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Abstract

This work investigates the relation between model-based quantifier instantiation (MBQI) and enumerative
instantiation (EI) in Satisfiability Modulo Theories (SMT). MBQI operates at the semantic level and guarantees to
find a counterexample to a given a model. However, it may lead to weak instantiations. In contrast, EI strives
for completeness by systematically enumerating terms at the syntactic level. However, such terms may not
be counter-examples. Here we investigate the relation between the two techniques and report on our initial
experiments of the proposed algorithm that combines the two.
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1. Introduction

In this paper we report on work in progress in the area of quantifier instantiation for the SMT theories
of (non-)linear integer and real arithmetic combined with uninterpreted functions.! While checking the
satisfiability of formulas in these theories with quantifiers ranges from computationally expensive to
undecidable, there are many incomplete methods for quantifier instantiation that work reasonably well
in practice. It has been demonstrated repeatedly that various quantifier instantiation techniques tend to
be very complementary in performance [1, 2]. E-matching [3] is very powerful and often successful in
verification benchmarks but is inherently incomplete and suffers from self capturing loops. In contrast,
enumerative instantiation [2, 4] and model-based quantifier instantiation (MBQI) [5], have completeness
guarantees in certain scenarios and have a semantic grounding.

In this paper we combine MBQI supported by relevant domains with enumerative instantiation. We
implemented our algorithm and compared it to cve5 [6] and Z3 [7].

2. Preliminaries

We assume a basic understanding of SMT [8]. In certain special cases, such as (linear) arithmetic, there
exist decision procedures for theories with quantifiers [9, 10, 11, 12, 13]. In the general case, however,
quantifiers lead to undecidability and SMT solvers rely on quantifier instantiation techniques.
We give a brief overview of MBQI. For simplicity of presentation, assume the input formula is given
in the form
G A N\VE . g (1)
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where G is ground, and the only free variables in each ¢; are 77. Let M be a model of G that can
be expressed in the underlying theory, and let ij"‘ be the evaluation of ¢; in M, meaning that each
non-variable symbol in ¢; is replaced by its interpretation from M. We then check the satisfiability of
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which is quantifier-free and contains only the free variables 77 and interpreted functions and predicates.
(We note this makes the satisfiablity check easier than checking (1), although for some theories it is still
undecidable).

If the formulas —mpf/‘ for all j are unsatisfiable, then the original formula (1) is true in M and hence
it is satisfiable. Further, we know that M is a model of (1) and the algorithm terminates. If some —ij
is satisfiable, then the values ¥ of 2/ give a counterexample to the model M. We select ground terms #
that have the values v in M, instantiate ¢; with t, and repeat the process with this instantiation, i.e.,
repeat with the following formula:

i@ > A AG A A\VE . g
j

3. Algorithm

The key observation driving our work is that in arithmetic theories, MBQI has an infinite set of theory
constants, i.e. terms that denote value in a theory, that can possibly serve as a counter-example to
the current model. Instantiating by such arbitrary constants introduces new terms at the ground level.
On the other hand, reducing the number of new terms can have a significant positive impact on the
performance [4]. To this end, we modify MBQI to search for counterexamples by enumerating ground
terms already present in the formula. We construct a relevant domain to guide the instantiation process.
If none of the terms in this domain serve as a counterexample, the algorithm proceeds to search for a
theory constant.

Although the original MBQI paper [5] introduced an enumerative approach, MBQI implementations
in practice resort to instantiation by arbitrary theory constants; disregarding the theory constants and
uninterpreted function symbols occurring in the problem. This approach is suboptimal. For example,
consider the following unsatisfiable problem from the SMT-LIB non-incremental UFLIA benchmark set,

Ve.x >0 — f(z) =—-1000 % f(x — 1), f(0) =1, f(20) <0

To reach a contradiction, the solver must consider the sequence of numbers from 0 to 20. However,
both cve5 and Z3, when running MBQI without E-matching, fail to conclude unsatisfiability.

