
Evaluating Binary Polynomials using Subpolynomials
Jacob M. Howe1, Martin Brain1 and Arnau Gàmez-Montolio1

1City St George’s, University of London, UK

Abstract
Polynomials over bit-vectors, binary polynomials, are considered algebraically and it is observed that binary
polynomials can be considered as a tree of subpolynomials. A construction of such subpolynomials is given.
The application of these subpolynomials, along with other recent results on binary polynomials, in encoding
polynomials over bit-vectors as part of solving SMT problems is investigated. Preliminary results are given.

Keywords
Polynomials, Satisfiability Modulo Theories, theory of bit-vectors, bit-blasting, modulo arithemetic, finite rings

1. Introduction

Evaluation of polynomials is a fundamental computational process. Polynomials are evaluated over
some numerical or algebraic structure, be that fields or integer rings. Numbers need to be represented
on a machine and this representation is usually in terms of bit-vectors. Polynomials over bit-vectors are
referred to as binary polynomials. This paper is concerned with the evaluation of binary polynomials,
with a particular interest in how this can be exploited as a component of solving SMT problems.

First-order terms and predicates in the theory of bit-vectors are typically handled in SMT solvers
through bit-blasting, reducing numbers represented as bit-vectors to their constituent bits and reasoning
propositionally about these. This means that reasoning about bit-vectors can take advantage of powerful
SAT solving techniques. However, it is not clear that this is the right way to handle expressions involving
multiplication since this can lead to some rather large representations (and/or representations that do not
perform well). A short survey of the state-of-the-art, along with some suggestions as to improvements
and a critique of the whole approach, can be found in [1].

Evaluating a polynomial potentially involves a lot of multiplication, so there is some hope that
investigating alternative ways of handling polynomials might lead to a big pay-off in terms of the
performance of SMT problems over bit-vectors. This might be particularly important since non-linear
problems represent a hard challenge within formal verification, with SMT solvers being the main engine
for doing this.

The theory of bit-vectors contains several sub-algebras. If bit-vectors are interpreted as unsigned
binary numbers then there is a ring isomorphism with integers modulo 2𝑤 (where 𝑤 is the bit-width).
This means that binary polynomials also form a ring. The challenge is to leverage the algebraic structure
of binary polynomials to better manipulate inputs so that when they are eventually bit-blasted evaluation
within SMT solvers is improved.

Noting that bit-vectors modulo 2𝑤 are equivalent to finite rings, two main results are observed and
exploited in this work. Firstly, the observations made in [2] are reiterated, in particular that binary
polynomials can be expressed in a normal form with a maximum degree dependent on the bit-width.
Secondly, a new technique is introduced noting the finite nature of binary polynomials means that a
polynomial can be broken down into smaller subpolynomials; the construction and algorithms for doing
so are presented.

The complexity of polynomials pulls in several directions. Firstly, there is the degree of the polynomial
being considered, which initially appears to be potentially unbounded. Secondly, there is the number of

SMT 2025: 23rd International Workshop on Satisfiability Modulo Theories, August 10–11, 2025, Glasgow, UK
$ j.m.howe@city.ac.uk (J. M. Howe); martin.brain@city.ac.uk (M. Brain); arnau.gamez-montolio@city.ac.uk
(A. Gàmez-Montolio)
� 0000-0001-8013-6941 (J. M. Howe); 0000-0003-4216-7151 (M. Brain); 0009-0003-7676-4218 (A. Gàmez-Montolio)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

3

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:j.m.howe@city.ac.uk
mailto:martin.brain@city.ac.uk
mailto:arnau.gamez-montolio@city.ac.uk
https://orcid.org/0000-0001-8013-6941
https://orcid.org/0000-0003-4216-7151
https://orcid.org/0009-0003-7676-4218
https://creativecommons.org/licenses/by/4.0/deed.en

Jacob M. Howe et al. SMT 2025: Satisfiability Modulo Theories 3–15

variables that the polynomial is over. Thirdly, there is the number and complexity of the monomials that
are summed to give the polynomials (clearly this is partly dependent on the number of variables that
the polynomial is over). Fourthly, there is the bit-width of the bit-vectors. This work restricts itself to
univariate polynomials (that is, polynomials over one variable), hence monomials are simply powers of
the variable; some pointers to results for multivariate polynomials will be given. Results concerning the
degree of the polynomials considered are given in Section 2. Ultimately, interest is in typical machine
representations of unsigned integers (8, 16, 32, 64 and 128 bits) and floating-point (24/48 and 53/106
bits), though worked examples will illustrate the arguments over smaller bit-widths.

The first part revisits the results from [2] and contextualises with other related literature. The second
part investigates how polynomials change when their bit-width is reduced. The third part considers
how the observations made in the first and second parts can be exploited in the encoding of polynomials
for bit-blasting in SMT.

This paper makes the following contributions:

• Introduces subpolynomials and investigates how they may be used to evaluate polynomials.
• Applies recent results from [2] to reduce binary polynomials to a normal form with a maximum

degree.
• Performs an initial empirical investigation into the application of the above when solving SMT

problems involving polynomials over bit-vectors.

The rest of the paper is structured as follows. Section 2 gives background and notation as well as
surveying some of the related literature, in particular recent work on finding the maximum order for
binary polynomials, given the bit-width. Section 3 gives results on polynomials for varying bit-width,
Section 4 investigates how this can be exploited for evaluating polynomials over bit-vectors, Section 5
gives initial empirical results on this and Section 6 concludes.

2. Background and Related Work

This section formalises notation, whilst also surveying related work in the area. In particular, firstly re-
sults from [2] are summarised and illustrated, and secondly an overview of the evaluation of polynomials
in general and in the context of SMT is provided.

2.1. Notation

A bit-vector with bit-width 𝑤 consists of a vector of 0/1 values denoted 𝑏 = [𝑏𝑤−1, 𝑏𝑤−2, ..., 𝑏2, 𝑏1, 𝑏0].
This can be interpreted as an unsigned integer 𝑏 = 2𝑤−1𝑏𝑤−1 + 2𝑤−2𝑏𝑤−2 + ... + 22𝑏2 + 2𝑏1 + 𝑏0.
These are treated as integers modulo 2𝑤 , that is, −𝑏 = 2𝑤 − 𝑏. Being integer rings, there is no division
operation, however, in some places something akin to division will be required in the form of a (zero-fill
or logical) bit shift to the right, shR(𝑏) = [0, 𝑏𝑤−1, 𝑏𝑤−2, ..., 𝑏2, 𝑏1].

