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Abstract
Program synthesis algorithms suffer serious scalability issues due to the exponential growth of the space of

solutions as programs grow longer. A common way to tame this search space in programming-by-example is to

use observational equivalence. In this work in progress report we discuss a method for using equivalence graphs

(e-graphs) to lift observational equivalence to more general program synthesis problems. We first present a

naive synthesis algorithm using an e-graph to perform bottom-up enumeration. We also propose an extension of

e-graphs, using approximate equivalence guided by counterexamples. We evaluate a preliminary implementation

of both approaches against a state-of-the-art solver, and further outline scope for improvements and further

research.
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1. Introduction

Given a grammar and a logical specification program synthesis methods attempt to find a program

within the grammar that satisfies the logical specification. Program synthesis is hard [1] because it

requires a search over an intractable program space [2].

A common method used to reduce this intractable search space is Observational Equivalence [3]. That

is, in bottom-up enumerative search, which iteratively constructs new programs by combining previously

generated programs, we can discard programs from the pool of programs used for construction if we

observe that they behave equivalently on the specification. This is extremely effective when the

specification is input-output examples, i.e., it reasons about a finite number of concrete values. For

instance, given the single input-output example 2→ 4; x+y and x*y are observationally equivalent

programs. However, showing that two programs are equivalent for a specification given as an arbitrary

first order formula is significantly more challenging, and, as a result, equivalence has rarely been used

for pruning for synthesis with logical specifications reasoning about infinite domains.

In this work, we leverage equivalence graphs (e-graphs) to lift equivalence based pruning to synthesis

with logical specifications over infinite domains. E-graphs are well suited to compactly storing large

sets of terms, and have been used for quantifier instantiation via e-matching [4], learning program

optimizations [5] and abstractions [6], and synthesizing rewrite rules [7]. In this work, we present

a synthesis algorithm that performs enumeration directly over an e-graph, eliminating the need to

enumerate spurious terms by fully leveraging the grouping of symbolically equivalent terms captured

by equality saturation. To the best of our knowledge, this is the first exploration of using e-graphs to

solve general purpose program synthesis problems.

However, despite the compact representation afforded by e-graphs, the algorithm is still overwhelmed

by combinatorial explosion. In an attempt to overcome this, we use equivalence relations that only hold

under certain assumptions. A common method for synthesis over symbolic variables is Counterexam-

ple Guided Inductive Synthesis [8], CEGIS, whereby a synthesis phase enumerates through possible

candidate programs, which are passed to a verification oracle which either validates that the candidate
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is a solution to the synthesis problem or returns a counterexample that invalidates the candidate. The

counterexamples are used to reduce the number of candidate solutions that need to be passed to the

verifier, as each candidate can be quickly tested against the counterexamples first. Inspired by this, we

present an algorithm that leverages counterexamples to generate counterexample e-graphs (CE-graphs),

which capture equivalence relations that hold true under the counterexample. These CE-graphs al-

low us to aggressively prune the search space by discarding sets of programs that fail to satisfy each

counterexample, and use the counterexamples to guide the growth of new programs constructed using

recursive production rules to be only as deep as precisely needed by the counterexamples obtained so

far.

1.1. Running Example

In this work, we consider syntax-guided synthesis problems, where a logical specification is given

alongside a grammar expressing the space of possible solutions. An example is shown in Fig. 1, which

gives a specification for a program that computes the maximum of 3 numbers. In the worst case, a

traditional CEGIS loop would need to generate∼ 50, 000, 000 programs before finding one that satisfies

the specification, with each of these needing to be checked against the counterexamples and a subset

needing to be checked over the whole specification. It is evident that some method to reduce the number

of programs generated is required in order to make such synthesis feasible.

2. Preliminaries

2.1. Syntax-Guided Synthesis

(set-logic LIA)
(synth-fun max3 ((x Int) (y Int) (z Int)) Int

((Start Int) (StartBool Bool))
((Start Int (x y z

(ite StartBool Start Start)))
(StartBool Bool ((>= Start Start)))))

(declare-var a Int)
(declare-var b Int)
(declare-var c Int)
(constraint (>= (max3 a b c) a))
(constraint (>= (max3 a b c) b))
(constraint (>= (max3 a b c) c))
(constraint (or

(= a (max3 a b c))
(= b (max3 a b c))
(= c (max3 a b c))))

(check-synth)

Figure 1: Running Example: SyGuS program for syn-

thesising a program that computes the

maximum from three numbers

A syntax-guided synthesis (SyGuS) [9] prob-

lem consists of a context-free grammar, which

defines the search space of possible solutions,

and a logical specification. The task is to find a

function from within that search space that sat-

isfies the specification. First we define context-

free grammars:

Definition 2.1 (Context-Free Grammar, CFG).
A context-free grammar is a 4-tuple 𝒢 =
(Ω,Σ, 𝑅, 𝑆). Ω is a finite set of variables
also known as non-terminal symbols. Σ with
Σ∩Ω = ∅ is called the set of terminal symbols or
alphabet. 𝑅 ⊆ Ω× (Ω∪Σ)* is a finite relation
describing the production rules of the grammar.
𝑆 ∈ Ω is the start symbol of the grammar 𝐺.

