conditions defining when a rule is actually applicable, are

shown in Fig. 1.

A clause can be removed from the irredundant clause database in two cases: (i) when it is implied by

all the other clauses in 𝜙, and in that case the clause can be completely deleted (see Drop), or (ii) when

it is redundant w.r.t. 𝜙 (see Weaken
+

), and in that case it is moved to the end of the reconstruction

stack. Reintroducing a clause 𝐶 from the reconstruction stack 𝜎 into 𝜙 via Restore requires to first

restore all those clauses from the stack that could have not been removed from 𝜙 if 𝐶 was present. To

recognize a superset of such clauses, we use the notion of clean clauses:

Definition 10 (Clean Clauses [26]). A clause 𝐶 is clean w.r.t. a sequence of witness labelled clauses 𝜎 iff

for all (𝜔 : 𝐷) ∈ 𝜎 we have that ¬𝐶 ∩ 𝜔 = ∅.

Redundant clauses can be either deleted by Forget or moved to the irredundant set by Strengthen

at any point of time. A new redundant clause 𝐶 can be learned by Learn
−

when it is implied by the

formula 𝜙∧𝜌 (see ♯ ). Note that though this step captures learning clauses derived by resolution during

conflict analysis, it does not support clause addition techniques based on more general redundancies.

Rule AddClauses captures when users add new clauses to the problem (i.e., when a new solving

phase starts). In that case, before applying AddClauses, all previously done relevant clause elimination

steps must be undone (via Restore) relying again on the notion of clean clauses (see ℐ ). Further, in

contrast to the original calculus, here we make explicit the set of variables on what the formulas are

defined (Γ). As we will discuss it later, this refinement of ℐ simplifies our reasoning but does not

necessarily affect user experience. That is, it is not required to know ahead of time which variables

will reoccur in clauses that are added later. In the next sections we will refer to derivation of state

𝜙𝑖
𝑗+1 [ 𝜌

𝑖
𝑗+1 ] 𝜎

𝑖
𝑗+1 from 𝜙𝑖

𝑗 [ 𝜌
𝑖
𝑗 ] 𝜎

𝑖
𝑗 for each 0 ≤ 𝑗 < 𝑘𝑖 in each phase 𝑖 = 0, . . . , 𝑛 and of steps where

a new phase 𝑖+ 1 starts from 𝜙𝑖
𝑘𝑖

[ 𝜌𝑖𝑘𝑖 ] 𝜎
𝑖
𝑘𝑖

by adding Δ𝑖+1 to 𝜙𝑖
𝑘𝑖

.

We use the following revised
1

version of reconstruction function definition that captures solution

reconstruction proposed by Järvisalo et al. [38] of inprocessing SAT solvers.

Definition 11 (Reconstruction Function [34]). Given a truth assignment 𝜏 and a witness labelled clause

(𝜔 : 𝐶) the reconstruction function is defined as

ℛ(𝜔:𝐶)(𝜏) =

{︃
𝜏 if 𝜏(𝐶) = ⊤
(𝜏 ∘ 𝜔) otherwise.

1

Christoph Scholl proposed this simplified version of the reconstruction function while working on [26].
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𝜙 [ 𝜌 ] 𝜎

𝜙 [ 𝜌 ∧ (ℓ ∨ 𝐶) ] 𝜎
Σ

Extend

where Σ is that ℓ ∈ Λ (and so ℓ ̸∈ Γ) and

𝜙 ∧ 𝜌 ∧ 𝜎 ≡ℓ
𝑠𝑎𝑡 𝜙 ∧ 𝜌 ∧ 𝜎 ∧ (ℓ ∨ 𝐶) holds.

Figure 2: New transition to capture clause addition witnessed by latent literal ℓ.

The reconstruction function for a sequence of witness labelled clauses 𝜎 is defined as ℛ𝜀 = id and

ℛ𝜎 = ℛ(𝜔1:𝐶1)·...·(𝜔𝑛:𝐶𝑛) = ℛ(𝜔1:𝐶1) ∘ · · · ∘ ℛ(𝜔𝑛:𝐶𝑛).

