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Abstract
Quantified formulas pose a significant challenge for Satisfiability Modulo Theories (SMT) solvers due to their
inherent undecidability. Existing instantiation techniques, such as e-matching, syntax-guided, model-based,
conflict-based, and enumerative methods, often complement each other. This paper introduces a novel instantia-
tion approach that dynamically learns from these techniques during solving. By treating observed instantiations
as samples from a latent language, we use probabilistic context-free grammars to generate new, similar terms.
Our method not only mimics successful past instantiations but also explores diversity by optionally inverting
learned term probabilities, aiming to balance exploitation and exploration in quantifier reasoning.
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1. Introduction

Solving formulas involving quantifiers is notoriously hard due to the undecidabilty of the problem.
Satisfiability Modulo Theories (SMT) solvers tackle quantifiers by instantiating quantified variables
by ground terms. A series of techniques exists that attempt to find instantiations that will most likely
lead to a contradiction. Prominently, the techniques used in modern SMT solvers are syntax-driven (e-
matching [1] or syntax-guided instantiation [2]), semantic-driven (model-based [3, 4]), conflict-based [5],
and enumerative instantiation [6, 7]. These techniques tend to give highly complementary results.

In this paper we propose a quantifier instantiation technique that seeks inspiration in the other
techniques on the fly—while solving the formula. The idea is as follows. Observe which instantiations
were made by other techniques and then, attempt to make similar ones. Now, how to find similar
instantiations? We look for inspiration in probabilistic context free grammars [8]. We imagine the
instantiations made so far as a language, where each ground term is a sentence in the language. Since
we do not have an explicit definition of the language, we take our observations as samples from it.

Figure 1 illustrates the overall idea of the approach. Instantiation is made by several instantiation
modules, e.g. e-matching. Each instantiation module produces some instantiations that are sent to the
ground solver. In our approach, these are also intercepted and collected in the ProbGen generator,
which also produces its own instantiations sent to the ground solver.

Inst. module 1

Inst. module 2

. . .

Probgen

Ground Solver

Figure 1: Schematic depiction of the overall idea, where Probgen is our contribution

The idea of probabilistic grammars can be simplified even further. Let’s say that the constant 𝑐
appears frequently under the function symbol 𝑓 , then 𝑓(𝑐) should also be a likely term in our language.
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Algorithm 1 Make Term
Input: 𝜏 - range type, 𝑑 - term depth, initially 0
Output: term of type 𝜏
Using: Symbols(𝜏) - symbols constructing terms of type 𝜏

Depth - maximum allowed term depth
Pick(𝑆) - pick one symbol out of 𝑆 according to the selection method
Arity(𝑠) - the arity of symbols 𝑠

1: functionMakeTerm(𝜏, 𝑑 = 0)
2: 𝑆 ← Symbols(𝜏)
3: if 𝑑 ≥ Depth then
4: 𝑆 ← {𝑠 ∈ 𝑆 | 𝑠 is a constant}
5: 𝑠← Pick(𝑆)
6: if 𝑠 is a constant then
7: return 𝑠
8: else
9: for all 0 < 𝑖 ≤ Arity(𝑠) do

10: 𝑡𝑖 ← MakeTerm(𝜏𝑖, 𝑑+ 1) where 𝜏𝑖 is the type of the 𝑖-th argument of 𝑠

11: return 𝑠(𝑡1, . . . , 𝑡𝑛)

However, this suggests a different question. If the new terms are generated according to the ones
that were already used in the past, will they be useful? Should we not rather do the opposite, i.e.,
generate different terms? Effectively, this means inverting the probabilities when generating new terms
for instantiation.

2. Preliminaries

Basic understanding of SMT [9] is assumed. In special cases, such as linear arithmetic, decision
procedures exist for theories with quantifiers [10, 11, 12, 13]. In general, however, presence of quantifiers
can easily make the problem undecidable and in SMT, quantifier instantiations are used to tackle this
problem. A quantified subformula ∀�̄�.𝜑, with a vectors of variables �̄� is abstracted as a proposition
𝑄 and instantiations are realized as implications of the form 𝑄 → 𝜑[�̄� ↦→ �̄�], where 𝑡 is a vector of
ground terms. This implication is called a lemma. A plethora of instantiation techniques appear in
the literature. These typically exhibit complementary behavior and do not interact directly with one
another, although indirect interaction through a shared solver state can occur.