A monomial is a product of variables, possibly raised to some power, and a coefficient. Powers are
natural numbers and coefficients are integers. A polynomial is then a sum of monomials. This work
considers only univariate polynomials (that is, with only one variable, hence monomials are a power of
that variable multiplied by a coefficient). Hence polynomials have the form:

𝑎0 + 𝑎1𝑥+ 𝑎2𝑥
2 + ...+ 𝑎𝑛𝑥

𝑛

where 𝑛 ∈ N and 𝑎𝑖 ∈ Z (in much of this work coefficients will be reduced modulo 2𝑤). Such a
polynomial is said to have degree 𝑛, the maximum exponent of 𝑥.

Considering integers modulo 2𝑤, knowing how an integer can be factored by 2 is important, since
any integer that can be factored by 2𝑤 evaluates to 0, and any integer that can be factored by 2𝑖 and
is then multiplied by 2𝑗 where 𝑖+ 𝑗 ≥ 𝑤 likewise evaluates to 0. This is formalised in the definition
below.

4

Jacob M. Howe et al. SMT 2025: Satisfiability Modulo Theories 3–15

Definition 1. The 2-adic valuation of an integer, is a function 𝜈2 : Z → N∪ {∞}, such that for integer
𝑛, 𝜈2(𝑛) is the largest 𝑟 such that 𝑛 ≡ 0 (mod 2𝑟), with 𝜈2(0) = ∞. This then satisfies:

1. 𝜈2(𝑎𝑏) = 𝜈2(𝑎) + 𝜈2(𝑏),
2. 𝜈2(𝑎+ 𝑏) ≥ min(𝜈2(𝑎), 𝜈2(𝑏)).

For example, 𝜈2(8) = 3, 𝜈2(12) = 2, 𝜈2(6) = 1 and 𝜈2(3) = 0. The 2-adic valuation of an odd
number is always 0. The following establishes a relationship between the bit-width and factorials,
defining a value 𝑑𝑤 whose factorial can be factored by 2𝑤.

Definition 2. For 𝑤 ∈ N, let 𝑑𝑤 denote the smallest positive integer such that 𝜈2(𝑑𝑤!) ≥ 𝑤.

For example, if 𝑤 = 2𝑘 for some 𝑘 ≥ 1, 𝑑𝑤 = 𝑤 + 2, if 𝑤 = 23, then 𝑑𝑤 = 10.

2.1.1. Canonical and factorial bases

The usual representation of polynomials as a sum of monomials which are powers of 𝑥, as above, is
referred to here as the canonical basis for polynomials. Polynomials do not have to be represented in
this way.

Let:
𝑥(0) = 1

𝑥(1) = 𝑥

𝑥(𝑖) = 𝑥(𝑥− 1)(𝑥− 2)...(𝑥− 𝑖+ 1) if 𝑖 ≥ 2
These terms are referred to as factorial monomials, and a polynomial can then be represented as a

sum of these factorial monomials. This alternative representation is referred to as the factorial basis. The
degree of a polynomial in the factorial basis is the degree of the factorial monomial with the greatest 𝑖
and will denoted (𝑖). It will be seen below that this is an attractive representation of polynomials.

2.2. Related work: binary polynomials

One of the dimensions of complexity discussed in the introduction was the degree of the polynomial.
In [2] it was shown that for a given bit-width 𝑤, any polynomial can be represented with a maximum
degree 𝑑𝑤 − 1. Further, a polynomial given in the factorial basis is equivalent to one truncated to degree
(𝑑𝑤 − 1). Moreover, a polynomial given in the canonical basis can be converted to a representation in
the factorial basis, truncated, then converted back, giving a canonical basis representation of maximum
degree 𝑑𝑤 − 1 in a normal form. These results are repeated and illustrated below along with an outline
as to why they hold.

Key to the argument is the factorial basis. A factorial monomial represents a product in the form
𝑥(𝑥 − 1)(𝑥 − 2)...(𝑥 − 𝑖 + 1), and when evaluated this becomes the product of a sequence of 𝑖
consecutive numbers. The product of 𝑖 consecutive numbers is divisible by 𝑖!. If 𝑖 ≥ 𝑑𝑤, then this
product of consecutive numbers can be factored by 2𝑤, by the definition of 𝑑𝑤, hence evaluates to
0 modulo 2𝑤. That is, the result of evaluating 𝑥(𝑖), with 𝑖 ≥ 𝑑𝑤, evaluates to 0. Hence any binary
polynomial in factorial form whose degree is greater than or equal to 𝑑𝑤 is equivalent to another
whose degree is at most 𝑑𝑤 − 1, indeed, in factorial form this is simply the truncation of higher degree
terms. Since any polynomial over the factorial basis can be multiplied out to give a polynomial over the
canonical basis, this maximum degree must also apply to binary polynomials over the canonical basis.

Given the bit-width it is possible to construct change of basis matrices that convert binary polynomials
from the factorial basis to the canonical basis and vice versa. Taking the round journey of changing the
basis from canonical to factorial and back again means that equivalent polynomials will be mapped to
the same polynomial giving a normal form for binary polynomials.

To illustrate this, consider evaluating 3+ 3𝑥+2𝑥2 +4𝑥3 +2𝑥4 +3𝑥6 +2𝑥7 for 4 bit numbers (that
is, 𝑤 = 4 and 𝑑𝑤 = 6). The change of basis matrices for factorial to canonical (essentially multiplying
out the factorial expression and reducing the coefficients mod 2𝑤) and canonical to factorial (the inverse
of the first matrix) for degree 7 polynomials over 𝑤 bits are given below.

5

Jacob M. Howe et al. SMT 2025: Satisfiability Modulo Theories 3–15

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 15 2 10 8 8 0
0 0 1 13 11 14 2 12
0 0 0 1 10 3 15 8
0 0 0 0 1 6 5 1
0 0 0 0 0 1 1 15
0 0 0 0 0 0 1 11
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1
0 0 1 3 7 15 15 15
0 0 0 1 6 9 10 13
0 0 0 0 1 10 1 14
0 0 0 0 0 1 15 12
0 0 0 0 0 0 1 5
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Applying the second matrix to the input coefficient vector (3, 3, 2, 4, 2, 0, 3, 2) and reducing modulo

24 gives (3, 0, 7, 8, 1, 5, 13, 2). The 𝑖𝑡ℎ coefficient should be reduced modulo 2max(𝑤−𝜈2(𝑖!),0), following
a similar argument to that above for maximum degree. Indeed, consider the sequence given by this
expression for increasing 𝑖, starting at 0, which (for 𝑤 = 4) starts (24, 24, 23, 23, 2, 2, 1, 1). Hence here
the maximum factorial degree of the polynomial is (5) = (𝑑𝑤 − 1). Applying this 2-adic coefficient
reduction gives (3, 0, 7, 0, 1, 1, 0, 0). That is, an equivalent polynomial in the factorial basis over 4 bits is
3+7𝑥(2)+𝑥(4)+𝑥(5). Converting this back to the canonical basis using the first matrix gives a normal
form polynomial of degree 5 ≤ 𝑑𝑤 − 1 with coefficients (reduced modulo 24) (3, 11, 0, 13, 7, 1, 0, 0),
that is, 3 + 11𝑥+ 13𝑥3 + 7𝑥4 + 𝑥5. For this small example it is easy to verify that the polynomials are
equivalent for 4 bits. Computationally, note that these matrices need only be calculated once and are
then constants given bit-width 𝑤 and maximum degree 𝑛. A full exposition and further examples can
be found in [2], along with the generalisation to the multi-variate case.