Notice that from this definition, due to the associativity of function composition, it immediately

follows that for a given truth assignment 𝜏 and a sequence of witness labelled clauses 𝜎 · 𝜎′
we have

that ℛ𝜎·𝜎′(𝜏) = ℛ𝜎(ℛ𝜎′(𝜏)), while in [26] it required an additional lemma.

The following lemma will help us to show the correctness of solution reconstruction in our extended

calculus. For more details on the incremental inprocessing calculus and for a proof of this lemma,

see [26, 34, Section 6.3].

Lemma 12 (Clean Reconstruction [26]). If a clause 𝐶 is clean w.r.t. a sequence of witness labelled clauses

𝜎, then for all truth assignments 𝜏 with 𝜏(𝐶) = ⊤ we have that ℛ𝜎(𝜏)(𝐶) = ⊤.

3. Incremental Inprocessing with Blocked Clause Addition

While the original (non-incremental) inprocessing calculus of [17] allows learning arbitrary redundant

clauses (based on RAT or even more general redundancy properties), the incremental extension of it

supports only implied clauses to be learned via Learn
−

(see Fig. 1).

In Fig. 2 we introduce a new possible step, called Extend, that enables learning clauses based on

a more general redundancy property but only in very specific cases: (1) the redundancy has to hold

w.r.t. every part of the formula, including those clauses that are currently on the reconstruction stack,

and (2) the redundancy has to be witnessed by a single latent literal. Though the requirements of

Extend are very specific, it captures several clause addition techniques, such as BVA, BCA and extended

resolution (see Sect. 4 for some examples). Note that these techniques could be simulated without

Extend, by simply adding the learned clauses as user input via AddClauses. However, then the

added clauses are part of the irredundant clause database (making it harder to eliminate them) and the

reconstruction stack has to be first cleaned with Restore steps (see ℐ ). In contrast to that, Extend

adds the new clauses as redundant (just as Learn
−

) and no Restore steps are necessary before applying

it. Preprocessing steps of users (and wrapping systems) can continue using AddClauses, while Extend

captures the internal inprocessing steps that are witnessed by the internal latent variables. That is,

latent variables are private and only help the reasoning of the SAT solver, while users can only use and

reuse any of the Γ-variables. In practice, when users need a fresh variable, it has to be made sure that it

is not used already as a latent variable internally in the solver.

Now we show that it is correct to combine Extend with the other steps of an incremental solver (see

Fig. 1), as long as the latent variables remain unused by the user (see ℐ ). First, see that learning by

Extend is satisfiability preserving and their solution is reconstructible.

Lemma 13. Assume 𝐹 ≡𝑥
𝑠𝑎𝑡 𝐹 ∧ (𝑥 ∨ 𝐶) and let 𝜏 be a total assignment over Γ ∪ Λ s.t. 𝜏(𝐹 ) = ⊤ and

𝜏(𝑥 ∨ 𝐶) = ⊥. Then, (𝜏 ∘ 𝑥) (𝐹 ∧ (𝑥 ∨ 𝐶)) = ⊤.

Proof. Follows from Lemma 9 (note that 𝜏 is assumed to be total, as discussed at Example 8).

Allowing redundant but not implied clauses to be learned means that the redundant clauses are not

logical consequences of the irredundant and eliminated ones any more. However, as the following

lemmas show, a projected implication still holds in the new calculus.
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Lemma 14. If 𝐹 ≡𝑥
𝑠𝑎𝑡 𝐹 ∧ (𝑥 ∨ 𝐶) where 𝑥 ∈ Λ, then 𝐹 |=Λ (𝑥 ∨ 𝐶).