Probabilistic grammars [14, 8], extend traditional formal grammars by associating probabilities with
their production rules. This probabilistic framework allows for modeling uncertainty and variation in
natural language and other structured data. In a probabilistic context-free grammar (PCFG), each rule
of the form 𝐴→ 𝛼 is assigned a probability 𝑃 (𝐴→ 𝛼), such that the sum of probabilities of all rules
with the same left-hand nonterminal 𝐴 is 1. These models are particularly useful in computational
linguistics and natural language processing tasks, where ambiguity and multiple possible interpretations
are common. PCFG have been used in autoformalization tasks [15].

3. Term Generation

Full-fledged learning of PCFG is likely to be to expensive for our purposes and we take a Markov-like
approach instead. New ground terms are generated recursively, as a tree, and the probability of a symbol
𝑠 being generated in a node 𝑛 is determined by the frequency of 𝑠 in the instantiations so far.

Terms are generated recursively in a straightforward fashion with fixed maximum depth using
function MakeTerm in Algorithm 1. The function MakeTerm(𝜏) generates a term of type 𝜏 by selecting
a term head symbols and recursively generating argument terms, possibly resorting to constants to
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limit the depth of generated terms. The head symbol is always picked from the set Symbols(𝜏) which
contains all symbols of type 𝜏 encountered in the terms generated by other instantiation modules. The
maximum allowed term depth is controlled by parameter Depth. With Depth = 0, the algorithm
generates constants only.

The key point of the algorithm is the selection of the term head symbol using the function Pick.
Naturally, there is a lot of flexibility in this choice, and that is where our statistical approach comes
into play. We implement three different selection methods. The first one, denoted random, selects
a symbol uniformly at random, independent of any symbol statistics. The next method, weights,
maintains a statistic for each symbol 𝑠, counting the number of times 𝑠 occurs in terms generated by
other instantiation techniques. These counts are interpreted as probabilistic weights, and the head
symbol is then sampled from a categorical distribution derived from them. In practice, this means
treating the weights as proportional intervals on a number line, generating a random number in the
range from 0 to the total weight sum, and selecting the symbol corresponding to the interval in which
the number falls. The third and final selection method we experiment with is paths, which extends
weights by taking term positions into account. It maintains separate weight vectors for each term
position, where a position is determined by the list of symbols occurring above the term in the syntax
tree. For example, the position of both 𝑎 and 𝑏 in 𝑓(𝑔(𝑎, 𝑏)) is given by the path (𝑓, 𝑔). Since the weight
vectors for paths can be quite sparse and contain only few symbols of the given type, we additionally
consider all other compatible symbols with the default weight 1 at each position.

The above symbol selection methods weights and paths generates terms mimicking terms generated
by other instantiation modules. In order to introduce diversity and generate different terms, we introduce
additional parameter Flip. Its value is the probability under which the weights should be inverted,
setting all weights to 1/𝑤 instead of 𝑤. This probability is applied in every call to function Pick. Hence
different calls to Pick within one call to MakeTerm can work with different weights.

The final parameter we introduce to our probabilistic instantiation module concerns when the module
is activated. In cvc5, several effort levels are defined for instantiation modules. These modules are tried
sequentially, with the effort level increasing if no lemma is produced at the current level. The currently
implemented effort levels in cvc5, in order of increasing effort, are conflict, standard, model, and last call.
Conflict-based instantiation modules are tried first (conflict), followed by heuristic instantiation modules
(standard, e.g., e-matching), then model-based techniques (model), and finally full effort instantiation
(last call) are launched.

We follow the behavior of the enumerative instantiation modules and introduce a parameter Effort,
which supports two values: lastcall and interleave. With lastcall, our probabilistic instantiation
module is executed only at the last call effort level, that is, when no module has produced a lemma
at a lower effort. With interleave, instantiations are performed already at the standard effort level,
meaning the module runs more frequently than with lastcall.

4. Experimental Evaluation

We evaluate1 our approach on a benchmark from SMT-LIB [16, 17], namely on 8, 024 problems from
the 2019-Preiner directory of the UFNIA logic. This benchmark was chosen based on a preliminary
experiment on a larger subset of SMT-LIB since our methods seemed to perform well therein. We
perform an extensive grid search for various parameters of the probabilistic instantiation module,
namely all of the following combinations.

