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Abstract
Scheduling problems arise in many applications and are commonly solved with automated reasoning and

constraint-based methods. We study a variant of the so-called resource-constrained cumulative scheduling

problem, with a flavor of flow allocation, in which a set of workers must send workloads to a shared processing

facility. The goal is to schedule the workload sent from each worker at each time step without exceeding the

facility’s maximum processing capacity or the storage capacities of the workers. In a central instantiation of the

problem, the workers are industrial sources that produce wastewater that needs to be transferred to a treatment

plant. The problem of computing a feasible schedule in a similar setting has previously been studied under the

name of the wastewater treatment plant problem.

More precisely, we study the applicability of optimization modulo theories (OMT) and mixed integer pro-

gramming (MIP) to solving real-world benchmarks of this scheduling problem. As our main contributions, we: i)

extend a previously proposed constraint model for computing feasible schedules by e.g., allowing more flexible

scheduling of the released water, ii) extend the model with several different optimization criteria, including

optimizing for evenness of the workload arriving at the facility, and minimizing the makespan of the schedule,

and iii) collect a new open-source dataset based on real-world wastewater flow quantities. We evaluate our

model on two differently-sized time spans of the new dataset as well as on previously used benchmarks using

state-of-the-art solvers in both paradigms. Our evaluation demonstrates that optimization criteria related to

makespan minimization do not need to slow down the run time of the solvers. In contrast, the criteria on workload

evenness are, in general, more difficult to handle.

Keywords
Optimization Modulo Theories, OMT, Mixed Integer Linear Programming, MILP, Preemptive Cumulative Schedul-

ing, Flow Evenness, Time Delay

1. Introduction

The resource-constrained scheduling problem (RCSP) [1, 2] is a well-known and general formalization

of a problem setting in which tasks need to be scheduled over a discrete timeframe in a way that respects

the resource requirements of the individual tasks and any possible precedence constraints between

them. Many variants of RCSP are known to be NP-hard [3], but the strong prevalence of scheduling

problems in different domains has motivated research into different variants of RCSP (see e.g. [4] for

a recent survey) and effective methods for computing both feasible and optimal schedules. Resource-

constrained scheduling problems can roughly be divided into disjunctive and cumulative scheduling

problems based on the portion of tasks that can be scheduled in parallel, and further into preemptive

and non-preemptive scheduling based on whether tasks can be interrupted once started. We focus on

a variant of preemptive cumulative scheduling that, arguably, has received less attention than many

other variants of RCSP [2] and in doing so contribute to the well-established field of constraint-based

approaches across various constraint paradigms for solving scheduling problems [2, 5, 6, 7, 8, 9, 10, 11].

More precisely, we study a problem setting in which a set of workers must access the limited resources

of a shared processing facility. At each time step, all workers release separate tasks that each require

some amount of the facility’s processing capacity. Each worker can then send a part of the task’s
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total workload directly to the facility, and temporarily store the remainder. The goal is to schedule the

workload sent from each worker at each timestep without exceeding either the maximum intake capacity

of the facility or the storage capacities of individual workers. The general formulation highlights that

our model could be applicable in many settings; the processing facility could be a storage facility or

a vaccination center that needs to vaccinate parts of the population. In our experiments, we focus

on a central concrete instantiation of the problem called the wastewater treatment problem in which

the workers are pumping stations [12, 13] that, at each timestep, receive some amount of water that

needs to be transported to a wastewater treatment plant for processing. Each station can temporarily

store a limited amount of water, and the treatment plant can only receive a limited amount at each

timestep. While a model for computing feasible schedules has been proposed in [13], to the best of our

understanding, we present the first study into constraint models for optimal schedules. While presented

through the lens of scheduling in previous work, this problem is also closely related to flow allocation

in networks [14, 15].

More precisely, as the main contribution of this paper, we develop a constraint model for computing

schedules to the general formulation of the wastewater treatment problem. Our model is designed based

on consultation from the Helsinki Region Environmental Services Authority (HSY). Specifically, we

allow each worker to send only part of the new workload for processing at a time. Our model also allows

a time delay between a worker releasing workload and that workload arriving at the facility. We study

the computational feasibility of finding both feasible and optimal schedules under a number of different

optimization criteria. We show how to minimize the makespan of the schedule and how to compute

schedules in which the amount of workload (e.g. wastewater) arriving at the processing facility is as even

as possible. Especially the latter criterion is motivated by the discussions with HSY; high wastewater

influx rates are undesirable as they necessitate feeding the input faster through the limited-capacity

treatment process, leading to worse output water quality. We detail an optimization modulo theories

(OMT) [16, 17, 18], and a mixed integer programming (MIP) [19] model for this problem.

As an additional contribution, we collect real-world wastewater data from HSY and use it to form a

new benchmark set containing altogether 624 OMT and 624 MIP benchmarks. We report on an extensive

evaluation of state-of-the-art solvers in these two constraint paradigms on this problem. In addition

to the new benchmarks that we collected, we also evaluate solvers on the data used in [13]. In the

evaluation, we study different variants of the problem and demonstrate, e.g., the effect of enforcing all

workloads to integer values. Our results indicate that computing optimal schedules incurs a negligible

amount of overhead compared to computing feasible ones, and that the MIP solver Gurobi is particularly

effective in solving these problems.

The rest of the paper is structured as follows: in Section 2, we detail our problem setting and

the constraint paradigms of interest. In Section 3, we describe the constraint model for computing

optimal schedules in this setting under different optimization criteria. In Section 4, we describe the

new open-source benchmarks we collected as part of this work, and in Section 5, we report on the

experimental evaluation of these state-of-the-art solvers in all paradigms on these and previously

established benchmarks. The paper is concluded in Section 6.

