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Abstract

Optimization Modulo Theories (OMT) has emerged as a prominent extension of the Satisfiability Modulo Theories
(SMT) paradigm, bringing optimization objectives into first-order logic constraint solving. Unlike SMT, which
focuses solely on satisfiability with respect to a given theory, OMT additionally seeks to optimize a specified
objective function. Several state-of-the-art SMT solvers have integrated OMT capabilities. However, no official
SMT-LIB extension has yet been adopted for OMT. As a result, OMT benchmarks lack standardization, which
hinders broader adoption and progress in the field. In this paper, we propose an extension to SMT-LIB that
supports all of the different flavors of OMT found in the literature. Our goal is to foster the development of OMT
solvers and applications, to enable more robust, reusable, and comparable OMT solutions, and to promote the
creation of standardized OMT benchmarks in SMT-LIB format for systematic and meaningful evaluation.
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1. Introduction

Optimization Modulo Theories (OMT) builds on the highly successful Satisfiability Modulo Theories
(SMT) [1] paradigm: but while SMT focuses on finding a model for a first-order formula, OMT extends
this by introducing an objective term that must be optimized according to some order on the term’s
domain.

This added expressiveness has established OMT as a powerful tool fueling progress across a wide
range of applications. These include formal verification and model checking [2, 3], program analysis [4,
5, 6,7, 8], security analysis [9, 10, 11, 12], resource-constrained scheduling and planning [13, 14, 15, 16,
17,18, 19, 20, 21, 22], requirements engineering and specification synthesis [23, 24, 25, 26], system design
and configuration [27, 28, 29, 30, 31, 32, 33, 34], as well as applications in machine learning [35, 36] and
quantum annealing [37].

To address the wide range of optimization goals and underlying theories encountered in practice,
the OMT community has developed specialized procedures for various theories, such as arithmetic
and bitvectors, different types of optimization—including single- and multi-objective optimization, and
specific search strategies including linear, binary, and hybrid approaches. The result is a fragmented
landscape of theory-specific solutions, each tailored to particular combinations of goals and theories.
Our goal in this work is to start a discussion with the aim of eventually achieving consensus in the
community around an SMT-LIB standard extension that provides a uniform interface for representing a
large class of OMT problems. We draw inspiration from extensive previous work on OMT and OMT
extensions to SMT-LIB (e.g., [38, 39]). Our specific goal of unifying previous approaches draws on a
recent effort on Generalized Optimization Modulo Theories (GOMT) [40], which provides an abstract
formalization. Specific OMT approaches can then be seen as specific instances of GOMT.

The rest of the paper is organized as follows. After an overview of related work, below, we introduce
the necessary formal preliminaries in Section 2 followed by our proposed SMT-LIB extension in Section 3.
We provide an extensive set of examples in Section 4 and conclude in Section 5.
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Related Work Domain-specific OMT solving techniques have been developed based on the SMT-LIB
theories and objective types of optimization problems involved.

The OMT problem was first introduced in [41]. Various specialized techniques have since been
proposed to handle both theory-specific and objective-specific variants of the OMT problem.

Theory-specific OMT techniques address objectives involving linear real arithmetic [42, 43], linear
integer arithmetic[42, 44, 45] pseudo-Booleans [46, 43, 47, 48], bitvectors [49, 50], bitvectors combined
with floating-point arithmetic [50], and nonlinear real and integer arithmetic [51].

Objective-specific techniques were developed for lexicographic optimization [42, 45], Pareto opti-
mization [52, 42], Box [53, 42, 45], MinMax [38], MaxSMT [41, 54], and All-OMT [55]. For more details
of theory-specific and objective-specific OMT approaches, we refer the reader to [55].

A recent orthogonal approach [40] unifies all the above OMT problems into a Generalized OMT
(GOMT) framework and proposes an abstract, theory- and objective-agnostic calculus for solving them.
Like SMT-LIB itself, GOMT supports arbitrary combinations of theories. It also supports objectives of
any sort with at least a partial order defined on it (including user-defined orders).

