
Instability Track for SMT-COMP
Amar Shah

1
, Yi Zhou

2
, Marijn Heule

1
and Bryan Parno

1

1Carnegie Mellon University, Pittsburgh, PA, USA
2Amazon Web Services, New York, NY, USA

Abstract
We propose an Instability Track for SMT-COMP to address the critical issue of solver instability in program

verification. SMT solvers often exhibit significant performance variations when solving semantically equivalent

queries, creating challenges for industrial adoption of SMT-based verification. We describe Mariposa, our tool that

measures solver instability by creating semantics-preserving mutants of SMT queries and performing statistical

analysis. The proposed track would evaluate solvers both on their ability to solve verification queries quickly and

their stability across query variations. We discuss benchmark sources from Dafny, F
⋆
, and Verus verification

projects, and propose concrete scoring rubrics for evaluating solver stability.

Keywords
SMT-COMP, Instability, Program Verification, Quantifier Instantiation, Dafny, F*, Verus

A key use case of SMT solvers is automated program verification, solving queries created by tools

such as Dafny [1], F
⋆

[2], and Verus [3]. These tools have a unique style of SMT encoding, use a mix

of theories including non-linear arithmetic, and heavily rely on pattern-based quantifier instantiation

techniques.

However, on these queries, SMT solvers suffer from instability, where small semantics-preserving

changes (such as renaming variables or reordering assertions) can have large effects on the solver’s

performance. Instability is an obstacle to industrial adoption of SMT-based verification. Both Galois and

Amazon have highlighted instability as a serious challenge for verification [4, 5]. Many other large-scale

verification projects cite SMT instability as a key pain [6, 7, 8, 9, 10, 11, 12].

Measuring Instability. We have built a tool, Mariposa [13], that measures instability by creating

many semantics-preserving mutants of an SMT query and running the solver on each mutant. It

performs a statistical test to decide if a query is unstable. Oversimplifying, it concludes that (1) if most of

the mutants are solvable the query is stable; (2) if some mutants are solvable and some are not then the

query is unstable; and (3) if most mutants are not solvable, then the query is unsolvable. The Instability
Track would reward a solver both for solving a large number of queries quickly and for being stable on

the queries it does solve.

Mariposa can perform three different semantics-preserving changes to a query: renaming variables,

reordering assertions, and changing the random seed given to the solver. Mariposa found that 2.6% of

SMT queries from Dafny and F
⋆

verification projects are unstable [13]. Later work found that 1% of

SMT queries from Verus verification projects are unstable [14].

These numbers are worrying as large verification projects generate many thousands of queries, and

each unstable query inhibits developer productivity. Manually investigating and repairing instability

takes away from time the developers could be spending writing new code or proofs. Additionally, we

report instability from finalized projects. We expect the amount of instability during development to be

higher.

Benchmarks. Mariposa contributed a set of instability benchmarks from various large-scale Dafny

and F
⋆

verification projects [13]. We would also contribute a benchmark suite from ten different

large-scale system verification projects written using Verus [3]. These have been submitted to the 2025

SMT 2025: 23rd International Workshop on Satisfiability Modulo Theories, August 10–11, 2025, Glasgow, UK
$ amarshah@cmu.edu (A. Shah); yizhou7@alumni.cmu.edu (Y. Zhou); marijn@cmu.edu (M. Heule); parno@cmu.edu

(B. Parno)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

148

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:amarshah@cmu.edu
mailto:yizhou7@alumni.cmu.edu
mailto:marijn@cmu.edu
mailto:parno@cmu.edu
https://creativecommons.org/licenses/by/4.0/deed.en


Amar Shah et al. SMT 2025: Satisfiability Modulo Theories 148–152

SMT competition [15], but are scattered across four different benchmark families (ufdtlia, ufdtnia,

ufdtbvlia, and ufdtbvnia). These queries contains uninterpreted functions, quantifers, algebraic data

types, linear arithmetic and in certain cases non-linear arithmetic and bit-vectors. We hope to solicit

benchmarks from other verification tools.