Algorithm 1 shows the general outline, following the recipe for MBQI (Section 2). As customary, the
algorithm assumes that the formula is split into a set of quantified subformulas (¥z7. ¢;) and a ground
part G, where ; are quantifier-free and contain only free variables in Z7. Such form can be obtained
by clausification [14], even though the formulas ¢; do not necessarily have to be clauses.

We note that we look for a new model of the ground part only after producing a counterexample for
all quantified formulas for which there was one. The instantiation step and the calculation of relevant
domains are explained further in Subsections 3.1 and 3.2, respectively.

We assume that constructing the formula goé\’l is straightforward (line 9) as we work only with
arithmetic sorts and thus each element from the model has a uniquely corresponding interpreted
constant or function. This is strictly speaking not true because of the real domain, which is uncountable.
However, in practice, solvers only produce “well-behaved models”.

3.1. Finding a Counterexample

This section focuses on how a counterexample is chosen in Algorithm 1 (step 11). Consider a quantified
formula Vz7.¢;[Z7] and a model M. The objective is to construct a counterexample from the relevant
terms. There may be still too many of them, so we restrict those heuristically as follows.

For each variable x in z7, first determine a total preference ordering on the terms in its relevant
domain U(T} ;) based on the current set of formulas. The ordering is a lexicographic ordering based
on how frequently does a term appears in the formula, its depth, and in which iteration the term was
added to the formula. We make the ordering total by appending a comparison based on the string
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Algorithm 1: MBQI with Relevant Domain

Input: A formula G A A j VzJ. p;, where G is ground and each (; has only the free variables 7/
Output: Satisfiability of the input formula
1 while true do

2 foreach j and each variable x in 7 do

3 L Construct the relevant domain U (7} ;) // Section 3.2
4 Find a model M of G

5 if no such model exists then

6 L return unsatisfiable

7 is-sat < true

8 foreach ;[27] do

9 Fix all non-variable symbols according to M, obtaining gpﬁw [z7]

10 if —w;\/l [z7] is satisfiable then

11 Using U(T ;), find ground terms ¢ s.t. ﬁcpf’l [t] is true // Section 3.1
12 G+ G N pjlt]

13 is-sat < false
14 if is-sat then

15 L return satisfiable

representation of the term. Let P (7} ;) denote the first third of the terms in ¢/(7, ;) with respect to
this ordering. We call these the preferred terms.

To look for a counterexample using the preferred terms, consider again the formula (pj” [27], where
all non-variable uninterpreted symbols in ¢; are interpreted by their interpretation in the model M.
Assume ﬂgoj\/l [27] is satisfiable. Then, construct the following formula.

e N =t &)

TET tEP(T,)

As in MBQJ, the formula looks for a counterexample to the model M, but additionally, it restricts that
the counterexample is equal to a vector of preferred terms (all this modulo what holds in the model M).
Such counterexample might not exist. Therefore, we proceed by gradually loosening the domains of
variables from z7.

If the formula (2) is satisfiable, extract the equalities = ¢ that are satisfied in it and add the
corresponding instantiation ¢;[Z + 3] to the ground part, where each s is the least term such that
sM = tM  In case it is unsatisfiable, one of the new clauses must be unsatisfiable. We look for that
clause and extend the set of available terms to all terms in the relevant domain of the corresponding
variable. We do this by taking an arbitrary such clause from an unsatisfiable core of (2). This clause
corresponds to some variable . Next, we permit to range over the whole set of relevant domain, not
just the preferred terms. Let C = {x} and N'C = 7/ \ C. Next, construct the following formula.

o A N oa=tMA N a=tM (3)

TENC teP(T, ;) reC teU(Ty,;)