Given a context-free grammar 𝒢 =
(Ω,Σ, 𝑅, 𝑆)with 𝑥, 𝑦 ∈ (Ω∪Σ)* and (𝛼, 𝛽) ∈
𝑅 we say that 𝑥𝛼𝑦 yields 𝑥𝛽𝑦, written 𝑥𝛼𝑦 →
𝑥𝛽𝑦. We say that 𝑥 derives 𝑦 written 𝑥 → * 𝑦 if either 𝑥 = 𝑦 or 𝑥 → 𝑥1 → . . . 𝑥𝑛 → 𝑦 for 𝑛 ≥ 0.

Finally, we define the language of a grammar (which gives the space of possible solutions for our SyGuS

problem). ℒ𝒢 = {𝑠 ∈ Σ* | 𝑆 →* 𝑠}.

Definition 2.2 (Syntax-Guided Synthesis). A syntax-guided synthesis problem is a 4-tuple ⟨𝑇,𝒢, 𝜑, 𝐹 ⟩,
where 𝒢 is a context-free grammar, 𝜑 is a first-order formula in the background theory 𝑇 , and 𝐹 is a
function symbol that occurs in 𝜑. A valid solution to the SyGuS problem ⟨𝑇,𝒢, 𝜑, 𝐹 ⟩ is a function 𝑓 such
that the formula 𝜑[𝐹/𝑓 ] is 𝑇 -valid, according to the background theory, and 𝑓 ∈ ℒ𝒢 .
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We use 𝜑[𝐹/𝑓 ] to indicate the result of substituting the symbol 𝐹 with a defined function 𝑓 , and we

use �⃗� = 𝑥1, 𝑥2, . . . to represent the set of free (nullary) variables in 𝜑.

In this work, we assume the background theory is Linear Integer Arithmetic, and the grammar

contains one non-terminal symbol of type integer, and one non-terminal symbol of type bool.

2.2. CounterExample Guided Inductive Synthesis

The most common algorithm for solving program synthesis problems is CounterExample Guided

Inductive Synthesis, CEGIS, shown in Fig. 2.

synthesize

∃𝑓 ∀�⃗� ∈ 𝐼 .𝜑(𝑓, �⃗�)

verify

∃�⃗�¬𝜑(𝑓*, �⃗�)

no solution

solution 𝑓*

UNSAT

UNSAT

�⃗�

S
A

T

𝑓*

S
A

T

Figure 2: CounterExample Guided Inductive Synthe-

sis

CEGIS alternates between two phases: We

initiate the algorithm with a guessed candi-

date function 𝑓*
. In our running example, this

could be x. This is passed to a verification

phase that checks the candidate 𝑓*
against the

specification 𝜑 over the full set of program in-

puts. That is, it uses an SMT solver to solve

the formula ∃�⃗�.¬𝜑[𝐹/𝑓*]. If this formula is

satisfiable, the solver returns �⃗�, a counterexam-

ple assignment to all free variables in 𝜑. In our

running example, a counterexample might be

�⃗� = [𝑥 ↦→ 0, 𝑦 ↦→ 1, 𝑧 ↦→ 0]. If the verification

passes, 𝑓*
is returned as the final solution.

If the verification phase fails, the counterexample �⃗� is returned to the synthesis phase and appended

to a list of counterexamples obtained so far, 𝐼 . The synthesis phase then looks for a new candidate

program 𝑓*
that satisfies the specification for all �⃗� ∈ 𝐼 ; that is, ∃𝑓*.∀�⃗� ∈ 𝐼.𝜑[𝐹/𝑓*, �⃗�/�⃗�]. In our

running example, the next candidate solution might be y. This process would repeat, generating new

counterexamples and new candidate solutions until we find a solution that passes verification.

The synthesis phase is typically implemented using enumerative techniques [10, 11, 12], which

enumerate through programs in the search space until they find one that works for all counterexamples

seen so far.

2.3. Equivalence Graphs

The e-graph data structure captures symbolic equivalence between terms through equivalence relations

defined as rewrite rules. It also supports equality saturation; a non-destructive compositional method

for propagating equivalences [13, 14].