2. Preliminaries

We detail preliminaries on the variant of preemptive cumulative scheduling that we study, as well as

the constraint paradigms in which we model the problem.

2.1. Cumulative Resource-Constrained Scheduling with Delays

We study a variant of the resource-constrained cumulative scheduling problem in which each worker

can subdivide and temporarily store their tasks. For some intuition on our problem setting, consider a

set of pumping stations that pump wastewater to a treating facility that can process a limited amount

of wastewater at each time step. Each pumping station receives new wastewater at each time step and

needs to decide how much to pump forward for treatment and how much to store in its temporary
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storage with a limited capacity. The task is to schedule the amount of water pumped forward at

each timestep while ensuring that neither the treating facility’s processing capacity, nor any pumping

station’s storage capacity is exceeded. Additionally, each pumping station has an upper limit on the

amount of water that can be pumped per timestep, and it takes some time for the water to arrive from

a pumping station to the facility. A similar problem was studied under the name of the wastewater

treatment plant problem in [13].

More abstractly, a problem instance in our setting specifies a finite and discretized time horizon over

#t timesteps under which #w different workers need the limited resources of a single shared facility

that can receive a total workload of maxCapacity on each time step. The input instance specifies

for each worker 𝑤 and timestep 𝑡 the new incoming resource requirement task𝑤,𝑡 that 𝑤 will need

from the facility within the time horizon. Since the facility can receive a limited quantity of workload

per timestep, each worker can temporarily store up to storageCapacity𝑤 of workload. The total

quantity of storage capacity at each worker is constant for all time steps; the quantity stored at time 𝑡
takes from the remaining storage space available at subsequent timesteps until the workload is sent to

the facility. Finally, we assume that the sent workload takes d𝑤 timesteps to arrive from 𝑤 at the facility

and that the maximal rate of workload output to the facility for each worker is limited by maxOutput𝑤 .

The goal in our setting is to schedule the amount of workload sent from each worker at each timestep

to the facility. More precisely, a schedule specifies for each worker 𝑤 a storage output Sout(𝑤, 𝑡) as

the amount of the currently stored workload to send for processing at timestep 𝑡, and the part P(𝑤, 𝑡)
of task𝑤,𝑡 released at timestep 𝑡 to immediately send for processing. The rest of the task released at

𝑡 then needs to be temporarily stored. A schedule is feasible if neither the maximum capacity of the

facility nor the maximum storage or output capacities of any worker are exceeded at any timestep.

In preemptive scheduling, the processing of each task can be paused and continued later. Since

a worker in our setting can subdivide its task in a way that momentarily sends zero workload for

processing, our problem formulation captures a preemptive setting as long as the storage capacities

of the individual workers are high enough to enable this. As we focus on an optimization setting,

we also only consider instances in which the time horizon, the maxCapacity of the facility, and the

maxOutput𝑤 and storageCapacity𝑤 values of the workers are large enough for feasible schedules

to exist.

To summarize, we say that a schedule is feasible if the total workload from all workers combined

arriving at the facility at any timestep does not not exceed maxCapacity, and the following three

statements hold for each timestep 𝑡 and worker 𝑤: (i) the workload temporarily stored at 𝑤 does not

exceed storageCapacity𝑤 , (ii) the total quantity of workload released from 𝑤, Sout(𝑤, 𝑡) + P(𝑤, 𝑡)
does not exceed the maximum output rate maxOutput𝑤 , (iii) all workloads arrive at the facility within

the time horizon.

For a concrete example, Table 1 details a feasible schedule for a problem instance where the shared

facility is a wastewater treatment plant (wwtp), and there are two pumping stations with flexible

forward-pumping capacities up to maxOutput1 = 6000 m
3/h, and maxOutput2 = 10000 m

3/h, both

located 0 hours away from the facility (i.e. d1 = d2 = 0). The maximum capacity of the facility is

maxCapacity = 15 000 m
3

incoming wastewater per hour, and the workers have individual storage

capacities of storageCapacity1 = 6000 m
3

and storageCapacity2 = 10000 m
3
, respectively. The

displayed schedule is for task1,1 = 4000, task1,2 = 5000, task2,1 = 2000 and task2,2 = 5000 m
3

and assuming initial storage levels of startLevel1 = Storage(1, 0) = 3000 and startLevel2 =
Storage(2, 0) = 5000 m

3
.

2.1.1. Optimal Schedules

In addition to the problem of computing feasible schedules, we consider several different optimization

extensions. The first three are motivated by a desire to find schedules that reduce exceptionally high or

low levels in the hourly processing requirements placed on the facility. In the context of wastewater

treatment, the motivation for computing schedules that have an even flow of wastewater arriving at the

treatment plant is motivated by the treatment processes and discussions we had with HSY [12] . With
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Table 1
Example of a feasible schedule for wastewater pumping for two stations (workers) with maximum out-
puts maxOutput1 = 6000 and maxOutput2 = 10000 per timestep 𝑡, and a treatment facility max capacity
maxCapacity = 15000 for each 𝑡. The Storage column contains the storage level of worker 𝑤 at the end of
timestep 𝑡, measured after the possible storage level changes during 𝑡.

𝑡 Worker 1 Worker 2 Total to wwtp
task Sout P Storage task Sout P Storage

0 0 0 0 3000 0 0 0 5000 0
1 4000 2000 4000 1000 2000 4000 2000 1000 12000
2 5000 1000 5000 0 5000 1000 5000 0 12000

high influx rates, water has to be fed through the limited-capacity process faster, resulting in a shorter

retention time for the water in each successive part of the process, reducing the overall treatment level.

Additionally, optimization of the treatment process itself is facilitated by a steady influx of wastewater.