If formula (3) is satisfiable, we have a counterexample, as before. Otherwise, if (3) is unsatisfiable,
continue by loosening the set of possible terms to the whole relevant domain for variables in the
core, one by one. Effectively, moving variables from NC to C in (3). It this process does not yield a
counterexample, i.e. if the relevant domain is too restrictive, we gradually drop the clauses altogether,
effectively allowing the underlying SMT solver to pick a theory constant (numeral). This is done
analogously as before by taking the core of (3) and removing variables from C, for some x whose clause
appears in the core.
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The approach overall can be seen a mix of enumerative instantiation [2] and MBQI [5]. In the first
phase, it looks for terms that are present in the current formula. If that fails it goes back to MBQI terms.
This happens per variable; therefore, the approach is not a simple union of the two.

3.2. Relevant Domain

In arithmetic benchmarks, integers/reals are often used to model the set of some more specific objects,
e.g. addresses on the heap. The objective of relevant domain is to identify such scenarios. For example,
if we know that the function f : Z — Z operates on addresses, we want to instantiate f(x) only with
terms that also represent addresses, even though = ranges over all integers.

Therefore, for each quantified variable, we construct a set of candidate terms that are relevant for its
instantiation. We call such a set the relevant domain. To compute these sets, we use the relevant domain
approach based on [4, 5, 15]. In our approach, however, the inferred sets only serve as “known relevant
options” for ground terms. Our approach is not complete — it is not always sufficient to consider
only the terms in the relevant domain. In that case we disregard the relevant domain, allowing for
instantiation with an arbitrary value.

We start by creating and initializing the following domains:

e Thj= @ for each formula ¢; and each x in 77, called the relevant domain for x,
« Tt = () for each uninterpreted function or predicate symbol f,

e Ty = () for each uninterpreted symbol f with arity n > 1 andeach 1 < i <mn,
« T, = {u} for each ground term u occurring anywhere in the input formula.

Then we follow the rules shown below to merge these sets. We represent the merged set by a union
containing the sets it was formed from, and we abuse to notation to refer to the union by any of its
constituting sets. For example, the result of merging T and T, 1 is {1, T;,1}, and the result of a
subsequent merge of T’ and T}, is {1, 1.1, 1o }. To denote that T and 75 should be merged, we write
merge(T1,T5).

Although the sets T, ; are initially empty, after applying the merging rules exhaustively, they may
become members of a union containing some sets of ground terms 7;. Let us define U(T, ;) as
{t|tisagroundterm A3U.T; € U AT, ; € U} - ie., the set of ground terms ¢ whose corresponding
set T; belongs to the same union as T}, ;. We consider all the terms of U(T} ;) to be relevant for
instantiating the quantified variable « in the subformula ;. If U(T} ;) is empty, we add a default
theory constant to it; in our case of arithmetic, this default is 0.

We now explain the merging rules. First, we define the function tls that assigns to each term? its top
level symbol:

u if t is a ground term u
27 if t is a quantified variable x in subformula j
g iftis g(t1,...,t,), where g is uninterpreted and ¢ is not ground

tls(t) =
tls(t1) iftisty *---*t, and t is not ground

tls(t;) iftist; 4 --- + t, and ¢ is not ground
tls(t1) iftist; — to and ¢ is not ground

Next, we define the function 7™ that maps terms to their respective sets based on their top level symbols.

T, iftls(t) is a ground term u
T*(t) =< T,; if tls(t) is a quantified variable 27 in subformula j
Ty if tis(t) is an uninterpreted function (predicate) symbol f and ¢ is not ground

*In practice, SMT-LIB benchmarks typically do not include division operations, so we disregard such terms.
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The rules merge the introduced sets based on where a term appears within the formula. Specifically,
we distinguish between terms that occur as arguments of uninterpreted function symbols, arithmetic
operations, or relational operators such as {=, <, <}. We apply these rules based on term occurrences
in the whole formula G A A vzl p;.