In order to use e-graphs to express the space of possible solutions to a synthesis problem, let us first

map the production rules in our grammar into function symbols. Given a production rule 𝜔 → 𝑟ℎ𝑠,

where 𝜔 ∈ Ω and 𝑟ℎ𝑠 ∈ (Ω ∪ Σ)*, we say the production rule is an 𝑛-ary production rule if 𝑟ℎ𝑠
contains 𝑛 occurrences of a non-terminal symbol.

Intuitively, an e-graph representing the space of terms within our context-free grammar can be given

as:

• A set of e-classes, which consist of groups of e-nodes determined to be equivalent terms in the

underlying language.

• An e-node is an 𝑛-ary production rule 𝜔 → 𝑟ℎ𝑠 from our grammar, with 𝑛 associated child e-

classes. An e-node represents the set of terms obtained by substituting the non-terminal symbols

in 𝑟ℎ𝑠 with any node from within the corresponding child e-classes. An e-node representing

applications of 𝜔 → 𝑟ℎ𝑠 is annotated with its corresponding non-terminal symbol 𝜔.

Given a synthesis problem ⟨𝑇,𝒢, 𝜑, 𝐹 ⟩, we can define an e-graph which represents the space of

possible solutions as follows:

79



Guy Frankel et al. SMT 2025: Satisfiability Modulo Theories 77–90

Definition 2.3 (e-graphs). An e-graph 𝐺 is as a tuple (𝒯 ,∼=) where 𝒯 is a set of terms in a ℒ𝒢 , and
∼=⊂ 𝒯 × 𝒯 is an equivalence relation, such that, for any 𝑡1, 𝑡2 ∈ 𝒯 if (𝑡1, 𝑡2) ∈∼=, then 𝑡1 = 𝑡2 is 𝑇 -valid.
Each term is annotated with its corresponding non-terminal symbol.

Rewrite rules An e-graph is equipped with rewrite rules, that define the equivalence relation as

patterns of the form ℓ→ 𝑟. If a rewrite rule finds a term matching the pattern ℓ, it will create a e-node

representing the expression generated by the substitution defined by the rule. If the new e-node already

exists in the e-graph, the e-class of this node and the e-node representing the original term are merged,

otherwise the new e-node is added to the e-class of the original e-node. We assume that all rewrite

rules result in programs that abide by the syntactic restriction of the SyGuS problem, i.e., rewrite rules

cannot result in terms that are not contained within ℒ𝒢 .

For instance, take an e-graph of the term (+𝑥 𝑥) with the rewrite rule (+ ?𝑎 ?𝑎)→ (× ?𝑎 2), where

?𝑎 is a pattern that captures any term. The equivalence relation defines that (+ ?𝑎 ?𝑎) ∼= (× ?𝑎 2).
Applying the rewrite will add the two new e-nodes required to represent (×𝑥 2) with the relevant

children, namely 2 and ×, to the e-graph. Rewrite rules are applied until no further changes occur,

referred to as equality saturation.

3. Bottom-up Equivalence Graph Synthesis

The first approach we present is a naive bottom-up enumerative algorithm using e-graphs to represent

and efficiently prune the pool of possible programs. This enables us to lift the notation of observational

equivalence, which has been used successfully to prune the search space of programs in programming-

by-example, to more general synthesis specifications.

Bottom-up enumeration has been used as the synthesis phase in many CEGIS implementations [15, 9,

12]. It searches the space of solutions by growing a pool of programs from the grammar, starting with

the terminals in the language. At each iteration, new programs are constructed by combining programs

from the pool, using production rules from the grammar.

The pool of programs grows exponentially large as the length of the programs increases. For specifica-

tions over finite inputs, like programming-by-example, this exponential growth is tamed by observational
equivalence [3]: if any programs in the pool behave the same on all inputs in the specification as others

in the pool, we can discard all but one of those programs. However, for specifications which contain

free variables that can take an infinite number of values, this equivalence check is expensive.

3.1. Naive Bottom-up Enumeration with Equivalence Graphs

In our approach, we lift this equivalence-based pruning to general synthesis specifications (even those

reasoning about infinite inputs), by using e-graphs to represent the pool of programs and efficiently

perform the equivalence check. The synthesis proceeds as follows:

Constructing the initial e-graph Given a syntax-guided synthesis problem ⟨𝑇,𝒢, 𝜑, 𝐹 ⟩, we initially

construct an e-graph 𝐺 = (𝒯 ,∼=), where 𝒯 is the set of terms on ℒ𝒢 that can be obtained from the

start symbol 𝑆 with 1 derivation, and
∼= is initially empty.