Scoring Metrics. We discuss several potential scoring metrics for an instability track. We start with

some definitions. If we run Mariposa on a query 𝑞, it tells us that the query is solvable, unstable, or

unsolvable. We define 𝑆 as the set of solvable queries, 𝑈 as the set of unstable queries, and 𝑁 as the set

of unsolvable queries. We use 𝑇 for the timeout and for each query 𝑞, we define 𝑡𝑞 as the time taken to

solve 𝑞. We define a very simple scoring metric:

A. Solved Score: The solver with the greatest |𝑆| “wins.”

This rewards solvers that can stably solve more queries. However it has two potential issues:

1. This metric does not consider the amount of time on each solvable query. For instance, we may

want to reward solvers that solve queries quickly.

2. A solver is punished equally for failing to solve a query and for being unstable on a query.

However, since this is the instability track, we may want to punish unstable queries more.

For each of these issues we propose a fix:

B. PAR-2I Score: Inspired by the PAR-2 score used in the SAT and SMT competitions, we propose

the PAR-2I score. The PAR-2I score is the sum of the time taken to solve each solvable query

plus two times the timeout for each unstable or unsolvable query. Specifically, the score is∑︀
𝑞∈𝑆 𝑡𝑞 + 2 · 𝑇 · |𝑈 ∪𝑁 |. The solver with the lowest such score “wins.”

C. Instability Score: The instability score is similar to the solved score, but “punishes” unstable

queries more than unsolvable queries. Specifically the score is |𝑆| − |𝑈 | and the solver with the

highest such score “wins.”

The PAR-2I score is a fix for issue 1 and the instability score is a fix for issue 2. We could also consider

a hybrid approach that combine these two methods. The exact scoring mechanism will be finalized

based on community feedback.

Other Features. There are two interesting eccentricities of these SMT queries that could be incorpo-

rated into the track.

• Goal-Axiom Divide. Program verification tools like Dafny, F
⋆
, and Verus have a clear divide

between the goal assertion and the axiom assertions. The goal captures the property we want to

prove. For instance, this could be an assertion, ensures clause, or loop invariant at the source level.

The axioms correspond to ambient facts at the source level from other functions, user-created

lemmas, or language-level definitions.

This can be recognized by the SMT track by having queries annotate the goal assertion.

• Fast Unknowns vs. Timeouts. Mariposa deems a query unstable for a solver if it cannot solve

some of the semantically equivalent queries produced. However, there are two types of unstable

queries: fast unknowns are when the solver quickly returns unknown and timeouts are when the

solver uses its entire time budget without finding a solution. We believe that this corresponds to

different issues inside the SMT solver: the former is when quantified axioms are underinstantiated,

while the latter are when quantified axioms are overinstantiated. Figure 1 shows the distribution

of failure modes in unstable queries, showing a clear divide between fast unknowns and timeouts.

This can be recognized in SMT track by noting the number of fast unknowns and timeout failures

for each solver. This would allow solvers to be scored on both of these metrics.

149



Amar Shah et al. SMT 2025: Satisfiability Modulo Theories 148–152

0.1 1.0 10.0 60.0
Time Until Failure Log Scale (seconds)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
(%

)

20.0%
14.0%

21.9%

43.5%

44.9%

Mariposa-bench

Verus-bench

Figure 1: Distribution of failure modes in unstable mutants on a benchmark set from Mariposa [13] and
a benchmarks set from the Rust verifier Verus [3]. The Verus benchmarks were run with a timeout of
10 seconds and the Mariposa benchmarks were run with a timeout of 60 seconds, corresponding to the
default timeouts of the respective tools. The distribution is bimodal—most mutants either fail quickly (10
seconds for Mariposa or 1 second for Verus) or they timeout. Image is from Zhou et al. [14]

Solutions. There has been some work trying to fix instability. Shake automatically prunes the

solver’s context by removing redundant axioms in a pre-processing step [16]. Cazamariposas analyzes

the quantifier instantiation graph of a query to either remove unnecessary quantifier instantiations or

add missed instantiations [14]. Other work converts queries to a normal form to mitigate the variation

in runtimes between syntactically different, but semantically equivalent, queries [17]. Dafny developers

have proposed a method for instantiating universal quantifiers for axioms at the source level [18].