Term occurring in the formula Operation(s)

flt1, ..o tn) merge (T, T*(t;)) for 1 <i<n
ti+- -+ 1ty merge(T™(t1), T*(t;)) for 2<i<n
t1 — 12 merge(T* (tl), T* (tg))

ty %%ty merge(T*(t1),T*(t;)) for 2<i<n
tl = tg merge(T* (tl), T* (tg))

t1 <ty merge(T™(t1), T*(t2))

t1 <t merge(T™(t1), T*(t2))

As an example, consider the following SMT formula.

(f(3,a) =4+ g(b)) A (Va,y. f(z,y) <z +9(y)) A (Vz.g(z) = g(z +2))
G Vx,y.o1 V.2

Because = and ¢(y) are summed in @1, we apply the operation merge (7}, 1,7}). Similarly, because =
is also the first argument of f, we apply merge (71, T%,1). Using these two rules we get the union
{Ty1,T1,Ty}. After performing all the possible merges, we get two disjoint unions of sets.

{Tx717 Tf,h Tgv Tf) T47 T37 T(4+g(b))}
{Ty,la Tf,Qa Tg,17 TCL> Tb) Tx,27 T2}

Since the first set contains both 7)1 as well as T4, 75, and T(4+g(b)), we get that U(T, 1) =
{3, 4,4+ g(b)}, and similarly U(T,, 1) = U(Ty2) = {2, a, b}.

Note that we repeat the merging after each instantiation step (line 12 of Algorithm 1). This is because
an instantiation may give us more information about the relevant domains. For example, instantiating
2 = 2 in the last subformula yields a ground formula g(2) = g(4). After adding it to the ground part,
we apply merge(Ty 1,7Ty) and merge the two unions of sets into one.

4. Preliminary Experiments

We initially implemented the algorithm described in Section 3 as a standalone Python module using
PySMT [16], with Z3 [7] as its backend SMT solver for quantifier-free queries.

Benchmarks. For preliminary evaluation, we used a subset of benchmarks from [17] based on
problems from the International Mathematical Olympiad, encoded in SMT-LIB [18] using UFNRA logic.
We chose 22 problems from this set for which we manually confirmed they are unsatisfiable.

Experimental setup. We compared the performance of our implementation with the SMT solvers
cve5 [6], Z3 [7], and Interpol [19], and with the first-order theorem prover Vampire [20]. For cvc5, we
used 5 instances with the following configurations, later denoted as cvc5-{1,2,3,4,5}:

1. default mode

--enum-inst

--mbqi

--no-e-matching --enum-inst

AN A

--simplification=none --enum-inst

We ran all the other solvers in default mode. The experiments were performed on machines with two
AMD EPYC 7513 32-Core processors and with 514 GiB RAM. We used the time limit of 600 seconds per
problem for each solver.
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Table 1
Numbers of solved problems out of total 22.

This work  cve5-1  cve5-2  cve5-3  cve5-4  cve5-5  Interpol  Vampire Z3
9 5 10 6 13 10 5 15 10

Results. We display the numbers of solved problems in Table 1. Overall, Vampire solves most problems.
Our prototype is more-or-less competitive with the SMT solvers, solving more problems than cve5-1,
cve5-3, and Interpol, one less problem than cve5-2, cve5-5, and Z3, and four problems less than cvc5-4.
Interestingly, our prototype also solves one problem which none of the other SMT solvers solve — the
only other tool to solve it is Vampire. We therefore conclude that our preliminary results show promise
and we plan to further develop our approach.

5. Conclusion and Future Work

In this paper we gave preliminary results on MBQI combined with a custom relevant domain approach.
The approach resembles enumerative instantiation [4, 2] and MBQI [5], as it focuses on the ground
terms currently present in the formula, and only abandons those if no counterexample (meaning a good
instantiation) exists. The approach can be naturally generalized to other non-arithmetic sorts.

The current prototype shows promise since it allows solving small but difficult problems. We plan
to investigate improvements to the implementation that would enable solving also larger problem
instances and integrating it into an existing solver.
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