Equality saturation At the start of each growing iteration, we iteratively apply a set of rewrite rules

to saturation, adding equivalence relations to
∼=, and resulting in an e-graph where each e-class

represents groups of equivalent terms in the background theory. That is, for any two terms 𝑡1, 𝑡2 ∈ 𝐺,

(𝑡1, 𝑡2) ∈∼= implies that 𝑡1 = 𝑡2 is 𝑇 -valid, according to the background theory 𝑇 .

Checking the pool As before, we check the pool of programs against the counterexamples. However,

this time, instead of iteratively checking all programs, we instead iterate through the e-classes and

then extract and check the canonical form from each e-class.
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Growing the e-graph Once we have checked all the e-classes in the pool, we grow the pool. To do

this, we add all terms to the e-graph that can be obtained by combining e-classes from 𝐺 with a

single production rule from the grammar. By using e-classes to replace the non-terminal symbols in

the production rules instead of e-nodes, we tame the exponential growth of the search space.

The full algorithm is shown in Appendix A.1 - Algorithm 2, along with an algorithm showing standard

bottom-up enumeration, Algorithm 1.

Optimizations: Since rewrite rules in e-graphs are non-destructive, i.e., e-nodes for both the left and

right hand side of the rule are retained within the e-graph, we implement two optimizations: First, before

adding a new program, during the growing phase, we check whether it already exists in a previously

explored e-class in𝐸 at a rewrite distance of one. This slows the growth of the program pool. Specifically,

we use compactive rewrites, whereby we do not add new e-nodes generated by rules and instead only

use them to merge e-classes already present in the e-graph, this ensures equality saturation does not

add unnecessary e-nodes. Additionally, when checking programs we use structural generalization,

described in [15]. This method removes the need to check spurious programs in the following way:

given a program 𝑝 of the form ( ite c l r ) that has been invalidated by a counterexample that evaluated

c as true, structural generalization ensures that no other program of the form ( ite c l ?a) needs to

be checked, where we know the program will be invalidated by the counterexample, regardless of the

sub-program represented by the right-hand branch.

4. Synthesis using CounterExample Guided Equivalences

Bottom-up enumeration with e-graphs significantly reduces the number of programs we have to send

to the verifier, but the program space still grows impractically large. For our second synthesis approach,

we introduce the notion of counterexample e-graphs, or CE-graphs, which capture the sets of programs

that behave equivalently under a given counterexample. We exploit CE-graphs for two purposes: firstly,

they enable us to prune the space of candidates using equivalence rules that are conditioned on the

counterexample; second, they allow us to guide the growth of the program pool, based on the needs of

the counterexamples obtained so far. In this section, we first define CE-graphs, and how to construct

them, before presenting a CE-graph based synthesis algorithm.

4.1. Defining CE-graphs

Recall that a counterexample �⃗� is an assignment to all the free variables �⃗� which caused a previous

candidate solution 𝑓*
to violate the specification 𝜑.

Definition 4.1 (CE-graph). Given a counterexample �⃗�, a counterexample e-graph is defined as 𝐺�⃗� =
(𝒯 ∼=�⃗�), where 𝒯 is a set of terms in the language 𝐿, and the congruence relation ∼=�⃗� is defined such that,
for any two terms 𝑡1 ∼=𝑐 𝑡2 if and only if 𝑡1[�⃗�/�⃗�] = 𝑡2[�⃗�/�⃗�] is 𝑇 -valid under the background theory 𝑇 .

Given a CE-graph, 𝐺�⃗�, we can now group the e-classes into invalid e-classes and valid e-classes. An

invalid e-class is an e-class that contains only programs that fail to satisfy the specification on the given

counterexample. A valid e-class is an e-class that contains only programs that satisfy the specification

for the given counterexample.

4.2. Synthesis with CE-graphs

Synthesis with CE-graphs proceeds through two stages: first, building the CE-graph, which allows us to

obtain an infinite set of terms which satisfy the specification under the current counterexample; second,

pruning the search space by joining the current CE-graph with the previously obtained CE-graphs. This

pruning restricts the set of infinite terms to only the depth required by the counterexamples obtained
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so far. This implicit e-graph growth, achieved through counterexample guided rewrite rules, allows us

to avoid the explicit growth of the e-graph that is necessary in Section 3.

As an overview, the synthesis proceeds as follows:

Initialization We initialise the algorithm by constructing a base e-graph, 𝐺0, which contains all

terminal symbols in 𝒢, and an application of each production rule in 𝒢, applied to all possible

terminal symbol combinations. We do this using bottom-up enumeration, as before, to a depth of 2.

We then select a term randomly from the e-graph, and pass this to the verifier. We assume this term

will fail verification, and a counterexample will be returned.

Build Given a counterexample �⃗�′, we build 𝐺′
�⃗� from 𝐺0. If the valid set of 𝐺′

�⃗� is empty, we grow 𝐺0,

adding one more layer of programs.