Proof. Assume 𝜏 = (𝛾 ∘ 𝜆) is a total assignment over Γ ∪ Λ s.t. 𝜏(𝐹 ) = ⊤. Then either also (𝛾 ∘
𝜆) (𝐹 ∧ (𝑥 ∨ 𝐶)) = ⊤ holds, or by Lemma 13, we know that (𝛾 ∘ (𝜆 ∘ 𝑥)) (𝐹 ∧ (𝑥 ∨ 𝐶)) = ⊤. Thus,

whenever there exists a truth assignment 𝜆 over Λ s.t. (𝛾 ∘ 𝜆) (𝐹 ) = ⊤, there exists a truth assignment

𝜆′
s.t. (𝛾 ∘ 𝜆′) (𝐹 ∧ (𝑥 ∨ 𝐶)) = ⊤ by defining 𝜆′

either as 𝜆 or as (𝜆 ∘ 𝑥).

Lemma 15. Starting from the initial state, in any reachable state 𝜙 [ 𝜌 ] 𝜎, the property 𝜙∧𝜎 |=Λ 𝜙∧𝜎∧𝜌
holds.

Proof. We prove it by induction on the length of the derivation. In the initial state the property trivially

holds (𝜙0
0 = ∅ without Λ variables and both 𝜎0

0 and 𝜌00 are empty). Assuming that 𝜙 ∧ 𝜎 |=Λ 𝜌 holds,

we show the induction step by a case distinction on the next applied rule. Rules Weaken
+

and Restore

only move a clause between 𝜙 and 𝜎, AddClauses only strengthens 𝜙∧ 𝜎, while Forget only weakens

𝜌, thus in these cases the property is trivially maintained. With Drop a clause is removed from 𝜙, but

𝜙 ∖ {𝐶} ≡ 𝜙 is ensured by ø . Rule Strengthen weakens 𝜌 by moving a clause of it to 𝜙, thereby

also strengthens 𝜙 ∧ 𝜎, thus the property is maintained. When a clause 𝐶 is learned by Learn
−

from

the inductive assumption we know that for any truth assignment 𝛾 over Γ if there exists a 𝜆 over Λ
s.t. (𝛾 ∘𝜆) (𝜙∧𝜎) = ⊤, then there exists a 𝜆′

over Λ s.t. (𝛾 ∘𝜆′) (𝜙∧𝜎∧𝜌) = ⊤. Since 𝜙∧𝜎∧𝜌 |= 𝐶
(due to ♯ ), we know that (𝛾 ∘ 𝜆′) (𝜙 ∧ 𝜎 ∧ 𝜙 ∧ 𝐶) = ⊤ holds as well. When the new Extend rule is

applied, one needs to show that 𝜙∧𝜎 |=Λ 𝜙∧𝜎∧𝜌∧(𝑥∨𝐶). Let 𝛾 be a truth assignment over Γ s.t. there

exists a 𝜆 over Λ s.t. (𝛾 ∘ 𝜆) (𝜙∧ 𝜎) = ⊤. Then, from the ind. assumption follows that there also exists

a truth assignment 𝜆′
s.t. (𝛾 ∘ 𝜆′) (𝜙 ∧ 𝜎 ∧ 𝜌) = ⊤ holds. And since 𝜙 ∧ 𝜎 ∧ 𝜌 |=Λ (𝑥 ∨ 𝐶) (due to Σ

and Lemma 14), we know that then there exists as well a 𝜆′′
s.t. (𝜏 ∘𝜆′′) (𝜙∧𝜎∧𝜌∧ (𝑥∨𝐶)) = ⊤.

From the projected implication established in Lemma 15, it can be shown that there is a projected

equivalence maintained by every step of our calculus.

Lemma 16. In any derivation in our calculus starting from the initial state the property 𝜙𝑖
𝑗 ∧ 𝜎𝑖

𝑗 ≡Λ

𝜙𝑖
𝑗+1 ∧ 𝜎𝑖

𝑗+1 holds in each phase 𝑖 = 0 . . . 𝑛 and for each 𝑗 with 0 ≤ 𝑗 < 𝑘𝑖.