2.3. Related work: polynomial evaluation

Polynomials are usually evaluated using Horner’s rule [3, 4, 5] (Knuth notes that a similar method can be
found in earlier work of Isaac Newton and of Qin Jiushao [6]). With multiplication being more expensive
than addition, reducing the number of multiplications used in evaluating a polynomial pays off even at
the cost of extra additions. The rule provides a straightforward rearrangement of a polynomial so that
evaluation requires 𝑛 multiplications and 𝑛 additions.

𝑎0 + 𝑎1𝑥+ 𝑎2𝑥
2 + ...+ 𝑎𝑛𝑥

𝑛 = 𝑎0 + 𝑥(𝑎1 + 𝑥(𝑎2 + ...+ 𝑎𝑛𝑥)...)

For example:
3 + 3𝑥+ 2𝑥2 + 4𝑥3 = 3 + 𝑥(3 + 𝑥(2 + 4𝑥))

Estrin’s method [7, 5] recursively decomposes a polynomial and might be attractive for higher-order
polynomials when some parallelism is available. When it is known that a polynomial is going to
be repeatedly evaluated (for example, as part of an approximation of a basic trigonometric function)
then further up front manipulation can give better performance, for example for integers modulo 𝑛
polynomials of sufficiently large degree can be evaluated with 𝑂(𝑛2 + 𝑙𝑜𝑔(𝑛)) multiplications [8, 6].

2.4. Related work: bit-blasting polynomials

Bit-blasting, reducing a first-order SMT formula to a propositional SAT formula, remains a popular
technique for handling the theory of bit-vectors. Each operator is encoded to its own circuit, either
directly represented in CNF or using an intermediate form like And-Inverter Graphs (AIG) [9]. Then bit-
level constant propagation and rewriting will be applied before the formula is passed to the SAT solver.
In addition to the 𝑤 propositional variables used to represent each first-order variable, intermediate
variables are used extensively to reduce the number of clauses generated.

Many bit-vector operators bit-blast well. Operations that duplicate or move bits in a fixed patterns
produce no propositional formula as they can be encoded using renaming. Other operations scale with
the size of the bit-vectors, for example where 𝑤 is the bit-width, bvand requires 3𝑤 clauses per bit and
no auxiliary variables, whilst a bvadd requires 14𝑤 clauses and 𝑤 auxiliary variables. Multiplication

6

Jacob M. Howe et al. SMT 2025: Satisfiability Modulo Theories 3–15

behaves less well, with encodings of multiplication being 𝑂(𝑤2). This is the major cost in polynomial
evaluation and is a major concern.

Whilst there are numerous ways to encode multiplication, the straightforward approach is often
used, implementing the shift-add algorithm:

bv multiplier_encoding(bv lhs, bv rhs) {
int w = lhs.length();
bv intermediate[w];

intermediate[0] = and(repeat(w, lhs[0]), rhs);
for (int i = 1; i < w; ++i) {

intermediate[i] = add(intermediate[i-1],
lshift(and(repeat(w,lhs[i], rhs), i));

}
return intermediate[w-1];

}

The intermediate variables require 𝑤 ×𝑤 propositional variables, with 𝑤 × (𝑤 − 1) auxiliaries from
additions. Then there are 𝑤 × 3𝑤 clauses from bit-vector and, as well as (𝑤 − 1)× 14𝑤 clauses from
additions. If 𝑤 = 32 then a multiplier under this quadratic scheme has 2016 variables and 16960 clauses.
Reduction steps, such as using Wallace trees [10] (as done by Bitwuzla [9]), can reduce the number of
full adders used. The long-standing Schönhage-Strassen conjecture [11] states that the lower bound
for multiplication of 𝑤 bit numbers is 𝑤 log(𝑤). This lower bound was reached in [12], however it is
unclear whether this algorithm can be applied to bit-blasting in a way that is helpful.

Another property that is important for encodings is that they are propagation complete, that is,
that all literals that are logically entailed can be inferred by unit propagation [13, 14]. Unfortunately
the straightforward encoding of multiplication is not propagation complete and given that such an
encoding could also be used for factoring it is unlikely that a polynomially sized propagation complete
encoding of multiplication exists.

3. Polynomials modulo 2𝑛

This section makes some observations on polynomials over bit-vectors, noting that these are finite
structures and can be decomposed in a tree-like way. Its main result is the construction of the polynomial
over the high bits when the low bit is fixed. This will be exploited in the following section.

3.1. Polynomials over bit-vectors

First consider an example, the polynomial 𝑓(𝑥) = 3 + 3𝑥+ 2𝑥2 + 4𝑥3 evaluated over four bit inputs,
that is, modulo 24. This function is enumerated below (𝑥 = [𝑥3, 𝑥2, 𝑥1, 𝑥0]):

7

Jacob M. Howe et al. SMT 2025: Satisfiability Modulo Theories 3–15

𝑥3 𝑥2 𝑥1 𝑥0 𝑓(𝑥)

0 0 0 0 0 0 1 1
0 0 0 1 1 1 0 0
0 0 1 0 0 0 0 1
0 0 1 1 1 0 1 0
0 1 0 0 1 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 1 0 1
0 1 1 1 0 1 1 0
1 0 0 0 1 0 1 1
1 0 0 1 0 1 0 0
1 0 1 0 1 0 0 1
1 0 1 1 0 0 1 0
1 1 0 0 0 1 1 1
1 1 0 1 0 0 0 0
1 1 1 0 0 1 0 1
1 1 1 1 1 1 1 0

Now suppose that instead of four bits [𝑥3, 𝑥2, 𝑥1, 𝑥0] the polynomial is to be evaluated over three
bits, [𝑥2, 𝑥1, 𝑥0]. It is easy to see that the output of 𝑓(𝑥) is just the restriction of the output above to
the low three bits (repeated twice). This can be seen below tabulated as a).

a)
𝑥2 𝑥1 𝑥0 𝑓(𝑥)

