
A Few Exercises on the Complexity of Congruence Closure
with Cardinality Constraints (Extended Abstract)
Ellen Dasnois, Pascal Fontaine

University of Liège, Belgium

Abstract
In this paper, we show various hardness results for the satisfiability of ground sets of literals in the theory of
equality and uninterpreted functions (EUF) with finite cardinality constraints. It is known that this problem is
NP-complete in the general case, when a domain 𝒟 has a finite cardinality constraint |𝒟| ≤ 𝑛, for any 𝑛 ≥ 3.
We notice that this problem stays NP-complete in the case of a single domain of cardinality 2, indicating that
even the Boolean sort can be hard to handle when functions are present. It is trivial that the function-free case
with Boolean sorts has good complexity, but allowing a single binary function, or (an arbitrary number of) unary
functions only, makes the problem NP-complete.

1. Introduction

The theory of equality and uninterpreted functions (EUF) is most central to many satisfiability modulo
theories (SMT) solvers (see [1, 2] for a general background on SMT solvers). Uninterpreted functions are
useful to abstractly model various objects, they are instrumental for reasoning on arrays or data-types,
and, together with quantifier reasoning and a proper axiomatization, they are the key to extend a solver
with custom data structures. Decision procedures for ground EUF are usually based on the congruence
closure algorithm [3], which decides the satisfiability of a set of ground EUF literals in 𝑛 log 𝑛 time
(assuming constant-time hash table operations).

In some SMT solvers, the congruence closure algorithm plays a special role as a central reasoning
engine in the combination of decision procedures, keeping track of the ground terms, and dispatching
relevant (dis-)equalities to the other decision procedures in the combination. Sometimes, the congruence
closure algorithm itself goes a bit beyond just deciding EUF (e.g., [4]). In this short paper, we focus on
cardinality constraints, and consider a few questions related to EUF and constraints on the cardinality
of some domains. Cardinality constraints often appear in proof obligations stemming from verification
of software or hardware systems, or more generally within any SMT-based formal task relying, for
instance, on finite model finding [5] or (finite) data types [6, 7]. More marginally, since version 2.0 of
the SMT-LIB standard [8] the Boolean sort can be used as the sort of function arguments. This requires
attention, for instance, when checking the satisfiability of this seemingly pure EUF problem:

𝑓(𝑥) ̸≈ 𝑓(𝑦) ∧ 𝑓(𝑦) ̸≈ 𝑓(𝑧) ∧ 𝑓(𝑧) ̸≈ 𝑓(𝑥).

In fact, if the sort of the argument of uninterpreted function 𝑓 is itself uninterpreted, the set is satisfiable,
whereas it is unsatisfiable if the sort is Boolean.

We work in the context of ground (i.e., quantifier-free) many-sorted first-order logic with equality
(see for instance [9] for a formal presentation of many-sorted first-order logic with equality). We discuss
the impact of forcing one or more sorts to be interpreted as a finite domain of some given cardinality.
Graph 𝑘-coloring reduces to congruence closure with a domain of cardinality 𝑘, and therefore (Section 3)
this problem is NP-hard. Since two-coloring is polynomial, one could boldly believe that congruence
closure on domains of cardinality 2 would have a better complexity. This is unfortunately not the case
(Section 4.1): the problem stays NP-hard whenever functions are allowed, even if the functions are
unary (Section 4.2). In Section 5, we discuss the related problem of finding implied disequalities.
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2. Preliminaries

Satisfying a set of ground literals 𝐸 in the theory of equality and uninterpreted functions boils down to
extending 𝐸 to a complete set 𝐸𝑐 of equalities and disequalities over the terms in 𝐸 (i.e., for each pair
of terms 𝑡, 𝑡′in 𝐸, we have either 𝑡 ≈ 𝑡′ ∈ 𝐸𝑐, or 𝑡 ̸≈ 𝑡′ ∈ 𝐸𝑐), such that 𝐸𝑐 satisfies the EUF axioms:

• Reflexivity: ∀𝑥 . 𝑥 ≈ 𝑥

• Symmetry: ∀𝑥, 𝑦 . 𝑥 ≈ 𝑦 ⇒ 𝑦 ≈ 𝑥

• Transitivity: ∀𝑥, 𝑦, 𝑧 . (𝑥 ≈ 𝑦 ∧ 𝑦 ≈ 𝑧) ⇒ 𝑥 ≈ 𝑧

• Congruence (schema):
∀𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 . (𝑥1 ≈ 𝑦1 ∧ · · · ∧ 𝑥𝑛 ≈ 𝑦𝑛) ⇒ 𝑓(𝑥1, . . . , 𝑥𝑛) ≈ 𝑓(𝑦1, . . . , 𝑦𝑛)

This is the goal of congruence closure. In extending it for finite cardinality constraints, we must make
sure not to break those constraints.

Reflexivity is implicitly assumed and, therefore, automatically satisfied. Symmetry and transitivity
are enforced by the use of the union-find data structure, i.e., by working with congruence classes rather
than with the equalities directly. Two terms are supposed to be equal if and only if they are in the same
congruence class. The equalities in 𝐸 are satisfied by merging the necessary classes: if 𝑡 ≈ 𝑡′ ∈ 𝐸, the
classes of 𝑡 and 𝑡′ are merged. Finally, the congruence axioms are satisfied by merging the classes of
functional terms 𝑓(𝑡1, . . . 𝑡𝑛) and 𝑓(𝑡′1, . . . 𝑡

′
𝑛) whenever their top symbols and arguments match. The

result is the minimal set of equalities that satisfies both the EUF axioms and the equalities in 𝐸. Every
possible disequality holds, and therefore 𝐸 is satisfied if and only if none of the disequalities in 𝐸 is
violated in the resulting set of congruence classes.

Since this is the minimal set of equalities, congruence classes cannot be split to satisfy cardinality
constraints. The only possible move is merging congruence classes until there are no more classes than
the requested number of elements in the domain. The difficulty lies in doing this without violating the
disequalities in 𝐸 (or showing that this task is impossible).

3. (Dis-)Equalities with Finite Cardinality Constraints

In the absence of functions, the satisfiability problem for a set of ground equalities and disequalities
is equivalent to graph coloring, as suggested in [5]. To be self-contained, we here briefly explain this
equivalence again.

First, notice that it is not important whether we are considering the many-sorted case or the one-
sorted case, the many-sorted case being simply the juxtaposition of independent one-sorted problems.
Indeed, since there are no functions, each literal is of the form 𝑎 ≈ 𝑏, or 𝑎 ̸≈ 𝑏, where 𝑎 and 𝑏 are
constants. There is no way for elements of different sorts to interact, so each sort can be treated
independently.

Given a set of equalities and disequalities 𝐸 in a sort 𝑆 with some cardinality constraint stating that
the sort 𝑆 is of cardinality at most 𝑘, a congruence closure-like procedure can be applied to obtain an
equivalence relation ≡𝐸 over the terms in 𝐸. In absence of functions, the congruence rule plays no
role, but a congruence closure algorithm can still be used to compute this equivalence relation.

Once this equivalence relation is known, it remains to assign one of at most 𝑘 elements to each
equivalence class, while making sure not to assign the same element to two classes that have a disequality
between them. The classes that are assigned the same element can subsequently be merged. This is
exactly the problem of graph 𝑘-coloring: the vertices are the equivalence classes, the edges are the
disequalities between those classes, and the 𝑘 colors are the 𝑘 elements of the domain. Therefore,
determining the satisfiability of a set of ground equalities and disequalities in presence of cardinality
constraints reduces to graph coloring. Conversely, any graph coloring problem can be trivially encoded
as a satisfiability problem in the theory of finite cardinality constraints. Graph coloring is NP-complete
for any 𝑘 ≥ 3, and thus, the same applies to the satisfiability of a set of ground equalities and
disequalities with finite cardinality constraints. For 𝑘 ≤ 2, however, graph coloring can be solved
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in linear time, yielding a linear-time procedure for the satisfiability of a set of (dis-)equalities with
cardinality constraints only imposing domains of at most two elements.

Incidentally, note that graph coloring can be instrumental to prove the NP-hardness of many first-
order theories [10].