Join Join the new CE-graph, 𝐺′
�⃗� to the previous 𝐺�⃗�, and set this to be the current CE-graph, i.e.,

𝐺�⃗� = 𝐺′
�⃗� ⊔𝐺�⃗�. If this is the first CE-graph we have seen, simply set 𝐺�⃗� = 𝐺′

�⃗�.

Verify Sample a program from the valid e-classes of 𝐺�⃗�, and pass this to the verifier. If it passes

verification, return this solution to the user. If it fails, return the counterexample to the Build step

and repeat.

Pseudocode for the full algorithm is included in Appendix A.1, Algorithm 4. We will now discuss the

build and join phases in more detail.

Building the CE-graph Given a counterexample, �⃗�, we encode the counterexample equivalence

relation
∼=�⃗� using a set of rewrites derived from the counterexample; for instance, given the counterex-

ample [𝑥 ↦→ 1, 𝑦 ↦→ 0], we generate the rewrites such as (> 𝑥 𝑦)→ ⊤. For example, when considering

a grammar involving equivalence relations, we may generate the following rules:

• For each pair of variables in the assignment we have a set of rewrites for the lt, gt and eq

comparators.

• If the specific constants 0 and 1 are within the assignment, we define rewrite sets for assignments

that assign free variables to either.

This allows us to construct the e-graph 𝐺�⃗�, as defined above, by applying these rewrite rules to

the base e-graph 𝐺0. Note that
∼=�⃗� introduces recursive edges to the e-graph, effectively representing

infinite sets of terms that behave equivalently under the counterexample, as shown in Fig. 3.

We test one term from each e-class against the current counterexample, and if 𝜑[𝐹/𝑡, �⃗�/�⃗�] = ⊤, we

mark the e-class as 𝑣𝑎𝑙𝑖𝑑. If there are no valid terms, we grow the base e-graph by one iteration. The

pseudocode for building the CE-graph is in Appendix A.1 - Algorithm 3.

Pruning via Join We note that any valid solution to the synthesis problem must be in a valid e-class

on every counterexample e-graph. Thus, by performing the join of the current counterexample e-graph

with the previous one, we can reduce our search space to only terms in the intersection of the valid

e-classes. Further optimisations of this join are possible, in which unnecessary e-nodes are removed,

however, our current implementation defines join as e-graph intersection, defined below:

Definition 4.2 (Join of CE-graph). Given two CE-graphs, 𝐺�⃗�1 = (𝒯�⃗�1 ,∼=�⃗�1) and 𝐺�⃗�2 = (𝒯�⃗�2 ,∼=�⃗�2), the
join of the two e-graphs, 𝐺�⃗�1 ⊔𝐺�⃗�2 is an e-graph 𝐺�⃗�1⊔�⃗�2 = (𝒯�⃗�1 ∩ 𝒯�⃗�2 ,∼=�⃗�1⊔�⃗�2), where (𝑡1, 𝑡2) ∈∼=�⃗�1⊔�⃗�2
⇐⇒ (𝑡1, 𝑡2) ∈∼=�⃗�1 ∧(𝑡1, 𝑡2) ∈∼=�⃗�2 .

At each iteration, we join the most recent CE-graph to the CE-graph representing the current search

space, 𝐺𝑐𝑢𝑟𝑟 . The result of this join is then set to be the new 𝐺𝑐𝑢𝑟𝑟 . We then sample a program from

the valid e-class of 𝐺𝑐𝑢𝑟𝑟 and send this to verification, repeating the loop.

Note that this join discards equivalence relations that are not valid under both counterexamples,

effectively pruning the terms represented in the CE-graph by unrolling recursion not supported by all

counterexamples obtained so far.
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Running Example: To more clearly describe the algorithm let us follow an example of a possible

path this method may take, visualised in Fig. 3. Assume that we are searching for a program that returns

the maximum of three values, as in Fig. 1. In line with the motivating example, the algorithm provides

a guess from the grammar’s terminal symbols, x, to which the oracle returns the counterexample,

�⃗�1 = [𝑥 ↦→ 1, 𝑦 ↦→ 2, 𝑧 ↦→ 0]. Using 𝐺0, a CE-graph 𝐺�⃗�1 is built rewrite rules derived from the

counterexample, including, but not limited to:

(≥ 𝑥 𝑦) → ⊥ (≥ 𝑦 𝑧) → ⊤ (≥ 𝑥 𝑧) → ⊥
(× 𝑥 ?𝑎) → ?𝑎 (× 𝑧 ?𝑎) → 0 𝑥 → 1

We use𝐺�⃗�1 to generate a new candidate which satisfies the specification for �⃗�1, y. The counterexample