0 0 0 0 1 1
0 0 1 1 0 0
0 1 0 0 0 1
0 1 1 0 1 0
1 0 0 1 1 1
1 0 1 0 0 0
1 1 0 1 0 1
1 1 1 1 1 0

b)
𝑥3 𝑥2 𝑥1 𝑓(𝑥)

0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 1 1 1
0 1 1 1 1 0
1 0 0 1 0 1
1 0 1 1 0 0
1 1 0 0 1 1
1 1 1 0 1 0

c)
𝑥3 𝑥2 𝑥1 𝑓(𝑥)

0 0 0 1 1 0
0 0 1 1 0 1
0 1 0 1 0 0
0 1 1 0 1 1
1 0 0 0 1 0
1 0 1 0 0 1
1 1 0 0 0 0
1 1 1 1 1 1

What happens when instead of losing the top bit, the low bit is lost? The functions tabulated as b)
and c) above give two slices of 𝑓(𝑥), in b) where the low input bit is 0, and in c) where the low bit is 1.
These functions can be described as polynomials over 3 bits. That in b) is 1+ 3𝑥+4𝑥2, and that in c) is
6 + 3𝑥+ 4𝑥2. In general, is there a polynomial to describe the functions described by these slices, and
if so what are they?

3.2. Subpolynomials

The slices above are referred to as subpolynomials. Binary polynomials that describe these can be
constructed as demonstrated in the proposition below. The proposition shows how a binary polynomial
over 𝑤 bits leads to binary subpolynomials over the higher 𝑤 − 1 bits. In the statement, the treatment
has used a right-shift to describe the constant term. The subpolynomial of 𝑓 resulting from fixing low
bits [𝑏𝑗 , ..., 𝑏0] is a binary polynomial over 𝑤− (𝑗 +1) bits and will be denoted 𝑓 𝑏𝑗 ...𝑏0 , for example, 𝑓0,
𝑓110, 𝑓011.

Proposition 1. Suppose 𝑏 = [𝑏𝑤−1, ..., 𝑏1, 𝑏0] is a bit-vector of bit-width 𝑤 and that 𝑓(𝑥) = 𝑎0+𝑎1𝑥+
...+ 𝑎𝑛𝑥

𝑛 is a univariate polynomial over these 𝑤 bits. For fixed low bit 𝑏0 the subpolynomial over the
𝑤 − 1 higher bits is denoted 𝑓 𝑏0 . It is defined by slicing 𝑓(𝑥) on 𝑏0 and is given by:

𝑓 𝑏0(𝑥) = shR(𝑓(𝑏0)) +
𝑛∑︁

𝑗=1

𝑎𝑗𝑓
𝑠
𝑗 (𝑥

𝑗)

8

Jacob M. Howe et al. SMT 2025: Satisfiability Modulo Theories 3–15

where each monomial maps as follows:

𝑥𝑛 ↦→ 𝑓𝑠
𝑛(𝑥

𝑛) = 2𝑛−1𝑥𝑛 + 𝑏0

𝑛−1∑︁
𝑖=1

2𝑖−1

(︂
𝑛

𝑖

)︂
𝑥𝑖

In addition, the bit which is dropped by shR(𝑓(𝑏0)) is the output low bit of 𝑓(𝑏).

Proof. The input to the function is 𝑏 = [𝑥𝑤−1, ..., 𝑥1, 𝑏0] (that is, the low bit is fixed). Consider
𝑦 = [𝑥𝑤−1, ..., 𝑥1], then 𝑏 = 𝑏0+2𝑦. Consider 𝑓(𝑏) = 𝑓(𝑏0+2𝑦) = 𝑎0+𝑎1(𝑏0+2𝑦)+...+𝑎𝑛(𝑏0+2𝑦)𝑛.
Expanding out each of the terms gives:

𝑎0
+𝑎1𝑏0 + 2𝑎1𝑦
+𝑎2𝑏

2
0 + 4𝑎2𝑏0𝑦 + 4𝑎2𝑦

2

+𝑎3𝑏
3
0 + 6𝑎3𝑏

2
0𝑦 + 6𝑎3𝑏0𝑦

2 + 8𝑎3𝑦
3

...
+𝑎𝑗𝑏

𝑗
0 + 2𝑎𝑗

(︀
𝑗
1

)︀
𝑏𝑗−1
0 𝑦 + ...+ 2𝑖𝑎𝑖

(︀
𝑗
𝑖

)︀
𝑏𝑗−𝑖
0 𝑦𝑖 + ...+ 2𝑗𝑎𝑗

(︀
𝑗
𝑗

)︀
𝑦𝑗

...

Noting that the coefficients for terms involving 𝑦 can always be factored by 2, the output low bit must
be the low bit of the sum of the constant terms, that is, the remainder from the bit-shift. Bit-shifting the
coefficients then gives the output for the higher bits, and renaming 𝑦 to variable 𝑥 leaves the results as
given in the proposition.

Notice in the proof of the proposition that if the input low bit is 0 then only the diagonal gives a
non-zero output. Also note that since the subpolynomial is over 𝑤 − 1 bits, the coefficients can be
reduced modulo 2𝑤−1.

Applying this to the example polynomial 𝑓(𝑥) = 3 + 3𝑥+ 2𝑥2 + 4𝑥3 when the input low bit is 0,
the output 𝑓0(𝑥) is below.

3 + 3𝑥+ 2𝑥2 + 4𝑥3 ↦→ shR(3) + 3𝑥+ 2(2𝑥2) + 4(4𝑥3)
= 1 + 3𝑥+ 4𝑥2 + 16𝑥3

= 1 + 3𝑥+ 4𝑥2

And when the low bit is 1, the output 𝑓1(𝑥) is:

3 + 3𝑥+ 2𝑥2 + 4𝑥3 ↦→ shR(3 + 3 + 2 + 4) + 3𝑥+ 2(2𝑥+ 2𝑥2) + 4(3𝑥+ 6𝑥2 + 4𝑥3)
= 6 + 3𝑥+ 4𝑥+ 4𝑥2 + 12𝑥+ 24𝑥2 + 16𝑥3

= 6 + 19𝑥+ 28𝑥2 + 16𝑥3

= 6 + 3𝑥+ 4𝑥2

This might be repeated giving, for example, 𝑓00(𝑥) = 3𝑥 and 𝑓11(𝑥) = 2 + 3𝑥.
It should be noted that the normalisation described in Section 2.2 has not been applied to the initial

polynomial in this example.

3.3. Aside: permutation polynomials

Permutation polynomials over finite fields have been studied for a long time.

Definition 3. [15] A permutation polynomial is a polynomial over a finite field 𝐹𝑞 of order 𝑞 = 𝑝𝑚,
𝑚 ≥ 1 if and only the polynomials permutes the elements of 𝐹𝑞 .