Proof. By induction over the transition, ignoring the indices 𝑖 and 𝑗. Only rules Strengthen and Drop

change the combined formula 𝜙∧ 𝜎. However, Strengthen strengthens with an Λ-implied clause (due

to Lemma 15), while Drop guarantees logical equivalence by ø .

Lemma 17. In any derivation starting from the initial state, if no input clauses contain latent variables

then the property 𝐹 𝑖 |=Λ 𝜙𝑖
0 ∧ 𝜎𝑖

0 ≡Λ 𝜙𝑖
1 ∧ 𝜎𝑖

1 ≡Λ · · · ≡Λ 𝜙𝑖
𝑘𝑖
∧ 𝜎𝑖

𝑘𝑖
holds.

Proof. Since the input clauses have no Λ-variables, for all 0 ≤ 𝑖 ≤ 𝑛 it holds that Δ𝑖 ≡ ∃Λ (Δ𝑖) and so

for any formula 𝐹 , we have that ∃Λ (𝐹 ) ∧Δ𝑖 ≡ ∃Λ (𝐹 ∧Δ𝑖). Further, from Lemma 16 follows that

𝐹 0 = 𝜙0
0 ∧ 𝜀 ≡Λ · · · ≡Λ 𝜙0

𝑘0
∧ 𝜎0

𝑘0
. Now, by an inductive argument and by Lemma 16, we get that

𝐹 𝑖+1 = 𝐹 𝑖 ∧Δ𝑖+1 ≡Λ 𝜙𝑖
𝑘𝑖
∧ 𝜎𝑖

𝑘𝑖
∧Δ𝑖+1 = 𝜙𝑖+1

0 ∧ 𝜎𝑖+1
0 ≡Λ · · · ≡Λ 𝜙𝑖+1

𝑘𝑖+1
∧ 𝜎𝑖+1

𝑘𝑖+1
.

As a corollary, we get that the learned clauses can be kept even after new clauses were added, as

long as users are not using latent variables.

Corollary 18. If no input clauses contain latent variables then 𝐹 𝑖+1 |=Λ 𝜌𝑖𝑘𝑖 holds.

What remains to show is that solution reconstruction works as before in our extended calculus. For

that, we use a refined definition of reconstruction property from [34, Sect. 6.3].

Definition 19 (Reconstruction Property [34]). A state 𝜙 [ 𝜌 ] 𝜎 satisfies the reconstruction property

w.r.t. a formula 𝐹 iff for all total truth assignment 𝜏 over Γ∪Λ satisfying 𝜙, the result of the reconstruction

function ℛ𝜎(𝜏) is a satisfying assignment of 𝐹 .
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Theorem 20. Starting from the initial state, in any reachable state 𝜙𝑖
𝑗 [ 𝜌

𝑖
𝑗 ] 𝜎

𝑖
𝑗 , the reconstruction property

holds w.r.t. 𝐹 𝑖
.

Proof Sketch. Relying on our refined definitions and lemmas (Def. 11, Lemma 12, and Lemma 9), it can

be shown by induction that every step (including Extend) maintains the property. The proof remains

technically the same as in [34] (see in Appendix).

Putting everything together, we get our final lemma showing that the incremental calculus with

Extend is correct.

Theorem 21 (Correctness). Starting from the initial state, in any reachable state 𝜙𝑖
𝑗 [ 𝜌

𝑖
𝑗 ] 𝜎

𝑖
𝑗 , the property

𝐹 𝑖 ≡𝑠𝑎𝑡 𝜙
𝑖
𝑗 ∧ 𝜌𝑖𝑗 holds.

Proof. If 𝜙𝑖
𝑗 ∧ 𝜌𝑖𝑗 is satisfiable, then 𝐹 𝑖

is also satisfiable due to Thm. 20. From Lemma 15 follows that

if 𝜙𝑖
𝑗 ∧ 𝜌𝑖𝑗 is unsatisfiable, then 𝜙𝑖

𝑗 is unsatisfiable as well, and then, due to Lemma 17, 𝐹 𝑖
must be

unsatisfiable too.