On the SMT-LIB syntax side, several SMT solvers have extended the SMT-LIB language to support
OMT, although no official standard has yet been adopted. Notably, OptiMathSAT [38] has introduced
commands to encode optimization objectives and soft constraints within SMT-LIB v2, with details
available in its documentation. Likewise, Z3 offers optimization functionality through its vZ [39]
extension, which adopts a similar syntax.

Efforts have been made to integrate modeling languages with OMT to bridge the gap between high-
level problem formulations and advanced solver capabilities. Notably, [56] investigates the integration
between MiniZinc [57]—a solver-independent, high-level modeling language for constraint satisfaction
and optimization problems—with OMT. To enable OMT solving from MiniZinc models, the authors
extended OptiMathSAT solver with a FlatZinc interface and developed a tool to translate SMT and OMT
problems into MiniZinc format. FlatZinc [58], MiniZinc’s low-level, solver-agnostic target language,
enables communication with constraint and optimization solvers. OptiMathSAT includes experimental
support for a subset of the FlatZinc 1.6 language, allowing users to solve MiniZinc-defined optimization
problems with OMT techniques. Further supporting solver interoperability, the open-source tool
fzn2omt [59] translates FlatZinc models into SMT-LIB format, making them compatible with solvers
such as OptiMathSAT, Barcelogic [60], Z3 [61], and CVC5 [62].

These efforts seek to provide interfaces for formulating and solving optimization problems with
OMT solvers. However, the lack of a general SMT-LIB standard for OMT continues to limit the broader
adoption and seamless integration of OMT across tools and solvers in the community. This lack of
standardization hampers collaboration, makes it difficult to share benchmarks and tools, and is an
obstacle to building a comprehensive OMT benchmark library.

2. Formal Preliminaries

We work within the standard many-sorted first-order logic setting for SMT, with the usual notions
of signatures, terms, and interpretations. A formula is a term of sort Bool. We write Z |= ¢ to mean
that formula ¢ holds in or is satisfied by an interpretation Z. A theory is a pair T = (3, I), where ¥
is a signature and I is a class of X-interpretations. We call the elements of I T -interpretations. We
write I' =7 ¢, where I is a formula (or a set of formulas), to mean that I' T -entails ¢, i.e., every
T -interpretation that satisfies (each formula in) I' satisfies ¢ as well. A ¥-formula ¢ is satisfiable (resp.,
unsatisfiable) in T if it is satisfied by some (resp., no) 7 -interpretation. For convenience, for the rest of
the paper, we assume an arbitrary but fixed background theory T with equality and with signature 3. We
also fix an infinite set X" of sorted variables with sorts from ¥ and assume < y is some total order on X.
We assume all terms and formulas are >-terms and Y-formulas with free variables from X. Since T is
fixed, we will often abbreviate |=7 as |= and consider only interpretations that are 7 -interpretations
assigning a value to every variable in X

Let s be a ¥-term. We denote by s” the value of s in an interpretation Z, defined as usual by
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recursively determining the values of sub-terms. We denote by F'V (s) the set of all variables occurring
in s. Similarly, we write F'V (¢) to denote the set of all the free variables occurring in a formula ¢. If
FV(¢) = {v1,...,vn}, where for each i € [1,n),v; <x v;4+1, then the relation defined by ¢ (in T)
is {(v,...,v1) | T = ¢ for some T-interpretation Z}. A relation is definable in T if there is some
formula that defines it.

We adopt the standard notion of strict partial order < on a set A, that is, a relation in A x A that is
irreflexive, asymmetric, and transitive. The relation < is a strict total order if, in addition, a; < a2 or
az < aj for every pair ap, ag of distinct elements of A. As usual, we call < well-founded over a subset
A’ of A if A’ contains no infinite descending chains. An element m € A is minimal (with respect to <)

if there is no @ € A such that a < m. If A has a unique minimal element, it is called a minimum.