9

Jacob M. Howe et al. SMT 2025: Satisfiability Modulo Theories 3–15

The standard definition is over finite fields and characterisation of what makes a polynomial a permu-
tation polynomial has proved tricky. In contrast, [16] demonstrated that for binary polynomials (that is,
where instead of finite field 𝐹𝑞 , there is a finite ring of order 2𝑤) there is an elegant characterisation for
when the polynomial is a permutation polynomial.

Proposition 2. [16] A polynomial is a permutation polynomial mod 2𝑤 if and only if it has form
𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 + 𝑎3𝑥
3 + ... where 𝑎1 (mod 2) = 1, 𝑎2 + 𝑎4 + ... (mod 2) = 0 and 𝑎3 + 𝑎5 + ...

(mod 2) = 0.

Observe that whilst most polynomials over bit-vectors are not permutation polynomials, an arbitrary
polynomial is the sum of a permutation polynomial and a small, highly structured, polynomial.

Lemma 1. Given binary polynomial 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + 𝑎4𝑥
4 + ... over 2𝑤, then

𝑓(𝑥) = 𝑝(𝑥) + 𝑞(𝑥) where 𝑝(𝑥) is a permutation polynomial and 𝑞(𝑥) = 𝑖𝑥 + 𝑗𝑥2 + 𝑘𝑥3, where
𝑖, 𝑗, 𝑘 ∈ {0, 1}.

Proof. Consider the three conditions characterising a permutation polynomial from Proposition 2.
Firstly, if 𝑎1 (mod 2) = 1, then 𝑖 = 0, else 𝑖 = 1. Secondly, if 𝑎2 + 𝑎4 + ... (mod 2) = 0, then
𝑗 = 0, else 𝑗 = 1. Thirdly, if 𝑎3 + 𝑎5 + ... (mod 2) = 0, then 𝑘 = 0, else 𝑘 = 1. Observe
that following these rules ensures that 𝑓(𝑥) = 𝑝(𝑥) + 𝑞(𝑥), with 𝑝(𝑥) the permutation polynomial
𝑝(𝑥) = 𝑎0 + (𝑎1 − 𝑖)𝑥+ (𝑎2 − 𝑗)𝑥2 + (𝑎3 − 𝑘)𝑥3 + 𝑎4𝑥

4 + ...

4. Evaluating Binary Polynomials

The first step when evaluating a binary polynomial is to consider whether its degree can be reduced
as in Section 2.2 and [2] and if so, reduce it. The rest of this section firstly details evaluating a binary
polynomial for an input, and secondly covers how this might then be utilised within bit-blasting.

4.1. Evaluation of inputs

The method for deriving subpolynomials given in the previous section then suggests an approach
to evaluating binary polynomials. For a given input 𝑏 = [𝑏𝑤−1, ..., 𝑏1, 𝑏0], for values of 𝑖 from 0 to
𝑤 − 1 calculate the output 𝑖𝑡ℎ bit and derive the appropriate subpolynomial. Since the terms of the
subpolynomials have constants that are rapidly rising powers of 2, whilst terms can be reduced mod 2𝑤

with a decreasing 𝑤 it can be seen that the order of subpolynomials drops rapidly during evaluation.
Returning to the worked example 𝑓(𝑥) = 3 + 3𝑥 + 2𝑥2 + 4𝑥3 and supposing that the input is

[1, 0, 1, 1] then 𝑓(1) = 12 and the low output bit is 0, and as above, the subpolynomial to consider is
𝑓1(𝑥) = 6 + 3𝑥+ 4𝑥2.

The new input low bit is 1, so 𝑓1(1) = 13, the output low bit is 1 and the next subpolynomial to
consider is given by (reducing modulo 4):

6 + 3𝑥+ 4𝑥2 ↦→ shR(13) + 3𝑥+ 4(2𝑥2 + 2𝑥)
= 6 + 11𝑥+ 8𝑥2

= 2 + 3𝑥

Next, the new input low bit is 0, so 𝑓11(0) = 2, the output low bit is 0 and the next subpolynomial is
(reducing modulo 2):

2 + 3𝑥 ↦→ shR(2) + 3𝑥
= 1 + 𝑥

Finally evaluate this at 1, giving 𝑓011(1) = 2, giving output 0. That is, 𝑓([1, 0, 1, 1]) = [0, 0, 1, 0], or
in base 10, 𝑓(11) = 2 (noting that this output has wrapped).

As noted above, the bit-width drops by 1 with each subpolynomial, and the construction of the
subpolynomials multiplies coefficients by powers of 2. This means that higher degree monomials

10

Jacob M. Howe et al. SMT 2025: Satisfiability Modulo Theories 3–15

disappear from subpolynomials quite rapidly. If in the original there is a monomial 𝑥𝑛, noting that for
each successive subpolynomial the 𝑥𝑛 monomial is multiplied by 2𝑛−1, then in subpolynomial 𝑓 𝑏𝑘...𝑏0

there will not be a monomial in 𝑥𝑛 when 𝑘(𝑛− 1) > 𝑤 − 𝑘 since the 2-adic valuation coefficient of 𝑥𝑛

in this subpolynomial will be greater than the bit-width of the bit-vector this subpolynomial is over.
Rearranging the condition gives that 𝑘 > 𝑤

𝑛 . Note that this is not independence of the subpolynomial
from the higher degree monomial, since the constant is the result of the evaluation of the monomial for
a previous subpolynomial.

Consider 3 + 3𝑥 + 2𝑥2 + 4𝑥3 + 2𝑥4 + 3𝑥6 + 2𝑥7 evaluated over 32 bits. Then when 𝑘 > 32
7 , for

example, 𝑘 = 5, the subpolynomial will have monomial 21+(5×6)𝑥7 over 27 bits, hence will always
evaluate to 0. Again consider the monomial with 𝑥2 and 𝑘 = 16. This will have coefficient 21+(16×1)

over 16 bits, hence again will always evaluate to 0. That is, the higher 16 bits of the output bit-vector
can be described by a linear subpolynomial, and this be exploited when bit-blasting.