Effort ∈ {lastcall, interleave}
Pick ∈ {random,weights, paths}

Depth ∈ {0, 1, 2, 3, 4}
Flip ∈ {0.0, 0.2, 0.5, 0.8, 1.0}

1On a server with two AMD EPYC 7513 32-Core processors @ 3680 MHz and with 514 GB RAM.
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Effort lastcall interleave

Pick random weights paths random weights paths

Depth total ref (+/-) total ref (+/-) total ref (+/-) total ref (+/-) total ref (+/-) total ref (+/-)

0 3523 +499/-53 3497 +477/-57 3445 +427/-59 3575 +571/-73 3570 +571/-78 3498 +497/-76

1 3293 +270/-54 3245 +230/-62 3273 +247/-51 3309 +321/-89 3284 +300/-93 3327 +349/-99

2 3221 +195/-51 3231 +215/-61 3220 +190/-47 3242 +259/-94 3239 +256/-94 3211 +235/-101

3 3220 +193/-50 3192 +182/-67 3219 +188/-46 3276 +290/-91 3171 +211/-117 3230 +256/-103

4 3212 +197/-62 3181 +169/-65 3215 +184/-46 3236 +258/-99 3161 +206/-122 3228 +255/-104

Figure 2: Grid evaluation of strategies with different Depth values (with fixed Flip = 0.0).

Since the parameter Flip is applicable only when Pick is either weights or paths, we obtain altogether
110 different strategies. We evaluate all of them with a 10 second time limit per strategy and problem.
Our probabilistic instantiation module is launched together with the default cvc5 setting which uses
e-matching and conflict-based quantifier instantiation (cbqi). The instantiation terms introduced by
these two default modules are intercepted and used to collect symbol statistics utilized by our weights
and paths symbol selection functions. The set of asserted quantifiers is randomly shuffled in each
round. This is because we terminate the instantiation round after a first successfully generated lemma.

We always generate 20 terms for each encountered type and remove duplicates if necessary. Within
one instantiation round, only one set of terms is generated for every encountered type, that is, for every
type of a ∀-bound variable from asserted quantifiers. This gives us a non-zero probability that variables
of the same type will be instantiated by the same term. A new set of terms is generated in the next
instantiation round.

The results for different values of Depth with Flip fixed to 0.0 are depicted in Figure 2. This allows
us to evaluate the effect of various term depths. For each strategy we present three numbers: (1) the
total number of solved problems (column total), and (2-3) the number of solutions gained (+) and lost
(−) on the baseline reference strategy (columns ref ). As the baseline strategy we consider cvc5 with the
default option setting. The reference strategy solves 3,077 problems. To ease orientation, the best
value in each column is highlighted and the best values within the table are additionally underlined.
We can draw several observations from Figure 2:

1. All strategies significantly outperform the reference strategy, which solves 3,077 problems.
2. In every case, increasing the maximum term depth leads to a decline in performance. The best

results are achieved when instantiating with constants only (Depth = 0), likely due to the
reduced complexity of the term space at lower depths.

3. Strategies using the interleave effort, where our instantiation module is invoked more frequently,
tend to perform better than those using lastcall. This suggests that there is a potential advantage
in our approach.

4. Each strategy both solves some problems that the reference does not (ref+) and fails on some
that the reference does solve (ref-). The lastcall strategies lose fewer solutions because the
probabilistic instantiation is applied less frequently, resulting in behavior closer to the reference.
The fewest losses occur with the paths variants at higher term depths, where the generated terms
more closely resemble those of the reference strategy.

5. There appears to be no significant advantage of probabilistic generation over random term
generation in this case. Since the depth is fixed to 0, the paths variant does not fully benefit from
using different weight vectors for different positions. Moreover, the weights variant instantiates
using all constants from the other instantiation modules, guided by probabilities based on their
occurrence counts. In contrast, paths in this case only tracks statistics for constants that appear
at the top level while all other constants are assigned a default weight of 1.

In the next Figure 3 we fix Depth to 0 and we evaluate various values for Flip. Higher values force
our module to generate terms more different than term used by default instantiation modules. The table
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Effort lastcall interleave

Pick weights paths weights paths

Flip total ref (+/-) total ref (+/-) total ref (+/-) total ref (+/-)

0.0 3497 +477/-57 3445 +427/-59 3570 +571/-78 3498 +497/-76

0.2 3509 +500/-68 3479 +463/-61 3579 +578/-76 3510 +504/-71

0.5 3474 +475/-78 3488 +467/-56 3613 +612/-76 3510 +508/-75

0.8 3507 +493/-63 3515 +496/-58 3579 +575/-73 3517 +516/-76

1.0 3335 +314/-56 3495 +473/-55 3429 +426/-74 3532 +530/-75

Figure 3: Grid evaluation of strategies with different Flip values (with fixed Depth = 0).