4. Discussion

The following example illustrates how our extended calculus can capture BCA and thereby for example

BVA or other forms of extended resolution.

Example 22. Let 𝐹 0 = (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑐 ∨ 𝑑) ∧ (𝑑 ∨ 𝑎) be the first formula to be solved. Once all

clauses are added (via AddClauses), the derivation starts with 𝐹 0 [ ∅ ] 𝜀. Assume that the solver decides

to introduce a new latent variable 𝑙, with the definition (𝑙 ↔ (¬𝑎 ∨ ¬𝑐)). For that, it needs to add (in an

arbitrary order) the following three blocked clauses: {(𝑎 ∨ 𝑙), (𝑐 ∨ 𝑙), (¬𝑎 ∨ ¬𝑐 ∨ ¬𝑙)}. Since 𝑙,¬𝑙 ̸∈ 𝐹 0

and the reconstruction stack is empty, we can see that each clause fulfils Σ hence applying Extend thrice

can lead to a state 𝐹 0 [ (𝑎 ∨ 𝑙) ∧ (𝑐 ∨ 𝑙) ∧ (¬𝑎 ∨ ¬𝑐 ∨ ¬𝑙) ] 𝜀. Now, the clauses (𝑏 ∨ ¬𝑙) and (𝑑 ∨ ¬𝑙) are

both implied and so can be learned via Learn
−

. With Strengthen the solver can move some of the learned

clauses, leading to a state 𝐹 0 ∧ (𝑎 ∨ 𝑙) ∧ (𝑐 ∨ 𝑙) ∧ (𝑏 ∨ ¬𝑙) ∧ (𝑑 ∨ ¬𝑙) [ (¬𝑎 ∨ ¬𝑐 ∨ ¬𝑙) ] 𝜀. Now Drop

can be used to drop all clauses of 𝐹 0
and Forget can also remove the remaining redundant definition clause.

As a result, we get (𝑎 ∨ 𝑙) ∧ (𝑐 ∨ 𝑙) ∧ (𝑏 ∨ ¬𝑙) ∧ (𝑑 ∨ ¬𝑙) [ ∅ ] 𝜀. At that point, since the reconstruction

stack is empty, arbitrary 𝑙-free clauses can be added via AddClauses.

Here the solver fully defined the meaning of the new latent variable (by learning three blocked

clauses), but in theory it would have been correct to learn only some of these clauses.

A further interesting insight is that our calculus ensures that the solved formula remains satisfiability

equivalent and solution reconstruction gives a model to the original problem. However, as the next

example shows, the final value of the latent variables is not defined.

Example 23. Assume that we start with a formula consisting of a single unit clause, i.e., 𝐹0 = (𝑎) and so

the initial state is {𝑎} [ ∅ ] 𝜀. Assume, the solver uses Weaken
+

to remove the only clause of the formula,

ending in the state ∅ [ ∅ ] (𝑎 : 𝑎). Then, the solver can learn via Extend the clause (𝑥∨¬𝑎) witnessed by 𝑥,

where 𝑥 ∈ Λ, yielding the state ∅ [ {(𝑥 ∨ ¬𝑎)} ] (𝑎 : 𝑎). Now, by Strengthen, the clause can be moved to

the irredundant set, resulting in the state {(𝑥 ∨ ¬𝑎)} [ ∅ ] (𝑎 : 𝑎). Then, starting from the initial solution

𝜏 = {¬𝑥,¬𝑎}, solution reconstruction results in a model of the input formula 𝜏 = {¬𝑥, 𝑎}. However,

while that the solution satisfies 𝐹0, it falsifies the clause learnt by Extend.