In more detail, we focus on three separate optimization criteria related to minimizing fluctuations in

the quantity of workload that arrives at the facility. In the following, let Total(𝑡) be the total workload

arriving at the facility at timestep 𝑡. The MAXMIN objective maximizes MinWorkload, i.e., maximizes

the minimum workload arriving at the facility over all timesteps. Analogously, the MINMAX objective

minimizes the maximum Total(𝑡) over all timesteps, resulting in the smallest possible maximum

workload MaxWorkload received at the facility during the time horizon. Finally, the MINDIFF objective

minimizes the difference MaxWorkload− MinWorkload, essentially preferring schedules with more

even incoming hourly workloads. Under this objective, the problem can be seen as an example of a

resource leveling problem [4]. Table 1 shows an optimal schedule with the MINDIFF objective, where

MaxWorkload− MinWorkload = 12000− 12000 = 0.

Additionally, we present results on two objectives that align more closely with previous work on

scheduling problems. The MAKESPAN objective minimizes the makespan of the schedule, i.e. the last

timestep at which the facility receives any workload. Finally, the MSTORAGE objective minimizes the

total sum of storage levels over all workers 𝑤 and all timesteps 𝑡. As an interesting side remark,

we note that the schedules optimal under MSTORAGE are also optimal under the MAKESPAN objective.

Because a decrement of Storage(𝑤, 𝑡) by a quantity of Sout(𝑤, 𝑡) > 0 also decreases the sum of

Storage(𝑤, 𝑡+1)+ Storage(𝑤, 𝑡+2)+ · · ·+ Storage(𝑤, #t), MSTORAGE leads to emptying of all

storages at the earliest possible timestep, which is the objective of MAKESPAN.

To end this section, we note that our problem setting is closely related to the well-studied network

flow allocation problems [14, 15] that seek to assign a flow value to each edge in a directed graph,

typically in a way that maximizes the total amount of flow between a specified source and sink node.

The two central differences between the max-flow problem and our problem setting are that we allow

the workers (i.e. the nodes in a graph) to temporarily store workload (i.e., the flow in the graph), and

that the three main optimization criteria we study do not correspond to maximizing the flow through

the network.

2.2. OMT and MIP

We assume familiarity with propositional logic and satisfiability and recount some basics of optimization

modulo theories (OMT) with arithmetics over integer and real numbers using the standard interpretation

of the symbols +, − =, ≤ and <.

A term T is a sum or difference of integer or real variables. A theory atom 𝑎 is a comparison (T1 < T2)
or T1 = T2 between terms. A literal ℓ is either a {0, 1}-variable 𝑥, a theory atom 𝑎, or their negation

¬𝑥 and ¬𝑎. A clause 𝐶 is a disjunction (∨) of literals, and a formula 𝐹 is a conjunction (∧) of clauses.

When convenient, we view a clause 𝐶 as a set of its literals and a formula 𝐹 as a set of its clauses.

An assignment 𝛼 maps variables to their domains. A theory atom 𝑎 is assigned to 1 by 𝛼 (i.e.

𝛼(𝑎) = 1) if assigning the variables in the terms results in a true comparison. The semantics of

assignments are extended to literals, clauses and formulas in the standard way: 𝛼(¬ℓ) = 1 − 𝛼(ℓ),
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Table 2
Constants used in the OMT model of the scheduling problem.

Constant Description
#w number of workers
#t number of timesteps

maxCapacity maximum workload the facility can receive at each time step
task𝑤,𝑡 total workload of the task released at worker 𝑤 at time 𝑡

storageCapacity𝑤 maximum workload storage capacity of 𝑤
startLevel𝑤 workload stored at worker 𝑤 at the beginning of timestep 1

d𝑤 number of timesteps for workload from 𝑤 to arrive at the facility
maxOutput𝑤 maximum workload a worker can send for processing at any timestep

Table 3
Variables for the OMT model of the scheduling problem

Variable Description
P(𝑤, 𝑡) workload released at 𝑤 at time 𝑡 immediately sent to the facility

Sout(𝑤, 𝑡) workload sent from storage of 𝑤 at timestep 𝑡 to the facility
Storage(𝑤, 𝑡) workload in the temporary storage of 𝑤 at the end of timestep 𝑡

Total(𝑡) total workload arriving at the facility at 𝑡

𝛼(𝐶) = max{𝛼(ℓ) | ℓ ∈ 𝐶}, and 𝛼(𝐹 ) = min{𝛼(𝐶) | 𝐶 ∈ 𝐹}. We say that an assignment 𝛼 for

which 𝛼(𝐹 ) = 1 is a solution to 𝐹 . The satisfiability modulo linear integer and rational arithmetic

problem is to decide the existence of a solution to a given formula. An OMT instance (over the same

theory) (𝐹,T) consists of a formula 𝐹 and a term T. The task is to compute a solution 𝛼 of 𝐹 that

minimizes T. If one wishes to maximize T, this is achieved by minimizing −T.

In addition to OMT, we consider mixed integer programming (MIP) where the goal is to minimize

an objective 𝑂 ≡
∑︀

𝑖𝑐𝑖𝑧𝑖 +
∑︀

𝑖𝑐𝑖𝑟𝑖 where 𝑧𝑖 are integer variables, 𝑟𝑖 are real variables, and 𝑐𝑖 are real

constants, subject to a set of linear inequalities.

3. Constraint Models for Cumulative Scheduling with Delays

In this section, we detail our constraint models for the scheduling problem. In Section 3.1, we detail

the OMT model and how it relates to the model for computing feasible schedules proposed in [13]. In

Section 3.2 we describe the MIP model.