4.2. Subpolynomial encoding for bit-blasting

The same principle can be used to produce a compact bit-level encoding of a binary polynomial. The
least significant bit of the output can be produced using single bit bvand and bvxor to evaluate
multiplication and addition respectively. Then the subpolynomial can be computed using the least
significant bit of the input, allowing the whole encoding to be generated iteratively. It is important to
note that the coefficients in the subpolynomial 𝑓 𝑏𝑖 will be symbolic expressions over the coefficient of
the original binary polynomial 𝑓 and each of the lower input bits 𝑏𝑖, 𝑏𝑖−1, So simplification requires
symbolic rewriting not pure calculations. One of the necessary rewrite rules is not implemented in
all solvers. Using lsb to denote (_ extract 0 0) and top to denote (_ extract w-1 1) and
extend to denote (_ zero_extend w-2) the rule is:

(top (bvadd x y)) = (bvadd (top x) (top y) (extend (bvand (lsb x) (lsb y)))

This allows the subpolynomials to simplify away some terms while still correctly modelling the chains
of carries that can occur in rare circumstances.

An additional advantage of handling symbolic coefficients is that the encoding can be applied
recursively to multivariate polynomials if they can be put into the appropriate nested form, such as
5(1+ 𝑦)+𝑥(3+4𝑦+ 𝑦2)+𝑥2(2+3𝑦2). It remains an open question whether this is the most efficient
approach to handling multivariate polynomials.

5. Experiments

The ultimate aim of any novel encoding is to improve either the number of problems decided or run-time
in one or more class of problems, while minimising any negative effects on other classes. System-
level evaluation of this sort can be challenging for a number of reasons – solver performance can be
dependent on a large number of inter-related of factors, existing benchmark sets may not cover the
class of problems improved by the encoding1 and even if system-level improvements are shown, it is
not always clear why they occur or how it connects to the changes made.

Reasoning about binary polynomials have all of these problem. As a first step to evaluating the
technique described in Section 4 the following will be shown using synthetic benchmarks:

1. Reduction (Section 2.2) and the subpolynomial encoding (Section 4) reduce the size of the bit-
blasted formulae.

2. They do not have an obvious negative effect on performance; simple problems remain simple.

1There is a social dynamic to this problem – if a class of problem is hard for current solvers, or thought to be hard, then it is
likely that people will not “waste” time generating benchmarks for this class.

11

Jacob M. Howe et al. SMT 2025: Satisfiability Modulo Theories 3–15

Original/Native Original/Subpolynomial Reduced/Native Reduced/Subpolynomial
Degree Time Vars Clauses Time Vars Clauses Time Vars Clauses Time Vars Clauses

2 0.00 126 377 0.00 83 242 0.00 126 377 0.00 83 242
3 0.00 344 1042 0.01 183 562 0.00 342 1036 0.01 183 562
4 0.00 610 1874 0.01 141 436 0.00 608 1861 0.01 142 441
5 0.01 786 2410 0.01 179 559 0.00 792 2425 0.00 179 559
6 0.00 978 3019 0.01 137 429 0.01 1003 3099 0.01 136 425
7 0.01 1231 3798 0.01 196 618 0.01 1254 3867 0.01 196 618
8 0.01 1397 4314 0.01 225 710 0.01 1346 4153 0.01 225 710
9 0.01 1663 5125 0.02 186 597 0.01 1415 4367 0.01 185 593
10 0.02 1654 5082 0.01 123 385 0.00 1169 3604 0.01 123 385
11 0.01 1952 6017 0.01 143 450 0.01 1384 4269 0.02 141 444
12 0.02 2130 6574 0.01 202 636 0.01 1537 4739 0.00 207 647
13 0.01 2180 6729 0.01 187 586 0.01 1237 3816 0.01 178 560
14 0.01 2386 7346 0.02 188 595 0.00 1327 4093 0.01 188 595
15 0.01 2582 7985 0.01 177 565 0.00 1198 3693 0.02 174 553
16 0.03 2639 8169 0.02 182 570 0.01 1317 4062 0.01 155 485

Table 1
Instance sizes and run-times for Bitwuzla 0.7.0 with 8-bit polynomials on root finding benchmarks

5.1. Benchmarks

A benchmark generator has been written using the cvc5 API. It generates permutation polynomials of a
given degree that have coefficients randomly chosen from bit-vectors of given width. These are used to
create four SMT-LIB files with different encodings of the polynomial:

1. The original polynomial in canonical form using bvmul and bvadd so that the solver’s native
simplification and encoding is used.

2. The original polynomial represented using the subpolynomial encoding.
3. The reduced polynomial expressed in canonical form so the solver’s native simplification and

encoding is used.
4. The reduced polynomial represented using the subpolynomial encoding.

In each of these a single assertion requires that the output must be zero (i.e. finding a root of the
polynomial). Permutation polynomials have exactly one root. Experiments with other families of
polynomials suggest that there are classes of polynomial for which root finding is easier (in some case
solvable with simplification alone). So permutation polynomials represent a “hardest case” for these
techniques. 2

5.2. Results

Bitwuzla [9] 0.7.0 is used as the leading bit-vector solver. Again this means any improvements are
a lower bound, other solvers may have larger improvement. Evaluation was done using a 1.70GHz
Intel Core i5-4210U, running Debian GNU/Linux 11. CPU time was limited to 60 seconds and memory
limited to 1GB, although neither of these affected the results. Tables 1, 2 and 3 show the run time (in
seconds) and the number of Boolean variables and clauses after bit-blasting for 8 bit, 16 bit and 32 bit
polynomials over a range of degrees.

By comparing the original and reduced polynomials using the native encoding, it is possible to see
that the reduction makes a significant difference to the variables and clauses used. The size of the
original polynomial continues to rise as the degree rises. However the reduced polynomial encoding
sizes stop rising when the bit-width reaches 𝑤 + 2, as predicted by the theoretical results in [2].

Comparing the native and subpolynomial encodings there is a significant reduction in the size of
the encoding for all except the first few degrees in the larger bit-widths. In the most extreme cases
2The generator and benchmarks are available at https://github.com/martin-cs/subpolynomial-encoding

12

https://github.com/martin-cs/subpolynomial-encoding

Jacob M. Howe et al. SMT 2025: Satisfiability Modulo Theories 3–15

Original/Native Original/Subpolynomial Reduced/Native Reduced/Subpolynomial
Degree Time Vars Clauses Time Vars Clauses Time Vars Clauses Time Vars Clauses