All of this work improves stability, but does not address key underlying issues, and instability is still

prevalent when we apply these fixes. More work is required. We believe that much of this work can

be done at the SMT-solver level and thus a stability track at the SMT competition could be immensely

helpful for encouraging solver developers to improve stability.

Drawbacks. Many program verification tools are built with Z3 in mind, so other solvers may perform

worse initially. However, we hope that introducing an instability track can incentivize all solvers to

perform better on verification queries and encourage verification tools to use different solvers.

Another drawback is that measuring instability requires running many different mutants of a query,

which could be computationally expensive. However, this is mitigated since program verification tools

require much shorter timeouts (usually 60 seconds or less) compared to many other SMT queries.

Conclusions. In conclusion, we argue that instability is a critical issue for SMT-based program

verification. We believe this is a problem that could be addressed at the solver level. We hope that an

instability track at the SMT competition could be a step in this direction.

150



Amar Shah et al. SMT 2025: Satisfiability Modulo Theories 148–152

Acknowledgements We would like to thank the anonymous reviewers for their helpful feedback.

We further acknowledge Dominic Winterer and the organizers of the SMT-COMP for the suggestion to

present this at the SMT workshop. We thank all of the contributors to the Mariposa project and the

Dafny, F
⋆
, and Verus developers for contributions to the benchmark suite.

This work was supported in part by the National Science Foundation (NSF) under grant 2224279,

funding from AFRL and DARPA under Agreement FA8750-24-9-1000, and the Future Enterprise Security

initiative at Carnegie Mellon CyLab (FutureEnterprise@CyLab).

Declaration on Generative AI. The authors have not employed any Generative AI tools.

References

[1] K. R. M. Leino, Dafny: An automatic program verifier for functional correctness, in: Logic for

Programming, Artificial Intelligence, and Reasoning (LPAR), 2010.

[2] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C. Fournet,

P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoue, S. Zanella-Béguelin, Dependent Types and Multi-

Monadic Effects in F*, in: Proceedings of the ACM Symposium on Principles of Programming

Languages (POPL), 2016.

[3] A. Lattuada, T. Hance, C. Cho, M. Brun, I. Subasinghe, Y. Zhou, J. Howell, B. Parno, C. Hawblitzel,

Verus: Verifying Rust programs using linear ghost types, in: Proceedings of the ACM Conference

on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), 2023.

[4] M. Dodds, Formally Verifying Industry Cryptography, IEEE Security and Privacy Magazine (2022).

doi:10.1109/MSEC.2022.3153035.

[5] N. Rungta, A billion SMT queries a day (invited paper), in: S. Shoham, Y. Vizel (Eds.), Proceedings

of the International Conference on Computer Aided Verification (CAV), 2022.

[6] J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. Luckow, N. Rungta, O. Tkachuk, C. Varming,

Semantic-based automated reasoning for AWS access policies using SMT, in: Formal Methods in

Computer Aided Design (FMCAD), 2018. doi:10.23919/FMCAD.2018.8602994.

[7] A. Chakarov, J. Geldenhuys, M. Heck, M. Hicks, S. Huang, G. A. Jaloyan, A. Joshi, R. Leino, M. Mayer,

S. McLaughlin, A. Mritunjai, C. P. Claudel, S. Porncharoenwase, F. Rabe, M. Rapoport, G. Reger,

C. Roux, N. Rungta, R. Salkeld, M. Schlaipfer, D. Schoepe, J. Schwartzentruber, S. Tasiran, A. Tomb,

E. Torlak, J. Tristan, L. Wagner, M. Whalen, R. Willems, J. Xiang, T. J. Byun, J. Cohen, R. Wang,

J. Jang, J. Rath, H. T. Syeda, D. Wagner, Y. Yuan, Formally verified cloud-scale authorization,

in: International Conference on Software Engineering (ICSE), 2025. URL: https://www.amazon.

science/publications/formally-verified-cloud-scale-authorization.