3.1. OMT Model for Cumulative Scheduling

Table 2 details the constants defined by an instance of the scheduling problem that our models use.

The number of workers in the problem instance and the number of time steps in the time horizon are

denoted by #w and #t, respectively. The constant maxCapacity is the maximum workload that can

arrive at the facility at each timestep. The workload required from the facility by the task released

(created) at timestep 𝑡 at worker 𝑤 is denoted by task𝑤,𝑡. The maximum workload that 𝑤 can have

in storage at any given timestep is storageCapacity𝑤. We allow for some workload to be stored

already at the beginning of the time horizon; we denote the amount stored at 𝑤 in the beginning by

startLevel𝑤. Denoting delay, d𝑤 is the number of timesteps it takes for any workload sent from 𝑤
to arrive at the storage facility. The maximum quantity of workload that can be sent from the worker 𝑤
for processing at any timestep is maxOutput𝑤 . We will assume that the maximum amount of workload

that can be added to the storage of 𝑤 at any timestep is at least equal to storageCapacity𝑤; a storage

may be filled in a single timestep.

Table 3 details the variables in the OMT model. The variable P(𝑤, 𝑡) is the (sub)quantity of the

workload of task𝑤,𝑡 which is immediately sent to the facility from worker 𝑤 at timestep 𝑡. Analogously,

Sout(𝑤, 𝑡) is the amount of workload sent for processing from the storage of 𝑤 at timestep 𝑡. For
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notational convenience, we let P(𝑤, 𝑡) = Sout(𝑤, 𝑡) = 0 whenever 𝑡 ≤ 0. Storage(𝑤, 𝑡) is the

amount of workload in the temporary storage of 𝑤 at the end of timestep 𝑡. Finally, Total(𝑡) is the

total workload arriving at the facility at time 𝑡, from all workers combined.

3.1.1. Constraints in the OMT Model

Note that while the timesteps, 𝑡, range from 1 to #t, we denote startLevel𝑤 for all workers 𝑤 by

Storage(𝑤, 0).
The first constraints define the domains of the main variables. The amount of workload immediately

sent for processing by worker 𝑤 is at least 0 and at most task𝑤,𝑡; the constraint

(0 ≤ P(𝑤, 𝑡)) ∧ (P(𝑤, 𝑡) ≤ task𝑤,𝑡) (1)

is included for all timesteps 𝑡 in the range of 1 to #t− d𝑤 . Note that for any feasible schedules to exist

task𝑤,𝑡 = 0 has to hold for the last d𝑤 timesteps.

For some intuition on the domains of Sout(𝑤, 𝑡) and storageCapacity𝑤 , note that in any feasible

schedule, the storage of worker 𝑤 needs to be emptied at the latest at the timestep #t− d𝑤 and not

increased after it so that all of the workload from 𝑤 can arrive at the facility by the timestep #t. In our

model, the Sout(𝑤, 𝑡) variable is only included for 𝑡 ∈ [1, #t− d𝑤] during which its domain is set to

be between 0 and storageCapacity𝑤; the constraint

(0 ≤ Sout(𝑤, 𝑡)) ∧ (Sout(𝑤, 𝑡) ≤ Storage(𝑤, 𝑡− 1)) (2)

is added for all timesteps 𝑡 ∈ [1, #t− d𝑤]. Our setting also requires that the total quantity of workload

sent from 𝑤 at each time step is at most maxOutput𝑤; the constraint

(Sout(𝑤, 𝑡) + P(𝑤, 𝑡) ≤ maxOutput𝑤) (3)

is included for all workers and timesteps in the range of 1 to #t− d𝑤. The domain of Storage(𝑤, 𝑡)
is set between 0 and storageCapacity𝑤 for all timesteps in the range of 0 to #t − d𝑤 − 1 and to

equal 0 for the final d𝑤 + 1 timesteps (note that Storage(𝑤, 𝑡) denotes the storage level at the end of

timestep 𝑡, after possible emptying or filling at 𝑡); the constraint

(0 ≤ Storage(𝑤, 𝑡)) ∧ (Storage(𝑤, 𝑡) ≤ storageCapacity𝑤) (4)

is included for 𝑡 ∈ [0, #t− d𝑤 − 1], and (Storage(𝑤, 𝑡) = 0) for 𝑡 ∈ [#t− d𝑤, #t].
Finally, the total workload arriving for processing at 𝑡 is the sum of storage-derived and immediately

sent workloads arriving from each worker at 𝑡; the constraint

Total(𝑡) =
∑︀#w

𝑤=1Sout(𝑤, 𝑡− d𝑤) + P(𝑤, 𝑡− d𝑤) (5)

is added for all timesteps and all defined Sout(𝑤, 𝑡) values. With these variables, the constraint that

enforces that the maximum capacity of the facility is not exceeded is

(Total(𝑡) ≤ maxCapacity) (6)

which is added for all timesteps 𝑡 ∈ [1, #t].
The final sets of constraints encode the semantics of Storage(𝑤, 𝑡) and link the workload immedi-

ately sent for processing with the changes in the amounts stored. For some intuition on these, note that

the amount of new workload stored at worker 𝑤 on time 𝑡 is task𝑤,𝑡 − P(𝑤, 𝑡). With this intuition,

the amount of workload stored at worker 𝑤 is increased on each iteration by task𝑤,𝑡 − P(𝑤, 𝑡) and

decreased by Sout(𝑤, 𝑡). Stated as a constraint, this is

Storage(𝑤, 𝑡) = Storage(𝑤, 𝑡− 1)− Sout(𝑤, 𝑡) + task𝑤,𝑡 − P(𝑤, 𝑡) (7)

which is added for all 𝑤 ∈ [1, #w] and 𝑡 ∈ [1, #t− d𝑤].
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The last constraints link the changes in the amount of workload stored with the amount of workload

immediately sent for processing. In essence, the constraints state that the amount of new workload

task𝑤,𝑡 is equal to the amount of workload immediately sent for processing and any positive change

in the amount stored at 𝑤. If the change in the amount stored is negative (or zero), indicating that some

workload (or none) was also sent from the storage, then the workload equal to task𝑤,𝑡 should be sent

for processing immediately. As constraints, with ΔS(𝑤, 𝑡) = Storage(𝑤, 𝑡)− Storage(𝑤, 𝑡− 1) as

notational shorthand, this is:

¬(0 < ΔS(𝑤, 𝑡)) ∨ (task𝑤,𝑡 = P(𝑤, 𝑡) + ΔS(𝑤, 𝑡)) (8)

¬(ΔS(𝑤, 𝑡) ≤ 0) ∨ (task𝑤,𝑡 = P(𝑤, 𝑡)) (9)

i.e. 0 < ΔS(𝑤, 𝑡) =⇒ task𝑤,𝑡 = P(𝑤, 𝑡) + ΔS(𝑤, 𝑡) and ΔS(𝑤, 𝑡) ≤ 0 =⇒ task𝑤,𝑡 = P(𝑤, 𝑡). The

constraints 8 and 9 are added for all 𝑤 ∈ [1, #w], 𝑡 ∈ [1, #t− d𝑤], for which task𝑤,𝑡 > 0.

We summarize the model for computing feasible schedules as follows. Let 𝐹 schedule
be an SMT

formula consisting of Constraints 1-9 as specified in this section. Then any solution 𝛼 of 𝐹 schedule
sets

the P(𝑤, 𝑡), Sout(𝑤, 𝑡), and Storage(𝑤, 𝑡) variables in a way that corresponds to a feasible schedule.

3.1.2. Optimal Schedules with OMT

To extend the constraint model from feasibility to optimization, we next describe how to encode each

of the five optimization criteria 𝑜 discussed in Section 2.1.1 as a term T
𝑜

such that the optimal solutions

to the OMT instance (𝐹 schedule,T𝑜) correspond to optimal schedules under 𝑜. Here 𝐹 schedule
is an

SMT formula consisting of the Constraints 1-9 detailed in 3.1.1.

To encode the MAXMIN and MINMAX optimization criteria we add the real variables MinWorkload and

MaxWorkload to the instance as well as the constraints (MinWorkload ≤ Total(𝑡)) ∧ (Total(𝑡) ≤
MaxWorkload) for all 𝑡 ∈ [1, #t] to define them. Then maximizing MinWorkload over the solutions

that satisfy the 𝐹 schedule
results in a schedule that maximizes the minimum workload arriving at the

facility at each time step (i.e. the MAXMIN criteria). Analogously, minimizing MaxWorkload obtains

a schedule that minimizes the maximum workload (i.e., the MINMAX criteria). Finally, minimizing

MaxWorkload− MinWorkload obtains a schedule in which the largest absolute difference in arriving

workload is as small as possible across all timesteps, i.e. the MINDIFF optimization criteria. The bounds

for MinWorkload and MaxWorkload are initialized to 0 and maxCapacity.

The MSTORAGE objective is encoded by minimizing the sum of all Storage(𝑤, 𝑡) variables. Finally,

the MAKESPAN objective is encoded by minimizing the integer LastWorkIn variable defined to equal

the last time step on which the facility receives any workload. This definition is enforced with the

constraints ¬(Total(𝑡) > 0) ∨ (𝑡 ≤ LastWorkIn) added for each timestep.

3.1.3. Relation to Previous Work

We briefly detail the main differences between our OMT model for cumulative scheduling presented

in Section 3.1.1, and the SMT approach to computing feasible schedules for the wastewater treatment

plant problem proposed by Bofill, Muñoz and Murillo in [13] that we will call the BMM model from

now on. The BMM model was studied in a setting where the workers are industrial facilities that

produce integer quantities of wastewater to send to a wastewater treatment plant. The BMM model

assumes no delay for the workers, i.e d𝑤 = 0 for all 𝑤, and that the storages of each worker are

empty at the beginning of the timeframe, i.e. that startLevel𝑤 = 0 for all 𝑤. It also enforces a limit

TankFlow𝑤 only on Sout(𝑤, 𝑡), instead of Sout(𝑤, 𝑡) + P(𝑤, 𝑡), i.e., the amount of wastewater that

can be released from the storage of each worker at any given timestep. The BMM model also includes

the constraints (Sout(𝑤, 𝑡) = 0)∨(Sout(𝑤, 𝑡) = min{TankFlow𝑤, Storage(𝑤, 𝑡−1)}) that enforce

that the workload released from the storage of any worker is either zero or the maximum possible, and

the constraints (P(𝑤, 𝑡) = 0) ∨ (P(𝑤, 𝑡) = task𝑤,𝑡) that enforce for each task𝑤,𝑡 that either all of

task𝑤,𝑡 is directly sent for processing, or none is.
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Our constraint model extends the problem of computing feasible schedules to optimization and

allows more flexible workload sending from workers. Our model allows, e.g., for sending all of the new

workload task𝑤,𝑡 at 𝑡 together with a part of the workload in storage. Constraint 3 in our model limits

the total quantity of workload sent from each worker rather than just the quantity released from the

storage of each worker; this decision was made based on discussion with the local wastewater agency

HSY where we confirmed that all wastewater at a given station is pumped forward using the same

pumps regardless of possible prior temporary storing.