This result is not too surprising, as our extended calculus is based on projected implication, i.e., we

only claim that there exists an extension of the solution to the latent variables, while the actual value

of these variables is not considered. Similarly, the original non-incremental calculus of [17] does not

guarantee that clauses added by the solver are satisfied after solution reconstruction.
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5. Conclusion and Future Work

The main motivation behind this paper was our intention to implement and combine BVA with the

incremental features of CaDiCaL [39]. Though intuitively this should work without much complications,

we had to establish in theory that our implementation is actually correct. Thus, here we introduced an

extension of the incremental inprocessing calculus [26] with a new rule that allows learning in certain

cases based on more general redundancies.

The new framework supports only single witness literals, extending it to more general witnesses, that

is necessary to capture super-blocked clauses [13] and other PR-based techniques [35, 40, 41], remains

future work. Further, note that our calculus captures only the internal inprocessing steps of the solver

and does not allow users to interfere with it. A more general learning mechanism (as it is available in

the non-incremental inprocessing calculus [17]) remains intriguing future work.
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A. Proof of Theorem 20

Theorem 20. Starting from the initial state, in any reachable state 𝜙𝑖
𝑗 [ 𝜌

𝑖
𝑗 ] 𝜎

𝑖
𝑗 , the reconstruction property

holds w.r.t. 𝐹 𝑖
.

Proof. In the initial state 𝑖, 𝑗 = 0, 𝜙0
0 = 𝐹 0

, 𝜎0
0 = 𝜀, and so for any total satisfying assignment 𝜏

of 𝐹 0
, ℛ𝜀(𝜏)(𝐹

0) = 𝜏 (𝐹 0) = ⊤. Assume that in a state 𝑗 of a phase 𝑖 (where 0 ≤ 𝑗 < 𝑘𝑖 and

0 ≤ 𝑖 ≤ 𝑛), the reconstruction property w.r.t. 𝐹 𝑖
holds, i.e., for all complete assignment 𝜏 over Γ ∪ Λ

if 𝜏(𝜙𝑖
𝑗) = ⊤, then ℛ𝜎𝑖

𝑗
(𝜏)(𝐹 𝑖) = ⊤. Now, we need to show that for any total 𝜏 if 𝜏(𝜙𝑖

𝑗+1) = ⊤
holds, then ℛ𝜎𝑖

𝑗+1
(𝜏)(𝐹 𝑖) = ⊤ holds as well. Note that 𝐹 𝑖

is not changed by any steps of the calculus

(AddClauses starts a new phase and 𝑖 is increased). Rules Learn
−

, Forget, and Extend do not

change 𝜙𝑖
𝑗 nor 𝜎𝑖

𝑗 , thus the property remains true. In case of rule Drop, it follows from ø , that if

𝜏(𝜙𝑖
𝑗+1) = ⊤ then 𝜏(𝜙𝑖

𝑗+1∧𝐶) = ⊤ as well, thus ℛ𝜎𝑖
𝑗+1

(𝜏)(𝐹 𝑖) = ⊤ holds by induction, and similarly

for Strengthen with 𝜙𝑖
𝑗+1 = 𝜙𝑖

𝑗 ∧ 𝐶 .

For Weaken
+

, consider a total truth assignment 𝜏 ′ over Γ ∪ Λ s.t. 𝜏 ′(𝜙𝑖
𝑗+1) = 𝜏 ′(𝜙𝑖

𝑗 ∖ 𝐶) = ⊤. If

𝜏 ′(𝐶) = ⊤, then 𝜏 ′(𝜙𝑖
𝑗) = ⊤, thus ℛ𝜎𝑖

𝑗
(𝜏 ′)(𝐹 𝑖) = ⊤ by induction. Further, in that case from Def. 11

follows that ℛ𝜎𝑖
𝑗+1

(𝜏 ′) = ℛ𝜎𝑖
𝑗 ·(𝜔:𝐶)(𝜏

′) = ℛ𝜎𝑖
𝑗
(𝜏 ′) since 𝜏 ′(𝐶) = ⊤. If 𝜏 ′(𝐶) ̸= ⊤, then 𝜏 ′(𝐶) = ⊥ as

𝜏 ′ is total. From ♭ , Lemma 12, and Lemma 9 follows that (𝜏 ′ ∘𝜔) (𝜙𝑖
𝑗) = ⊤ and so by induction (𝜏 ′ ∘𝜔