2 0.00 965 2905 0.02 1105 3344 0.01 965 2905 0.02 1105 3344
3 0.01 2149 6468 0.03 1979 6073 0.01 2149 6468 0.03 1979 6073
4 0.02 2841 8563 0.03 1989 6124 0.01 2837 8550 0.03 1989 6124
5 0.02 4828 14658 0.06 2592 8009 0.02 4826 14651 0.04 2592 8009
6 0.03 5926 17972 0.07 2623 8105 0.04 5919 17946 0.08 2567 7930
7 0.04 7100 21554 0.06 2933 9100 0.03 7087 21509 0.08 2765 8581
8 0.04 8392 25487 0.07 2702 8382 0.03 8313 25244 0.07 2705 8393
9 0.04 8715 26421 0.07 2604 8089 0.04 8781 26625 0.06 2589 8048
10 0.06 10460 31723 0.08 2644 8222 0.04 10342 31361 0.09 2643 8218
11 0.07 11931 36246 0.08 2916 9060 0.05 11751 35693 0.09 2916 9060
12 0.05 12531 38057 0.08 2935 9119 0.05 12404 37680 0.08 2934 9115
13 0.05 13358 40554 0.11 2793 8690 0.06 13297 40364 0.09 2793 8690
14 0.06 14434 43798 0.10 2614 8138 0.06 14475 43922 0.10 2615 8142
15 0.09 16297 49522 0.09 2665 8293 0.10 16378 49756 0.09 2667 8301
16 0.10 16895 51373 0.10 2581 8042 0.07 16534 50249 0.10 2581 8039
17 0.07 18369 55826 0.12 2655 8284 0.07 18100 54994 0.11 2659 8286
18 0.09 19328 58714 0.11 2740 8521 0.07 17904 54401 0.10 2805 8720
19 0.09 20371 61857 0.13 2651 8260 0.07 17803 54094 0.13 2681 8340
20 0.13 21437 65074 0.09 2555 7969 0.07 17799 54084 0.11 2700 8411
21 0.08 22447 68125 0.11 2748 8560 0.09 17806 54103 0.12 2755 8582
22 0.10 23640 71722 0.11 2754 8561 0.07 17601 53481 0.11 2773 8621
23 0.19 25210 76602 0.13 2884 8969 0.09 15302 46502 0.13 2884 8969
24 0.10 26157 79508 0.11 2732 8507 0.07 15872 48227 0.13 2719 8465
25 0.12 27704 84170 0.12 2670 8306 0.07 16881 51285 0.09 2650 8243
26 0.15 28820 87587 0.11 2775 8623 0.07 18014 54740 0.16 2802 8702
27 0.20 29005 88173 0.10 2761 8578 0.10 16715 50795 0.11 2691 8368
28 0.14 30336 92225 0.11 2745 8539 0.07 14712 44716 0.11 2744 8534
29 0.16 32211 97922 0.11 2813 8748 0.07 15972 48547 0.11 2901 9009
30 0.25 32896 99971 0.09 2988 9297 0.13 18566 56413 0.12 2976 9261
31 0.14 32647 99139 0.10 2632 8187 0.09 18665 56712 0.12 2637 8200
32 0.25 34818 105802 0.12 2302 7165 0.15 17988 54659 0.13 2274 7080

Table 2
Instance sizes and run-times for Bitwuzla 0.7.0 with 16-bit polynomials on root finding benchmarks

the subpolynomial encodings are 20 times smaller. However typical cases are 3 to 10 times smaller.
Critically this is achieved without significant increase in solving time.

Finally comparing the original and reduced polynomials using the subpolynomial encodings shows a
very minimal benefit. This is likely because the higher degree terms that would definitely be removed
during reduction would also be removed during the first few subpolynomial computation steps. How-
ever, notice the size of the subpolynomial encoding in terms of both variables and clauses is almost
independent of the degree, reflecting that higher degree terms quickly drop out of subpolynomials.

6. Discussion and Conclusion

This paper recaps previous results about the effective degree limit and reduction of binary (bit-vector)
polynomials as well as proposing a new means of evaluation. Bit-blasting representations of binary
polynomials using this evaluation method have been shown to be significantly more compact than
Bitwuzla’s native encoding and not obviously detrimental to performance in synthetic benchmarks.
Significant future work is needed to show that these encodings can produce system-level performance
improvements. It will be necessary to extend subpolynomial evaluation to handle multivariate polynomi-
als, to integrate this approach within a solver’s bit-blasting engine (including identifying / constructing
polynomials from the solver input) and to identify suitable sets of “real world” benchmarks where

13

Jacob M. Howe et al. SMT 2025: Satisfiability Modulo Theories 3–15

Original/Native Original/Subpolynomial Reduced/Native Reduced/Subpolynomial
Degree Time Vars Clauses Time Vars Clauses Time Vars Clauses Time Vars Clauses