�⃗�2 = [𝑥 ↦→ 2, 𝑦 ↦→ 1, 𝑧 ↦→ 0] is returned and used to create 𝐺�⃗�2 . We then generate a new CE-graph,

𝐺𝑐𝑢𝑟𝑟 = 𝐺�⃗�1 ⊔𝐺�⃗�2 , representing the subset of ℒ𝒢 that satisfies both �⃗�1 and �⃗�2. The remaining satisfying

terms in 𝐺𝑐𝑢𝑟𝑟 are made up of those that compare 𝑥 and 𝑦, returning the largest of the two, for instance

( ite (>= x y) x y). Providing this as a candidate yields �⃗�3 = [𝑥 ↦→ 0, 𝑦 ↦→ 1, 𝑧 ↦→ 2], used to generate

𝐺𝑐𝑢𝑟𝑟 = 𝐺𝑐𝑢𝑟𝑟 ⊔𝐺�⃗�3 . The satisfying terms in 𝐺𝑐𝑢𝑟𝑟 now only contains terms that compare the three

variables and returns the largest of the three, the set of all satisfying terms.

Figure 3: An example of synthesising max3. E-classes are rectangles with broken edges, with red e-classes

representing the class of terms that satisfy the counterexample context. E-nodes are captured by solid circles,

with orange e-nodes representing the e-node used to extract a candidate program and green e-nodes representing

terms that satisfy the whole specification.

5. Evaluation

We implement preliminary versions of both approaches. We use the rust egg crate [13] as our e-graph

data structure, and carry out validation using rust bindings to Z3 [16]. The e-graph in the naive

enumerator has 49 symbolically equivalent rewrites, the CE-graphs have an additional 44 conditional

rewrites. Both these sets of rewrites are incomplete. The current CE-graph method uses a total
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e-graph intersection as the join, specifically the e-graph intersection defined in egg. We compare

against cvc5 [17], which implements synthesis via CEGIS, using various highly tuned enumerative

approaches for searching the grammar [15]. We use a set of benchmarks from the syntax-guided

synthesis competition [18]. Specifically, for this preliminary implementation, we consider benchmarks

in linear integer arithmetic, with a single invocation of each synthesis function and without using

defined functions within the grammar. We use a timeout of 1 minute.

Performance: The results in Table 1 show that both e-graph based synthesis methods reduce the

number of candidate programs sent to the verifier substantially, which is to be expected. The naive

bottom-up enumerator solves fewer benchmarks than cvc5, but Fig. 4 shows the performance is

comparable with cvc5 on the ones it does solve, which is surprising given the highly preliminary nature

of our implementation. From Table 1 we see that the CE-graph approach does not outperform the naive

bottom-up method, which we hypothesize is due to an inefficient (for our purposes) implementation of

join, as well as an incomplete conditional rewrite rule set.

Synthesiser Success Timeout Error Candidates checked Proportion of time in join

Naive bottom-up e-graph 78 70 - 5.42 -

ce-graphs 54 85 9 4.99 36%

CVC5 87 61 - 86.35 -

Table 1
Comparison of synthesis results across different 148 benchmarks with a 60 second timeout. Errors in the

conditional e-graphs were due to implementation issues and memory-out of bounds errors.

Figure 4: Cumulative number of benchmarks solved by the three synthesisers as a function of time.

5.1. Limitations/Future Work:

Completeness of rewrite rules: The set of rewrite rules we provide to both approaches is incomplete

(i.e., (𝑡1, 𝑡2) ∈∼=�⃗�⇒ 𝑡1[𝑥/�⃗�] = 𝑡2[𝑥/�⃗�], but 𝑡1[𝑥/�⃗�] = 𝑡2[𝑥/�⃗�] ⇏ (𝑡1, 𝑡2) ∈∼=�⃗�). For the naive enumera-

tion, this will result in checking more programs than necessary. For the CE-graph synthesis, incomplete

rewrite rules will result in more occasions where the valid set does not contain the valid solution and

we must explicitly grow the base e-graph. The rewrite rules are also written by hand. One possible

direction to explore is executing the terms on each counterexample, and using these results to infer

rewrite rules.
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Generality: The current CE-graph synthesis formulation is biased towards solving benchmarks with

solutions that rely on comparators captured in our conditional rewrites. For other benchmarks, relying

on predefined rewrite rules may always be significantly less effective.

Join Efficiency: As mentioned in Section 4.2, there is significant inefficiency in the CE-graph method

due to the inefficient implementation of join. Namely, that we calculate the join of all e-classes, including

terms that are not within the valid set. A more efficient CE-graph join, inspired by ideas from colored
e-graphs [19], should improve the performance of the synthesis approach.