is still total over Γ ∪ Λ), ℛ𝜎𝑖
𝑗
(𝜏 ′ ∘ 𝜔)(𝐹 𝑖) = ⊤ where ℛ𝜎𝑖

𝑗
(𝜏 ′ ∘ 𝜔) = ℛ𝜎𝑖

𝑗 ·(𝜔:𝐶)(𝜏
′) since 𝜏 ′(𝐶) ̸= ⊤.

Thus, ℛ𝜎𝑖
𝑗 ·(𝜔:𝐶)(𝜏

′)(𝐹 𝑖) = ℛ𝜎𝑖
𝑗+1

(𝜏 ′)(𝐹 𝑖) = ⊤.

Assume Restore is applied, where 𝜎𝑖
𝑗 = 𝜎 · (𝜔 : 𝐶) · 𝜎′

. Then for any 𝜏 ′ s.t. 𝜏 ′(𝜙𝑖
𝑗+1) = ⊤ we

have that 𝜏 ′(𝐶) = ⊤ and 𝜏 ′(𝜙𝑖
𝑗) = ⊤ since 𝜙𝑖

𝑗+1 = 𝜙𝑖
𝑗 ∧ 𝐶 . Further, from Def. 11 follows that

ℛ𝜎𝑖
𝑗+1

(𝜏 ′) = ℛ𝜎·𝜎′(𝜏 ′) = ℛ𝜎(ℛ𝜎′(𝜏 ′)). As 𝐶 is clean w.r.t. 𝜎′
(by 𝜕 ), from Lemma 12 follows that

ℛ𝜎′(𝜏 ′)(𝐶) = ⊤, thus ℛ𝜎(ℛ𝜎′(𝜏 ′)) = ℛ𝜎·(𝜔:𝐶)(ℛ𝜎′(𝜏 ′)) = ℛ𝜎·(𝜔:𝐶)·𝜎′(𝜏 ′) (again by Def. 11), which

is actually ℛ𝜎𝑖
𝑗
(𝜏 ′) where by induction the property holds.

When a new phase starts via AddClauses (i.e., 0 ≤ 𝑖 < 𝑛 and 𝑗 = 𝑘𝑖), formula 𝜙𝑖
𝑘𝑖

is extended with

a set of clauses Δ𝑖+1. Let 𝜏 ′ be a total assignment over Γ∪Λ s.t. 𝜏 ′(𝜙𝑖
𝑘𝑖
∧Δ𝑖+1) = 𝜏 ′(𝜙𝑖+1

0 ) = ⊤. Note

that ℛ𝜎𝑖+1
0

(𝜏 ′) = ℛ𝜎𝑖
𝑘𝑖

(𝜏 ′) as AddClauses does not change the reconstruction stack. By the inductive

assumption we have that ℛ𝜎𝑖
𝑘𝑖

(𝜏 ′)(𝐹 𝑖) = ⊤. Further, as 𝐹 𝑖+1 = 𝐹 𝑖 ∧Δ𝑖+1, where each clause of Δ𝑖+1

is clean w.r.t. 𝜎𝑖
𝑘𝑖

(by ℐ ), from Lemma 12 follows that ℛ𝜎𝑖
𝑘𝑖

(𝜏 ′)(Δ𝑖+1) = ℛ𝜎𝑖+1
0

(𝜏 ′)(Δ𝑖+1) = ⊤ as

well. Thus, ℛ𝜎𝑖
𝑘𝑖

(𝜏 ′)(𝐹 𝑖 ∧Δ𝑖+1) = ℛ𝜎𝑖+1
0

(𝜏 ′)(𝐹 𝑖+1) = ⊤.
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