2 0.01 5721 17203 0.07 8546 25914 0.02 5721 17203 0.11 8546 25914
3 0.04 11304 33987 0.14 16304 49540 0.04 11303 33983 0.19 16304 49540
4 0.07 17317 52222 0.24 20864 63428 0.07 17317 52224 0.20 20846 63352
5 0.14 22958 69251 0.29 25110 76384 0.14 22960 69259 0.24 25106 76371
6 0.10 28452 85780 0.27 27268 83009 0.11 28420 85686 0.26 26957 82058
7 0.31 32928 99300 0.30 27121 82653 0.21 32978 99446 0.38 27297 83180
8 0.16 39848 120176 0.29 29088 88606 0.21 39837 120137 0.29 28980 88270
9 0.36 45177 136320 0.45 30324 92557 0.32 45077 136005 0.40 30291 92448
10 0.38 51271 154704 0.42 31222 95275 0.37 51267 154686 0.39 31274 95433
11 0.20 56039 169098 0.52 32191 98226 0.34 56076 169210 0.45 32135 98045
12 0.32 58593 176603 0.48 31913 97518 0.28 58422 176069 0.48 31928 97560
13 0.43 66933 201931 0.57 32548 99459 0.49 66457 200471 0.72 32703 99929
14 0.31 71685 216269 0.56 32167 98281 0.43 71751 216461 0.54 32148 98220
15 0.32 75813 228757 0.59 31172 95282 0.33 76081 229558 0.54 31158 95231
16 0.66 85013 256559 0.62 32499 99356 0.89 84454 254861 0.55 32413 99098
17 0.46 85331 257425 0.66 31931 97616 0.52 85097 256722 0.58 31930 97614
18 0.64 95407 287938 0.61 32756 100089 0.67 95064 286887 0.61 32761 100103
19 0.57 100899 304504 0.75 32600 99672 0.65 100294 302660 0.70 32579 99606
20 0.74 104962 316657 0.79 31620 96713 1.12 104789 316140 0.79 31646 96789
21 0.76 112976 340954 0.87 32274 98670 0.84 112155 338451 1.00 32264 98639
22 0.91 117728 355309 0.89 32633 99773 0.87 116816 352534 0.85 32629 99759
23 0.52 120023 362269 1.08 32793 100224 0.51 118972 359061 0.96 32793 100222
24 1.24 129115 389675 1.00 32735 100047 0.92 128533 387898 1.03 32740 100057
25 1.27 130632 394033 0.96 29632 90662 0.93 130017 392166 0.98 29618 90626
26 0.88 136169 410879 1.08 30708 93890 1.14 133574 403030 1.04 30716 93918
27 1.26 141941 428387 0.95 30928 94568 1.20 141833 428047 1.08 30906 94500
28 1.31 148429 447993 1.09 32499 99335 1.16 146564 442348 1.09 32549 99477
29 0.74 154484 466274 1.16 32163 98345 0.71 154211 465393 1.14 32271 98684
30 1.49 160911 485668 1.13 32667 99806 1.21 158987 479834 1.19 32641 99728
31 1.19 163806 494425 1.15 31015 94847 1.12 161317 486918 1.15 30973 94724
32 1.53 170248 513862 1.09 32597 99610 1.43 168765 509335 1.08 32576 99539
33 1.08 174777 527420 1.10 30229 92487 1.07 162950 491788 1.19 30234 92499
34 0.84 176098 531555 1.19 31836 97329 0.99 169348 511127 1.15 31754 97077
35 0.89 186531 562889 1.32 33080 101035 0.79 171454 517485 1.15 33182 101352
36 1.52 190926 576302 1.16 30355 92854 0.99 163489 493398 1.13 30476 93212
37 1.04 200838 606176 1.13 32346 98893 0.76 162516 490504 1.14 32381 99008
38 0.99 202910 612455 1.11 32650 99816 0.93 176397 532361 1.12 32560 99554
40 1.85 213865 645519 1.41 31236 95405 1.33 171426 517367 1.16 31146 95132
42 1.10 225025 679214 1.13 31980 97810 0.86 174218 525791 1.16 31893 97548
44 1.53 237393 716519 1.14 31809 97235 1.06 166587 502753 1.15 31751 97078
46 2.48 248453 749918 1.06 32278 98655 1.04 173588 523909 1.05 32410 99045
48 1.42 256100 772718 0.98 31153 95141 0.77 163285 492745 1.04 31533 96312
50 2.70 266756 805180 1.14 32403 99078 1.04 163517 493514 1.09 32350 98897
52 2.81 279725 844277 1.23 31590 96576 1.32 174207 525768 1.16 31529 96389
54 1.73 289798 874732 1.11 29425 90005 1.13 172798 521529 1.14 29430 90013
56 2.11 299986 905250 1.18 31407 96021 1.08 171508 517639 1.12 31000 94773
58 3.17 312945 944579 1.55 33356 101949 1.13 173888 524794 1.10 33286 101729
60 1.80 325833 983475 1.18 31626 96714 0.83 174646 527075 1.09 31669 96860
62 1.91 337210 1017841 1.16 31769 97134 0.84 174588 526920 1.15 32615 99712
64 2.38 339605 1024929 1.20 32448 99223 1.24 173881 524762 1.19 32506 99385

Table 3
Instance sizes and run-times for Bitwuzla 0.7.0 with 32-bit polynomials on root finding benchmarks

reasoning about binary polynomials is central to the problem difficulty. This is first bit-blasting encoding
of this kind and so further improvements are likely possible.

14

Jacob M. Howe et al. SMT 2025: Satisfiability Modulo Theories 3–15

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] M. Brain, Further Steps Down The Wrong Path: Improving the Bit-Blasting of Multiplication, in:
Proceedings of the 19th International Workshop on Satisfiability Modulo Theories, volume 2908
of CEUR Workshop Proceedings, CEUR-WS.org, 2021, pp. 23–31.

[2] A. Gàmez-Montolio, E. Florit, M. Brain, J. M. Howe, Efficient Normalized Reduction and Generation
of Equivalent Multivariate Binary Polynomials, in: Workshop on Binary Analysis Research (BAR)
2024, NDSS, 2024, pp. 1–12.

[3] W. G. Horner, A new method of solving numerical equations of all orders, by continuous approxi-
mation, Philosophical Transactions of The Royal Society 109 (1819) 308–335.

[4] F. de Dinechin, M. Kumm, Application-Specific Arithmetic, Springer, Cham, 2024.
[5] J.-M. Muller, Elementary Functions: Algorithms and Implementation (2nd ed.), Birkhäuser, Boston,

2006.
[6] D. E. Knuth, The Art of Computer Science, volume 2 (3rd ed), Addison Wesley, 1998.
[7] G. Estrin, Organization of Computer Systems: the Fixed Plus Variable Structure Computer, in:

Western Joint IRE-AIEE-ACM Computer Conference, Association for Computing Machinery, New
York, 1960, p. 33–40.

[8] M. O. Rabin, S. Winograd, Fast Evaluation of Polynomials by Rational Preparation, Communications
on Pure and Applied Mathematics XXV (1972) 433–458.

[9] A. Niemetz, M. Preiner, Bitwuzla, in: Computer Aided Verification, volume 13965 of Lecture Notes
in Computer Science, Springer, 2023, pp. 3–17.

[10] C. S. Wallace, A suggestion for a fast multiplier, IEEE Transactions on Electronic Computers
EC-13 (1964) 14–17.

[11] A. Schönhage, V. Strassen, Schnelle Multiplikation großer Zahlen, Computing 7 (1971) 281–292.
[12] D. Harvey, J. van der Hoeven, Integer multiplication in time O(n log n), Annals of Mathematics

193 (2021) 563–617.
[13] L. Bordeaux, J. Marques-Silva, Knowledge Compilation with Empowerment, in: SOFSEM 2012:

Theory and Practice of Computer Science, volume 7147 of Lecture Notes in Computer Science,
Springer, 2012, pp. 612–624.

[14] M. Brain, L. Hadarean, D. Kroening, R. Martins, Automatic Generation of Propagation Complete
SAT Encodings, in: Verification, Model Checking, and Abstract Interpretation, volume 9583 of
Lecture Notes in Computer Science, Springer, 2016, pp. 536–556.

[15] R. Lidl, G. L. Mullen, When Does a Polynomial over a Finite Field Permute the Elements of the
Field?, American Mathematical Monthly 95 (1988) 243–246.

[16] R. L. Rivest, Permutation Polynomials Modulo 2𝑤, Finite Fields and Their Applications 7 (2001)
287–292.

15

	1 Introduction
	2 Background and Related Work
	2.1 Notation
	2.1.1 Canonical and factorial bases

	2.2 Related work: binary polynomials
	2.3 Related work: polynomial evaluation
	2.4 Related work: bit-blasting polynomials

	3 Polynomials modulo 2n
	3.1 Polynomials over bit-vectors
	3.2 Subpolynomials
	3.3 Aside: permutation polynomials

	4 Evaluating Binary Polynomials
	4.1 Evaluation of inputs
	4.2 Subpolynomial encoding for bit-blasting

	5 Experiments
	5.1 Benchmarks
	5.2 Results

	6 Discussion and Conclusion