Counterexample Ordering: As with many synthesis approaches, the order that we encounter coun-

terexamples in can result in big variations in solving time, as this produces a different sequence of

CE-graphs. Determining the best counterexample is an open question in synthesis [20], but this question

appears to become even more critical when using CE-graph based synthesis.

Soundness and Completeness Our approach is sound, in that any result that is returned is guaranteed

to be correct, provided the verifier is correct. It is not complete, and cannot be complete as the synthesis

problem in general is undecidable. However, if the grammar is restricted to one that expresses a finite

number of programs, it should be possible to provide guarantees that a program will be found.

6. Related Work

There are many approaches to pruning the search space in program synthesis, including using deductive

reasoning [21, 22], using divide and conquer to partition the search space [12], and all varieties of

machine-learning or probabilistic guided synthesis [23, 24]. We focus our related work discussion on

approaches using observational equivalence.

Observational equivalence has been leveraged for programming by example by using finite tree

automata (FTA), in which each node contains all observationally equivalent programs with hyper-edges

representing productions rule applied to child nodes [25, 26, 27]. Our naive e-graph algorithm can be

viewed as a generalisation of uses of observational equivalence in FTAs.

In SyMetric [28], observational equivalence was relaxed to observational similarity, used as an

approximate proxy of equivalence based on input-output examples.

Equivalence abstraction in FTAs was introduced in the tool Blaze [29]. This algorithm uses abstract

semantics to generate abstract FTAs (AFTAs). For each failing candidate a proof of failure is generated

to refine the abstract semantics. The AFTA is then refined by splitting nodes into refined abstract

equivalences and a new candidate is generated. The CE-graph synthesis method develops on the ideas

in Blaze. Each CE-graphs represents some level of abstract equivalence relation, with the join operation

carrying out the refinement.

Granularity of equivalence relations Extending the capabilities of e-graphs to represent multiple

levels of equivalence relations, as describe in our methods, has been explored. As eluded to in Section 5

colored e-graphs [19] permit a hierarchy of equivalences through hierarchical colored e-classes. Colored

e-graphs provides an efficient implementation of e-graphs that permit capturing equivalences of e-

classes under assumptions. Specifically, it provides a method that shares nodes instead of requiring the

generation of individual e-graphs for each assumption. This provides an efficient mechanism to find

terms that are equivalent under multiple assumptions. Additionally, work on contextual equalities and

contextual equality saturation [30] attempts to capture equality that is only true in sub-graphs. These

two methods closely align with the CE-graphs; the main exception is the introduction of edges being

between nodes and conditioned e-classes, in colored e-graphs, this would be synonymous with having

"colored edges" between e-nodes and colored e-classes. It is this feature of CE-graphs that permits their

compact representation of languages when the grammar’s free variables are substituted for concrete

values.
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7. Conclusions

We have presented an approach to using e-graphs to efficiently represent and enumerate the space

of possible programs for general program synthesis. To the best of our knowledge, this is the first

approach to use e-graphs in this way. There are a number of limitations to our approach, yet, despite

this, it performs comparably to the state of the art on a small set of benchmarks. Given the intertwined

nature of synthesis, SMT solving, and e-graphs, we would welcome discussion with the community on

the directions this work should take next.

Declaration on Generative AI

The authors used Grammarly for grammar and spell-checking, and Claude to assist with the implemen-

tation of the proposed algorithms. After using these tools, the authors reviewed and edited content as

needed and take full responsibility for the publication’s content.
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A. Appendix

A.1. Algorithms

Algorithm 1 Bottom-Up Enumerator

1: procedure Enumerate(𝒢, 𝜑, 𝐼)

2: 𝑃𝑟𝑜𝑔𝑃𝑜𝑜𝑙← ∅
3: 𝑁𝑒𝑤𝑃𝑟𝑜𝑔𝑠← 𝒢.Σ ◁ Add all terminal symbols to the pool of programs

4: while 1 do
5: 𝑃𝑟𝑜𝑔𝑃𝑜𝑜𝑙← 𝑃𝑟𝑜𝑔𝑃𝑜𝑜𝑙 ∪𝑁𝑒𝑤𝑃𝑟𝑜𝑔𝑠
6: for 𝑝 ∈ 𝑁𝑒𝑤𝑃𝑟𝑜𝑔𝑠 do ◁ Check against counterexamples

7: if ∀�⃗� ∈ 𝐼.𝜑(𝑝, �⃗�) then
8: return 𝑝
9: end if

10: end for
11: 𝑁𝑒𝑤𝑃𝑟𝑜𝑔𝑠← ∅
12: for (𝑟𝑙, 𝑟𝑟) ∈ 𝑅 do ◁ iterate through production rules

13: 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠← [] ◁ Build list of lists of possible operands