2.1. Generalized Optimization Modulo Theories

We rely on the Generalized Optimization Modulo Theories framework, which conveniently unifies many
OMT variants under a single umbrella. The definition and explanation below are taken from [40].

Definition 1 (Generalized Optimization Modulo Theories (GOMT)). A Generalized Optimization Modulo
Theories problem is a tuple GO := (t, <, ¢), where:

« t, a X-term of some sort o, is an objective term to optimize;

« < is a strict partial order definable in T, whose defining formula has two free variables, each of sort
o; and

« ¢ is a X-formula.

For any GOMT problem GO and T -interpretations Z and Z’, we say that:

« T is GO-consistent if T |= ¢;
« T GO-dominates T', denoted by Z <go Z', if Z and 7' are GO-consistent and tZ < +%'; and
« T isa GO-solution if T is GO-consistent and no 7 -interpretation GO-dominates 7.

Informally, the term ¢ represents the objective function, whose value we want to optimize. The order <
is used to compare values of ¢, with a value a being considered better than a value o’ if a < @’. Finally,
the formula ¢ imposes constraints on the values that ¢ can take. It is easy to see that the value of t*
assigned by a GO-solution 7 is always minimal. As a special case, if < is a total order, then ¢ is also
unique (i.e., it is a minimum). Once we have fixed a GOMT problem GO, we will informally refer to a
GO-consistent interpretation as a solution (of ¢) and to a GO-solution as an optimal solution.

3. An OMT Extension for SMT-LIB

This section introduces an extension to SMT-LIB v2.7 [63] that provides options, commands, and
attributes for expressing the general class of OMT problems captured by the GOMT formalization. This
extension is informed and inspired by previous work on OMT extensions in OptiMathSAT and Z3.

We also provide special syntax for specific OMT subproblems, for convenience. For example, though
it can be encoded using GOMT, we include specific commands for the MaxSMT problem. Namely,
following previous work, we provide commands for asserting soft constraints with assigned weights,
the goal being to satisfy all hard (i.e., non-soft) constraints while maximizing the total weight of the
satisfied soft ones.

Figure 1 shows the proposed extensions to the grammar of SMT-LIBv2.7. It should be understood in
the context of the grammar in the SMT-LIB v2.7 reference document [63], i.e., although some pieces of
the grammar listed there are repeated here for convenience, the extension is built on the full standard,
and thus a complete understanding requires understanding that document.

We first note that in our proposal, OMT capabilities are not enabled by default. To enable them, the
:enable-omt option must be set to true. In other words, the SMT-LIB script must include the line:
(set-option :enable-omt true). We now explain the remainder of Figure 1. We focus on the new
commands, explaining the other pieces as they become relevant for understanding the commands.
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Tokens

Command names:

Identifiers

(objective-kind)
(m-objective-kind)

(strategy)
Attributes

(strategy_attribute)
(order_attribute)
(bound_attribute)
(assumption_attribute)
(objective_attribute)

(assert_attribute)
Info flags
(info_flag)

define-objective define-multi-objective define-maxsmt-objective

assert-soft optimize-sat optimize-sat-next

OBJECTIVE_MIN | OBJECTIVE_MAX

OBJECTIVE_LEX | OBJECTIVE_PARETO | OBJECTIVE_BOX |
OBJECTIVE_MINMAX | OBJECTIVE_MAXMIN
STRATEGY_LINEAR | STRATEGY_BINARY

:strategy (strategy) | (attribute)

zorder (symbol)

:lower (term) | :upper (term)
:assumption (term)

(strategy_attribute) | (order_attribute) |
(bound_attribute) | {(assumption_attribute)
:objective (symbol) | :weight (term)