4. Uninterpreted Functions and Finite Cardinality Constraints

We now consider the complexity when the theory of uninterpreted functions is combined with finite
cardinality constraints. For cardinality constraints requiring domains to contain at most 𝑘 elements
with 𝑘 ≥ 3, the problem is NP-complete, since the hardness is directly inherited from the case without
functions above. In the degenerate case 𝑘 = 1, the problem is no harder than standalone EUF. Within the
sorts which have a cardinality 1 constraint, all elements must be equal. The problem can thus be solved
by applying regular congruence closure, and merging all congruence classes within the cardinality-
restricted sorts. The polynomial complexity of congruence closure is preserved. For 𝑘 ≤ 2, one could
hope to still have polynomial-time algorithms, as in the function-free case. The case 𝑘 = 2 would be
particularly helpful in integrating Boolean cardinality constraints with EUF reasoning. Unfortunately,
we show that functions do actually make the problem significantly harder.

4.1. 2-Element Domain with Functions of Arbitrary Arity

With 𝑘 = 2, the problem is NP-hard: there is a simple polynomial reduction of 3-SAT to the satisfiability
of a set of literals in the (quantifier-free) theory of equality with uninterpreted functions, where at least
one sort is constrained to a domain with at most two elements.

First, introduce two constants for the sort constrained to at most two elements, and impose that they
are different, by asserting a disequality between those constants. This results in the sort having at least
two congruence classes. Those two congruence classes will represent elements which are true and false
respectively, so the constants are named accordingly.

true ̸≈ false

The cardinality constraint on the sort imposes that any element in the sort is either equal to true or false.
Next, for each proposition in the 3-SAT instance, introduce two constants representing the proposition
and its negation. The two constants must be different, since they have different truth values. For
example, with propositions 𝑎, 𝑏, 𝑐, introduce constants 𝑎, 𝑏, 𝑐, �̄�, �̄�, �̄�, and add the constraints:

𝑎 ̸≈ �̄�

𝑏 ̸≈ �̄�

𝑐 ̸≈ �̄�

Finally, introduce a function 𝑓 : Bool3 → 𝑆, where Bool is the sort of cardinality two, and 𝑆 is an
arbitrary sort (with cardinality 2, finite cardinality larger than 2, or arbitrary cardinality). For each
clause in the 3-SAT instance, e.g. 𝑎 ∨ 𝑏 ∨ ¬𝑐, introduce a corresponding constraint of the form:

𝑓(𝑎, 𝑏, �̄�) ̸≈ 𝑓(false, false, false)

Since the top symbol is the same, this constraint imposes that one of the arguments of 𝑓 differs, i.e.,
that 𝑎 ̸≈ false, 𝑏 ̸≈ false, or �̄� ̸≈ false, which is equivalent to the constraint imposed by the clause.

If a model is found that satisfies all these constraints, it can trivially be translated to a model of the
original 3-SAT formula. The converse is also true, meaning that this set of disequalities is satisfiable if
and only if the original 3-SAT problem is.

Note that 𝑆 can be the same sort as Bool. An example of a satisfying 𝑓 would be a function that
maps a clause to its truth value. This means that the proof holds even if the Boolean sort is the only sort
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in the problem. Furthermore, if 𝑓 returns Boolean values, a single binary function is enough; clauses
can be encoded in the following way:

𝑓(𝑓(𝑎, 𝑏), �̄�) ̸≈ 𝑓(𝑓(false, false), false)

The problem is also in NP: it can be solved in polynomial time by non-deterministically partitioning
the set of terms of each cardinality-restricted sort into (at most) two classes, then running the usual
congruence closure algorithm. This can be done by first selecting two terms to be the representatives of
the two classes (or a single representative term for the case where one class is empty), then adding an
equality with one of the representatives for each term. This operation takes linear time, and linearly
increases the size of the set of literals. Since congruence closure takes polynomial time, the complete
runtime is also polynomial.