14: for 𝑠 ∈ 𝑟𝑟 do ◁ iterate through symbols in RHS of rule

15: if 𝑠 ∈ Ω then ◁ If this is a nonterminal symbol

16: 𝑜𝑝𝑠← Filter(𝑃𝑟𝑜𝑔𝑃𝑜𝑜𝑙, 𝑠) ◁ Get all of the same type as 𝑠
17: 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠← [𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠, 𝑜𝑝𝑠]
18: end if
19: for 𝑎𝑟𝑔𝑠 ∈ CartesianProduct(𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠) do
20: 𝑁𝑒𝑤𝑃𝑟𝑜𝑔𝑠← 𝑁𝑒𝑤𝑃𝑟𝑜𝑔𝑠 ∪ BuildProgram(𝑟𝑟, 𝑎𝑟𝑔𝑠)
21: end for
22: end for
23: end for
24: end while
25: end procedure

88



Guy Frankel et al. SMT 2025: Satisfiability Modulo Theories 77–90

Algorithm 2 Naive Bottom-Up Enumeration using E-graph

1: procedure Enumerate(𝒢, 𝜑, 𝐼)

2: 𝐸 ← BuildInitialGraph(𝒢) ◁ Initial e-graph

3: while 1 do
4: for 𝑒 ∈ GetEClasses(𝐺) do ◁ Check for each new e-class against counterexamples

5: 𝑝← Extract(𝑒) ◁ Extract a canonical program from e-class

6: if ∀�⃗� ∈ 𝐼.𝜑(𝑝, �⃗�) then
7: return 𝑝
8: end if
9: end for

10: for (𝑟𝑙, 𝑟𝑟) ∈ 𝑅 do ◁ iterate through production rules

11: 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠← [] ◁ Build list of lists of possible operands

12: for 𝑠 ∈ 𝑟𝑟 do ◁ iterate through symbols in RHS of rule

13: if 𝑠 ∈ Ω then ◁ If this is a nonterminal symbol

14: 𝑜𝑝𝑠← FilterEClasses(𝐸, 𝑠) ◁ Get all e-classes annotated with 𝑠
15: 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠← [𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠, 𝑜𝑝𝑠]
16: end if
17: for 𝑎𝑟𝑔𝑠 ∈ CartesianProduct(𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠) do
18: 𝑝← BuildProgram(𝑟𝑟, 𝑎𝑟𝑔𝑠)
19: if !RewriteOnce(𝑝) ∈ 𝐺 then ◁ Check if equivalent program exists in e-graph

by a single rewrite

20: 𝐺← Add(𝐺, 𝑝)
21: end if
22: end for
23: end for
24: end for
25: 𝐺← EqualitySaturation(𝐺)
26: end while
27: end procedure

Algorithm 3 Building a Conditioned E-Graph

1: procedure BuildCEGraph(𝐺0, 𝜑, �⃗�)
2: 𝑣𝑎𝑙𝑖𝑑← ⊥
3: while not 𝑣𝑎𝑙𝑖𝑑 do
4: 𝑅← GenerateConRewrites(�⃗�) ◁ Generate rewrites conditioned on �⃗�
5: 𝐺�⃗� ← Run(𝐺0, 𝑅) ◁ Run equality saturation with conditional rewrites

6: 𝑣𝑎𝑙𝑖𝑑← GetValid(𝐺�⃗�)
7: if 𝑣𝑎𝑙𝑖𝑑 then
8: return 𝐺�⃗�

9: end if
10: 𝐺0 ← Enumerate(𝐺0)
11: end while
12: end procedure
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Algorithm 4 CE-Graph Synthesis

1: procedure CE-CEGIS(𝒢, 𝜑)

2: 𝐼 ← ∅ ◁ Set of counterexamples

3: 𝐺0 ← InitialEGraph(𝒢) ◁ Initial e-graph built from the grammar

4: 𝐺𝑐𝑢𝑟𝑟 ← ∅
5: Pick 𝑓* ∈ 𝒢.Σ ◁ Choose an initial terminal symbol

6: while true do
7: if ∃𝑥 .¬𝜑(𝑓*, 𝑥) then
8: 𝐼 ← 𝐼 ∪ {𝑥}
9: 𝐺�⃗� ← BuildCEGraph(𝐺0, 𝑥)

10: 𝐺𝑐𝑢𝑟𝑟 ← 𝐺𝑐𝑢𝑟𝑟 ⊔𝐺�⃗� ◁ Join 𝐺𝑐𝑢𝑟𝑟 with new conditioned e-graph

11: Pick 𝑓* ∈ {𝑡 ∈ 𝐺𝑐𝑢𝑟𝑟 | 𝜑(𝑡, 𝐼)}
12: else
13: return 𝑓*

14: end if
15: end while
16: end procedure
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