3.2. A MIP Model for Cumulative Scheduling with Delays

The MIP model we propose uses all constants and variables listed in Tables 2 and 3 as well as a

{0, 1}-variable SMinus(𝑤, 𝑡) for each worker 𝑤 and timestep 𝑡. SMinus(𝑤, 𝑡) is an indicator for 𝑤
emptying (some of) its storage at timestep 𝑡. In other words, a solution to the MIP model that assigns

SMinus(𝑤, 𝑡) = 1 corresponds to a schedule in which Sout(𝑤, 𝑡) > 0.

3.2.1. Constraints in the MIP Model

Our MIP model includes the Constraints 1-7 detailed in Section 3.1.1 as well as a "Big-M" encoding of

the implications in Constraints 8-9. The constant M was set as the maximum task𝑤,𝑡 + maxOutput𝑤
over all timesteps and workers, and 𝜖 was set to 10−14

, which is the smallest possible positive storage

decrement for any worker and timestep.

ΔS(𝑤, 𝑡) ≤ −𝜖 · SMinus(𝑤, 𝑡) + M · (1− SMinus(𝑤, 𝑡)) (10)

ΔS(𝑤, 𝑡) ≥ −M · SMinus(𝑤, 𝑡) (11)

P(𝑤, 𝑡) ≥ task𝑤,𝑡 − M · (1− SMinus(𝑤, 𝑡)) (12)

P(𝑤, 𝑡) ≤ task𝑤,𝑡 + M · (1− SMinus(𝑤, 𝑡)) (13)

P(𝑤, 𝑡) + ΔS(𝑤, 𝑡) ≥ task𝑤,𝑡 − M · SMinus(𝑤, 𝑡) (14)

P(𝑤, 𝑡) + ΔS(𝑤, 𝑡) ≤ task𝑤,𝑡 + M · SMinus(𝑤, 𝑡) (15)

where ΔS(𝑤, 𝑡) = Storage(𝑤, 𝑡)− Storage(𝑤, 𝑡− 1). Constraint 10 requires that a non-negative

ΔS(𝑤, 𝑡) results in SMinus(𝑤, 𝑡) = 0. Constraint 11 requires that a negative ΔS(𝑤, 𝑡) results in

SMinus(𝑤, 𝑡) = 1. Thus, SMinus(𝑤, 𝑡) is 1 if the storage of worker 𝑤 is decremented at timestep 𝑡, and

0 otherwise. Constraints 12-13 ensure that if the storage of 𝑤 at timestep 𝑡 is being partially emptied,

the entire task task𝑤,𝑡 is directly sent to the processing facility. If instead there is no storage decrement,

then constraints 14-15 split the workload as task𝑤,𝑡 = P(𝑤, 𝑡) + ΔS(𝑤, 𝑡).

3.2.2. Optimal Schedules with MIP

For the MIP model, the MAXMIN, MINMAX, MINDIFF and MSTORAGE objectives were encoded precisely

as described in Section 3.1.2. In order to encode MAKESPAN, we introduce for each 𝑡 a binary variable

TotalPositive(𝑡) as an indicator for the total workload arriving at the facility being greater than zero.

With this variable, the implication Total(𝑡) > 0 =⇒ LastWorkIn ≥ 𝑡 that defines the LastWorkIn
to be minimized for the MAKESPAN objective is encoded with the following constraints: Total(𝑡) ≤
maxCapacity · TotalPositive(𝑡), and LastWorkIn ≥ 𝑡 · TotalPositive(𝑡). These ensure that

if TotalPositive(𝑡) = 0 then Total(𝑡) = 0 and if Total(𝑡) > 0 then TotalPositive(𝑡) = 1.

4. New Open-Source Benchmarks

Before presenting the results of our experimental evaluation, we briefly detail the new open-source

benchmark set for OMT and MIP that we collected for this work.

We obtained hourly real-world data on the quantities of wastewater pumped and wastewater surface

levels in 2023 and 2024 at two pumping stations maintained by HSY. The two pumping stations have
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maximum outputs of maxOutput1 = 30000 m
3/h and maxOutput2 = 5543 m

3/h, respectively. The

maximum capacity of the treatment plant is maxCapacity = 29166 m
3/h. The storage capacities of

the workers were estimated from the data. For the first station, we knew the theoretical total volume of

the storage. However, in consultation with HSY, we learned that storing water amounts even close to the

maximum volume would risk flooding of associated underground structures and be highly undesirable.

Thus, we instead set storageCapacity1 = 168241 m
3

based on the maximum water level realized in

2023 and 2024. For the second station, we did not know the maximum volume of the storage. Instead,

we assumed that the largest drops in surface level correspond to situations with maximal output of the

pumps coinciding with comparatively negligible volume of incoming water. We averaged 10 largest

drops in surface levels during 2023 and 2024 to get an estimate for the ratio of surface level change (in cm)

to output water volume, and based on the highest observed storage surface level in this two-year period

then set the maximum storage volume as storageCapacity2 = 20468 m
3
. The maximum output

maxOutput1 = 30000 m
3/h for the first station was obtained from the agency, while maxOutput2

was set to 5542 m
3/h based on the maximum value in the data. The default delay d1 and d2 of both

stations is 0 hours.