4.2. 2-Element Domain with Unary Functions Only

Even in the case where all functions are unary, the satisfiability problem for a set of EUF literals where
at least one sort must be interpreted as a domain of cardinality two remains NP-complete. This is
due to the interaction between transitivity and congruence. Disequalities stemming from transitivity
alone are easy to find by reasoning about equivalence classes rather than individual (dis-)equalities. For
congruence, in the unary case, the rule manifests as a set of binary clauses, each with one positive and
one negative literal (e.g., 𝑎 ̸≈ 𝑏 ∨ 𝑓(𝑎) ≈ 𝑓(𝑏)). Thus, exhaustively propagating all consequences of the
congruence rule is easy. Taken together, however, transitivity and congruence can interact in complex
ways and allow encoding arbitrary clauses. Consider the literals:

𝑓(𝑎1) ̸≈ 𝑔(𝑎3)

𝑓(𝑎2) ≈ 𝑔(𝑎4)

Adding equalities 𝑎1 ≈ 𝑎2 and 𝑎3 ≈ 𝑎4 leads to a conflict, but neither equality leads to a conflict on
its own. In other words, the disjunction 𝑎1 ̸≈ 𝑎2 ∨ 𝑎3 ̸≈ 𝑎4 is a logical consequence of these literals,
and neither of its disjuncts is. A ternary disjunction can be built by applying this encoding twice:
𝑎1 ̸≈ 𝑎2 ∨ 𝑎3 ̸≈ 𝑎4 ∨ 𝑎5 ̸≈ 𝑎6 becomes:

𝑓(𝑎1) ̸≈ 𝑔(𝑎3) ∨ 𝑎5 ̸≈ 𝑎6

𝑓(𝑎2) ≈ 𝑔(𝑎4)

then,
𝑓(𝑓(𝑎1)) ̸≈ 𝑔(𝑎5)

𝑓(𝑔(𝑎3)) ≈ 𝑔(𝑎6)

𝑓(𝑎2) ≈ 𝑔(𝑎4)

This can be used to encode 3-SAT. Using a similar encoding as in Section 4.1, a clause 𝑎 ∨ 𝑏 ∨ ¬𝑐 can be
translated into EUF literals using two unary functions:

𝑓(𝑓(𝑎)) ̸≈ 𝑔(�̄�)

𝑓(𝑔(𝑏)) ≈ 𝑔(false)

𝑓(false) ≈ 𝑔(false)

One can easily verify by case analysis on the truth values of 𝑎, 𝑏, and �̄�, that this is satisfiable (i.e., there
exist appropriate functions 𝑓 and 𝑔 over the 2-element domain) if and only if 𝑎, 𝑏, and �̄� are not all equal
to false. Additional clauses can be encoded in a similar way, introducing two fresh functions instead of
𝑓 and 𝑔 for each clause. This SAT encoding is polynomial, therefore the satisfiability of sets of EUF
literals with unary functions only is NP-hard, if the domain is constrained to two elements.

62



Ellen Dasnois, Pascal Fontaine SMT 2025: Satisfiability Modulo Theories 59–64

4.3. No Functions from Cardinality-Restricted Sorts

In general, EUF problems in SMT are expressed in many-sorted logic, and have to be solved for multiple
domains at once. Some domains might have cardinality constraints, and some others might not. When
there exists a function that takes arguments of multiple different sorts, or that returns values of a sort
different from the argument sort(s), the corresponding domains have to be treated together.

Sections 4.1 and 4.2 suggest that functions are hard to handle in the case of a 2-element domain, but
this does not mean that all functions need to be avoided in order to maintain a polynomial complexity.
If none of the functions take arguments of a cardinality-restricted sort, the reduction of Section 3 can
still be applied. This time, the congruence rule needs to be used, since functions are present, so the first
step of the reduction corresponds to regular congruence closure.

After applying congruence closure, notice that merging congruence classes of a cardinality-restricted
sort does not require merging any other classes; since no functions take arguments of this sort, the
congruence rule cannot apply. This means that merging two congruence classes of this sort will lead to
a conflict if and only if there is an explicit disequality in 𝐸 between elements of those classes. Thus, the
problem once again reduces to graph 2-coloring: two classes can have the same color (i.e., correspond
to the same element) if and only if there is no explicit disequality between them.