[8] J. W. Cutler, C. Disselkoen, A. Eline, S. He, K. Headley, M. Hicks, K. Hietala, E. Ioannidis, J. Kastner,

A. Mamat, D. McAdams, M. McCutchen, N. Rungta, E. Torlak, A. M. Wells, Cedar: A new

language for expressive, fast, safe, and analyzable authorization, in: Proceedings of the ACM

Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),

2024. doi:10.1145/3649835.

[9] A. Ferraiuolo, A. Baumann, C. Hawblitzel, B. Parno, Komodo: Using verification to disentangle

secure-enclave hardware from software, in: Proceedings of the ACM Symposium on Operating

Systems Principles (SOSP), 2017. doi:10.1145/3132747.3132782.

[10] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang, B. Zill, Ironclad Apps: End-

to-end security via automated full-system verification, in: Proceedings of the USENIX Symposium

on Operating Systems Design and Implementation (OSDI), 2014.

[11] A. Lattuada, T. Hance, J. Bosamiya, M. Brun, C. Cho, H. LeBlanc, P. Srinivasan, R. Achermann,

T. Chajed, C. Hawblitzel, J. Howell, J. Lorch, O. Padon, B. Parno, Verus: A practical foundation for

systems verification, in: Proceedings of the ACM Symposium on Operating Systems Principles

(SOSP), 2024.

151

http://dx.doi.org/10.1109/MSEC.2022.3153035
http://dx.doi.org/10.23919/FMCAD.2018.8602994
https://www.amazon.science/publications/formally-verified-cloud-scale-authorization
https://www.amazon.science/publications/formally-verified-cloud-scale-authorization
http://dx.doi.org/10.1145/3649835
http://dx.doi.org/10.1145/3132747.3132782


Amar Shah et al. SMT 2025: Satisfiability Modulo Theories 148–152

[12] A. Reitz, A. Fromherz, J. Protzenko, Starmalloc: Verifying a modern, hardened memory allocator,

Proc. ACM Program. Lang. (2024). doi:10.1145/3689773.

[13] Y. Zhou, J. Bosamiya, Y. Takashima, J. Li, M. Heule, B. Parno, Mariposa: Measuring SMT instability

in automated program verification, in: Proceedings of the Formal Methods in Computer-Aided

Design (FMCAD), 2023.

[14] Y. Zhou, A. Shah, Z. Lin, M. Heule, B. Parno, Cazamariposas: Automated instability debugging

in SMT-based program verification, in: Proceedings of the Conference of Automated Deduction

(CADE), 2025. To appear.

[15] A. Shah, Adding benchmarks from Verus (a Rust verification tool), GitHub Pull Request #12, 2025.

URL: https://github.com/SMT-LIB/benchmark-submission/pull/12, merged on April 17, 2025.

[16] Y. Zhou, J. Bosamiya, J. Li, M. Heule, B. Parno, Context pruning for more robust SMT-based

program verification, in: Proceedings of the Formal Methods in Computer-Aided Design (FMCAD)

Conference, 2024.

[17] D. Amrollahi, M. Preiner, A. Niemetz, A. Reynolds, M. Charikar, C. Tinelli, C. Barrett, Us-

ing normalization to improve SMT solver stability, 2025. URL: https://arxiv.org/abs/2410.22419.

arXiv:2410.22419.

[18] T. Bordis, K. R. M. Leino, Free facts: An alternative to inefficient axioms in Dafny, in: Formal

Methods: 26th International Symposium (FM), 2024. doi:10.1007/978-3-031-71162-6_8.

152

http://dx.doi.org/10.1145/3689773
https://github.com/SMT-LIB/benchmark-submission/pull/12
https://arxiv.org/abs/2410.22419
http://arxiv.org/abs/2410.22419
http://dx.doi.org/10.1007/978-3-031-71162-6_8