With these values for the constants, we create two sets of benchmarks: the 24-hour local set and

the 1104-hour local set. The 24-hour set is based on the timespan from 2024-11-16 00:00 to 2024-11-16

23:00, and the 1104-hour set on 2024-11-16 00:00 to 2024-12-31 23:00. This specific timeframe for our

evaluation was chosen due to the convenience of the data not containing any missing values in these

ranges. With the starting point of the timespan decided, the starting storage levels for the two stations

could be read directly from the dataset as startLevel1 = 58182 m
3

and startLevel2 = 379 m
3
,

respectively. In line with [13] we experiment with a range of different maximum capacities of the

processing facility. As our focus is on optimization, we did some preliminary testing in order to

determine capacities high enough to guarantee the existence of feasible schedules. For the 1104-hour

set, we consider maxCapacity values in the range 12000 to 30000 m
3

with intervals of 2000 m
3

and

for the 24-hour set we used 18000 to 30000 m
3

with intervals of 1000. The ranges start from the lowest

satisfiable maxCapacity divisible by 1000 common for the all-zero and artificially generated d𝑤 value

choices. In both sets, we also include benchmarks with maxCapacity set to the maximum value of

50000 m
3

to observe the solving times on a still higher maximum capacity. In total, the 24-hour set

includes 88 and the 1104-hour set 120 feasibility instances. Considering the five optimization criteria

described in Section 3.1.2, the full sets include 1248 benchmarks, of which 208 are feasibility instances.

5. Experimental Evaluation

We report on an experimental evaluation of the constraint models described in Section 3. After detailing

the setup of the experiments in Section 5.1, we present results on the relative hardness of computing

optimal schedules under different optimization criteria, as well as the effect of enforcing the workloads

to be integer and having delays between the workers and the facility in Section 5.2.

5.1. Setup

We describe the benchmarks, solvers and the hardware we use. The open-source benchmarks (including

the script for generating them) are available online [20].

Benchmarks

In addition to the local benchmark sets described in Section 4 we use the dataset called real (which we

call B24) from [13] since our preliminary tests showed it to be the most challenging of the datasets

in [13]. The dataset contains information about the volume of wastewater produced each hour over

a 24-hour period by eight industrial facilities. We use 2500, 3000, 1500, 1000, 3000, 1500, 1000, and

2500 L/h from [13] as as the maxOutput𝑤 values for the 8 workers in our benchmarks. These are the

same as used in the previous work for restricting the amount of water sent from the storages at each
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Table 4
Summary of the MIP and OMT benchmark sets. The number of variables and constraints are reported for the
OMT instances.

name short # mcapacity # benchmarks #constraints #variables
24-hour local L24 11 44 413 - 433 145 - 157
1104-hour local L1104 15 60 18773 - 18793 6625 - 6637
BMM-real B24 12 48 1377 - 1486 577 - 673

time step. We also consider maxCapacity values in the range of 5000 to 6000 L/h with intervals of

100 L/h, together with 50000 L/h. The lowest value was chosen based on the feasibility checks in our

preliminary experiments, while the step of 100 L is the same as in previous work [13].

In our experiments, we study the effect of two variations of the benchmarks being solved. The first

is whether all variables in the models are restricted to real values or integral values. The motivation

for studying the integer variants is two-fold. On the one hand, the abstract problem setting could be

applicable in settings where the workload cannot be divided, e.g., storing discrete wares or treating

people. On the other, some solvers do not support floating-point values, and those that do can suffer

from rounding errors when dealing with them.

The second variation of benchmarks we study is whether there is a delay between the workers and

the facility. The default delays for all workers in the local data is 0 based on the physical locations of the

stations and the processing facility. The BMM dataset does not specify delays for the industrial facilities.

Thus, we consider the default values of the workers in the BMM set to be 0 as well. To demonstrate

the effect that delays have on the overall solving time, we consider a variant of the benchmarks with

synthetic delay values. For the local sets, the synthetic variant puts the delay of the second worker to 2.

For B24, we randomly assigned delay values 2, 2, 5, 2, 6, 5, 3, and 4 for the eight facilities, respectively.

Table 4 summarizes the feasibility benchmarks we use in our evaluation. The number of constraints

and variables reported are for the OMT variants of the benchmarks. The total number of benchmarks

reported is obtained as the number of different maximum capacity values considered, plus the four

configurations following from the two variants (delays and integer variables) that we just described.

For example, for the 24-hour local dataset with 11 different maxCapacity values, this translates to 44
benchmarks of feasibility problems. The total number of unique combinations over all the datasets

is thus 44+60+48=152 for OMT and MIP models, encompassing all combinations of maxCapacity,

choice of integer vs. real-valued workload, and all-zero or non-zero delay values. Combined with the 5

optimization criteria and runs without optimization we end up with 912 runs for each OMT and MIP

solver (6 · (44 + 60) = 624 runs with the local sets, and 288 with B24 data).

Solvers and Hardware

As OMT solvers, we consider OptiMathSAT (OMath) version 1.7.3 [17] (obtained from https://

optimathsat.disi.unitn.it/) and Z3 [21] (from https://github.com/Z3Prover/z3). For MIP, we use Gurobi

version 12.0.0 [22] (from https://www.gurobi.com/).

The OMT benchmarks in SMT-LIBv2-format were produced using the Python API of Z3 [21], and the

MIP benchmarks in MPS format with the Python API of Gurobi [22]. All evaluations were performed

single-threaded on 2.50-GHz Intel Xeon Gold 6248 machines with 381-GB RAM in RHEL under a

per-instance 32-GiB memory limit and 30-minute time limit.

5.2. Results

Table 5 overviews the effect of different optimization criteria as well as enforcing all workload values to

integers on the overall solving time of the MIP and OMT solvers. Each cell in the matrix corresponds to

76 runs, half of the total 152 feasibility instances we use.

We observe that neither the distinction between integral or real values nor the choice between

different optimization criteria influence the running time of Gurobi or OptiMathSAT that much. In
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Table 5
Percentage of benchmarks solved and the mean running time under different optimization criteria with workloads
as integers (Type = Int) or as reals (Type = Real). Each cell corresponds to 76 runs. The column Feas. corresponds
to no optimization criteria.