5. Disequality Propagation: Discussion and Future Work

The above theoretical bounds have a practical consequence: any procedure for congruence closure with
finite cardinality constraints, except in very degenerate cases, will require some kind of SAT solver-like
reasoning capacity, since the problem is NP-complete. Given a partition of terms in congruence classes,
taking into account the cardinality constraints essentially boils down to iteratively merging classes,
until the target cardinality upper bounds are met for the sorts with cardinality restrictions. It would
therefore be highly valuable to know beforehand, at each point, which pairs of classes not to merge, i.e.,
finding out which disequalities are consequences of the current set of literals. This is not totally trivial:
if two congruence classes do not have an explicit disequality between them, merging them can lead to
other class merges, leading to a “hidden” conflict. For example, with three Boolean constants 𝑎, 𝑏, 𝑐, and
given the disequality 𝑓(𝑎) ̸≈ 𝑓(𝑏), where 𝑓 returns values of an arbitrary unconstrained sort, merging
the classes of 𝑎 and 𝑏 is not possible. There is no explicit disequality between their classes, but merging
them leads to merging the classes of 𝑓(𝑎) and 𝑓(𝑏), triggering a conflict.

To avoid this, one solution is to propagate disequalities “backwards” through the congruence rule.
Taking the contrapositive of the congruence rule gives 𝑓(𝑎) ̸≈ 𝑓(𝑏) ⇒ 𝑎 ̸≈ 𝑏. This allows propagating
𝑎 ̸≈ 𝑏, this explicit disequality preventing the merge of the classes of 𝑎 and 𝑏. With binary functions
and above, this becomes more complicated since the propagation yields a disjunction of disequalities.
For example, we have 𝑓(𝑎1, 𝑎2) ̸≈ 𝑓(𝑏1, 𝑏2) ⇒ (𝑎1 ̸≈ 𝑏1 ∨ 𝑎2 ̸≈ 𝑏2).

Exhaustive disequality propagation is obviously polynomial. Indeed, if there are 𝑛 terms, it suffices to
run 𝑛× (𝑛− 1)/2 times the quasi-linear satisfiability checking procedure on 𝐸 ∪ (𝑡 ≈ 𝑡′) for any pair
𝑡, 𝑡′ of terms to check whether 𝑡 ̸≈ 𝑡′ is a logical consequence of 𝐸. Exhaustive disequality propagation
is therefore upper bounded by 𝑛3 log 𝑛. In practice, however, deducing all implied equalities might be
subtle. Considering the literal

𝑓(𝑥1, . . . 𝑥𝑛) ̸≈ 𝑓(𝑦1, . . . 𝑦𝑛),

it is clear that the disjunction 𝑥1 ̸≈ 𝑦1 ∨ . . . 𝑥𝑛 ̸≈ 𝑦𝑛 holds. The set of constraints might contain
equalities 𝑥𝑖 ≈ 𝑔𝑖(𝑡) and 𝑦𝑖 ≈ 𝑔𝑖(𝑢) for each 𝑖, and therefore 𝑡 ̸≈ 𝑢 would in turn be a consequence
of each disjunct. This however requires to consider each 𝑥𝑖 ̸≈ 𝑦𝑖 successively, before concluding that
𝑡 ̸≈ 𝑢 holds.

For future work, it would be interesting to either prove that the time complexity of disequality
propagation has an impractical lower bound, e.g., 𝑛2, or to design an efficient algorithm (i.e., with
quasi-linear time complexity).
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6. Conclusion

Our objective is to understand how to best tune a practical congruence closure algorithm to accommodate
cardinality constraints. It appears that checking the satisfiability of sets of EUF literals with cardinality
constraints is NP-hard, even with strong restrictions on the use of functions. A bit surprisingly (the
graph 2-coloring problem is linear) this high complexity even occurs for cardinality constraints with
two elements. This tells us that a complete algorithm will necessarily embed reasoning capabilities
similar to those of a SAT solver. Future work will need to determine whether efficient algorithms can
simply embed off-the-shelf SAT solvers, or if they need to be tailored while getting inspiration from
state-of-the-art SAT solving techniques.

Heuristics are often crucial for practically solving NP-complete problems. Here, we believe that
disequality propagation is worth further investigation.
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