strategy parameters performance in greedy cover
Effort Depth Pick Flip solves +new adds = total
interleave 0 weights 0.5 3613 +3613 − = 3613

standard 0 weights 0.2 3509 +141 +3.90% = 3754

standard 0 weights 0.0 3497 +82 +2.18% = 3836

standard 0 random − 3523 +52 +1.36% = 3888

interleave 0 paths 0.0 3498 +42 +1.08% = 3930

standard 0 paths 0.2 3479 +29 +0.74% = 3959

interleave 0 weights 0.8 3579 +24 +0.61% = 3983

standard 0 weights 0.8 3507 +21 +0.53% = 4004

interleave 0 weights 0.0 3570 +17 +0.42% = 4021

interleave 0 random − 3575 +14 +0.35% = 4035

interleave 0 paths 0.5 3510 +12 +0.30% = 4047

standard 3 random − 3220 +11 +0.27% = 4058

interleave 0 weights 0.2 3579 +10 +0.25% = 4068

interleave 0 weights 1.0 3429 +9 +0.22% = 4077

standard 0 paths 1.0 3495 +8 +0.20% = 4085

standard 0 weights 0.5 3474 +7 +0.17% = 4092

standard 1 paths 0.5 3124 +7 +0.17% = 4099

standard 0 paths 0.0 3445 +6 +0.15% = 4105

standard 1 random − 3293 +6 +0.15% = 4111

interleave 0 paths 0.8 3517 +5 +0.12% = 4116

Figure 4: Greedy cover from the evaluated strategies helps to measure complementarity.

format is the same as in Figure 2 with the exception that the random case is omitted since the Flip
parameter does not effect it. The line for Flip = 0 has the same values as in the line Depth = 0 in the
previous figure.

The best results are obtained with the weights variant using the interleave effort and Flip = 0.5.
This strategy solves 3,613 problems and produces 612 new solutions compared to the baseline. Overall,
we observe that better performance is achieved when Flip is strictly greater than 0.0, suggesting
that occasionally generating complementary terms is beneficial. By tuning the Flip parameter, we
outperform the random term generation results shown in Figure 2.

The final experiment in this work aims to evaluate the mutual complementarity of the tested strategies.
A greedy cover sequence is constructed from all evaluated strategies. The sequence is initialized
by selecting the most effective individual strategy, and the problems it solves are marked. At each
subsequent step, the strategy that solves the largest number of remaining unsolved problems is selected.
This process is repeated iteratively. In this way, the greedy cover reveals strategies that complement
one another.

The first 20 strategies in the greedy cover are presented in Figure 4. The first four columns specify the
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strategy parameters, while the next four columns summarize their performance within the greedy cover.
The column solves shows the number of problems each strategy solves individually. The remaining
columns reflect each strategy’s contribution to the overall portfolio performance. The column +new
indicates how many additional problems the strategy contributes to the portfolio. The column total
gives the cumulative number of problems solved by the portfolio up to that point, computed as the sum
of +new and the previous row’s total. Finally, the column adds expresses +new as a percentage of the
current portfolio size.

We observe that the two most complementary strategies switch the effort mode from interleave to
standard and use different values for Flip. Since the second strategy contributes 3.90% to the portfolio,
this indicates a meaningful level of complementarity among the strategies. Furthermore, we observe
that the majority of strategies use a term depth of 0, meaning they instantiate using constants only.
This suggests that the strategies not shown in Figure 2 and Figure 3, specifically those with Depth > 0
and Flip > 0.0, do not yield any significant improvement.

5. Conclusions and Future Work

We have presented preliminary experiments on the probabilistic generation of instantiation terms
for quantified formulas in cvc5. The results indicate potential in our approach, as we were able to
improve upon the reference baseline strategy. The best performance was achieved by strategies that
generate terms complementary to those produced by other instantiation techniques. This highlights
the importance of diversity in instantiation strategies and suggests that probabilistic generation can
effectively fill gaps left by more deterministic methods. Leveraging this complementarity may be key to
further improving solver performance on quantified benchmarks. In contrast, guided generation of
more complex or deeper terms has not yet proven to be effective.

Future work will focus on improving the guided generation of complex terms. Given the exponential
growth of the instantiation term space, an effective reduction of the search space is essential. One
possible direction is to employ a learning-based approach to guide term generation. We would like
to refine the interaction between probabilistic instantiation and existing instantiation techniques,
exploring how to better coordinate or prioritize between them during solving. Additionally, we plan to
investigate adaptive mechanisms that adjust term generation parameters dynamically based on solver
progress or formula structure. Another direction is to explore richer probabilistic models, beyond simple
frequency-based grammars, that can better capture structural patterns in useful instantiations. Finally,
we intend to evaluate our approach on broader and more diverse benchmarks to better understand its
strengths and limitations in different theory combinations.
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