Solver Type Metric Feas. MSTORAGE MAKESPAN MAXMIN MINMAX MINDIFF

Gurobi Real solved 100% 100% 100% 100% 100% 100%
mean 4.4s 5.6s 6.3s 6.0s 6.4s 5.8s

Int solved 100% 100% 100% 100% 100% 100%
mean 4.4s 5.6s 6.3s 6.3s 6.2s 6.1s

Z3 Real solved 100% 61.8% 100% 80.3% 60.5% 60.5%
mean 16.6s 707.6s 191.2s 455.1s 717.3s 717.1s

Int solved 100% 93.4% 100% 100% 100% 78.9%
mean 25.3s 559.7s 24.1s 52.4s 232.8s 519.7s

OMath. Real solved 100% 60.5% 60.5% 60.5% 60.5% 60.5%
mean 176.8s 713.0s 712.8s 712.7s 712.4s 712.8s

Int solved 100% 60.5% 60.5% 60.5% 60.5% 55.3%
mean 95.0s 713.4s 712.7s 713.0s 712.9s 809.0s

Table 6
Percentage of all benchmarks solved when the delays are synthetic (Type=synthetic) or all zero (Type=all-zero)
for the OMT and MIP solvers. Each cell has 76 runs. The column Feas. corresponds to no optimization criteria.

Solver Type Metric Feas. MSTORAGE MAKESPAN MAXMIN MINMAX MINDIFF

Gurobi synthetic solved 100% 100% 100% 100% 100% 100%
mean 4.5s 5.4s 6.3s 6.5s 6.5s 6.0s

all-zero solved 100% 100% 100% 100% 100% 100%
mean 4.4s 5.8s 6.3s 5.8s 6.1s 6.0s

Z3 synthetic solved 100% 75.0% 100% 100% 80.3% 78.9%
mean 18.5s 660.6s 106.4s 108.8s 483.1s 519.2s

all–zero solved 100% 80.3% 100% 80.3% 80.3% 60.5%
mean 23.4s 606.7s 108.8s 398.7s 467.0s 717.6s

OMath. synthetic solved 100% 60.5% 60.5% 60.5% 60.5% 60.5%
mean 129.8s 713.2s 713.1s 712.7s 712.7s 713.2s

all-zero solved 100% 60.5% 60.5% 60.5% 60.5% 55.3%
mean 142.0s 713.2s 712.4s 713.0s 712.6s 808.6s

fact, all Gurobi runs finished within 32 seconds. For Z3, we observe that enforcing the MSTORAGE
optimization criteria leads, in general, to higher running times and fewer solved instances compared

to enforcing MAKESPAN. We also observe that Z3 generally solves the integer-restricted benchmarks

more efficiently, and that optimizing the evenness of the flow to the processing plant is in general,

more challenging than only minimizing the makespan of the schedule, as witnessed by the lower

number of instances solved and higher running times of Z3 under MINMAX, MAXMIN and MINDIFF when

compared to MAKESPAN. For a more fine-grained view of the results for the OMT solvers, we note that

OptiMathSAT solved all feasibility benchmarks, but was not able to solve any optimization benchmarks

from the L1104 dataset within the time limit, while Z3 solved all feasibility instances and 58.3 % of the

optimization instances from L1104.

As an interesting side note, we observe that when enforcing the constraint (P(𝑤, 𝑡) = 0)∨(P(𝑤, 𝑡) =
task𝑤,𝑡) for all workers and timesteps that was used in the previous model of a similar problem [13]

(recall Section 3.1.3), we observed significant increases in solving time for both MIP and OMT. In fact,

with this additional constraint, the performance of the OMT solvers was much more comparable to the

performance of Gurobi, an observation in line with the one made in [13]. Removing this constraint led

to overall decreases in solving time in both paradigms, albeit more significant decreases for Gurobi.

Table 6 demonstrates the effect of non-zero delays on the overall solving time of MIP and OMT
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solvers. We observe that delays between the workers and the processing facility do not, in general,

influence the running time of any solvers significantly.
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Figure 1: The number of solved instances in each exclusive time range ([0, 10] s,
]10, 30] , ]30, 120] , ]120, 600] , ]600, 1800], DNF=not solved in 30 minutes) for Gurobi (leftmost
bar for each range), OptiMathSAT and Z3 over all variations of benchmarks and optimization criteria, for all
three datasets (288 benchmarks for B24, 264 for L24 and 360 for L1104, total 912 benchmarks for each solver).

Figure 1 provides a more detailed breakdown of the hardness of the benchmarks used in this paper.

The plot details a breakdown of solving times for all combinations of feasibility benchmarks and

optimization criteria. We observe that Gurobi solves almost all benchmarks in 30 seconds or less

and that the L1104 dataset is generally more challenging for all solvers, more noticeably for Z3 and

OptiMathSAT, the latter of which solves less than a quarter of the L1104 benchmarks in thirty minutes.

Finally, we note that while L24 has the same timespan but fewer workers than B24, it still seems to

result in more difficult benchmarks; we hypothesize that this is due to the significantly larger values in

the data.

6. Conclusions

We studied a variant of cumulative scheduling under different optimization criteria, focusing on a

concrete instantiation in which a set of wastewater sources schedule pumping the water for treatment

while not overloading the facility’s max capacity or their individual (temporary storage) capacities.

We presented the first constraint model for computing optimal schedules for this problem, collected a

new real-world dataset, and used it to evaluate the performance of state-of-the-art solvers in MIP and

OMT in this setting. Our results demonstrate the effectiveness of MIP for the setting and the feasibility

of OMT. Interesting future work includes extending the model to settings where not all workers are

directly connected to the processing facility; multiple workers may link together prior to the facility, as

is common for wastewater treatment infrastructure.
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