:limit-optimal | :unbounded

Command options

(option) ::=  :enable-omt (b_value)
Commands
(command) S define-objective (symbol) (objective-kind) (term) (objective_attribute)™ )

define-multi-objective (symbol) (m-objective-kind) (symbol)™ (attribute)” )
define-maxsmt-objective (symbol) (strategy_attribute)™ )

assert-soft (term) (assert_attribute)™ )

optimize-sat (symbol) (assumption_attribute)” (attribute)™ )
optimize-sat-next )

get-value ( (symbol)™ ) )

get-model )

get-info (symbol)” (info_flag) )

NI NN AN

Command responses

(optimize_sat_response) optimal | limit-optimal | non-optimal | unbounded | unsat | unknown

(optimize_sat_response)

(optimize_sat_next_response)
(get_info_response) ;2= ( {info_response)™ )

:limit-optimal (term) | :unbounded (term)

(info_response)

Figure 1: OMT extension to the SMT-LIB language: tokens, identifiers, attributes, info flags, command options,
commands, and command responses. Some entries that are identical to those in the SMT-LIB standard are listed
here for convenience. All other entries are assumed to extend those in the SMT-LIB standard.

3.1. Defining Objectives

We start by describing two commands, define-objective and define-multi-objective, which
enable the definition of single- and multi-objective optimization problems, respectively.

Single Objective The define-objective command defines a single objective by specifying a name

32



Nestan Tsiskaridze et al. SMT 2025: Satisfiability Modulo Theories 29-44

for the objective, the kind of the objective, either OBJECTIVE_MIN or OBJECTIVE_MAX, the objective term
to be optimized, and one or more optional instances of objective_attribute. The objective_atlribute
list can include at most one : strategy attribute, any number of arbitrary attributes, at most one of
each of the :order, : lower, and :upper attributes, and zero or more :assumption attributes.

Lower and upper bounds for the objective can be specified using the : lower and : upper attributes.
The provided term must have the same sort as the objective term, and it must denote a value for that
sort. Bounds are inclusive and are used to inform certain strategies (see below). The :assumption
attribute can be followed by any arbitrary formula. Bounds and assumptions are required to be satisfied
by any solution found for the objective. As with check-sat-assuming, assumptions are local to queries
involving their accompanying objective (i.e., they are pushed into the context when optimizing the
corresponding objective and popped once that optimization completes). This mechanism is particularly
useful when working with multiple objectives, each with their own relevant assumptions.

If an order_attribute is given, it must be a function symbol f that takes two arguments of sort 7 and
returns Bool, where 7 is the sort of the objective term. The function f should either be a built-in symbol
or have been defined using define-fun, and the term (f x y), for variables = and y of sort 7, must
define a strict partial order. If the :order attribute is omitted, then for the following sorts, a default
is used. The standard arithmetic less-than operator < is the default for Int or Real sorts, the bvult
operator for bitvector sorts, fp. 1t for floating-point sorts, and str.< for string sorts. For other sorts, if
no order is provided, solvers may either use a solver-specific default or respond with unsupported.

Finally, a strategy_attribute can be specified.  Strategies include STRATEGY_LINEAR and
STRATEGY_BINARY. The first instructs the solver to use a linear strategy, meaning that it repeatedly
tries to improve the value of the objective term simply by adding a constraint that it be better than the
previous value. The binary strategy uses a binary search, which can be more efficient than linear search
in some cases. If upper and lower bounds are not provided, the solver can use any method to establish a
starting point for the search. Solver-specific strategy attributes are also allowed.

This command defines a GOMT problem (¢, <, ¢), where t is the given objective term, < is the given
or default order, if the kind is OBJECTIVE_MIN, and the converse of the given or default order, if the
kind is OBJECTIVE_MAX. The constraint ¢ is the conjunction of all bounds and assumptions..

Example 1. Suppose we want to find the maximum value that an unsigned 8-bit bitvector can take,
subject to the constraint that its value must be even—that is, its least significant bit must be 0—and its most
significant bit must be 1.

We present three solutions. The first version includes the evenness constraint as part of the objective,
uses a define-fun command to define the order, and specifies that a binary search should be used. It
enforces that the most significant bit must be 1 by specifying lower and upper bounds for the search.

(declare-const bv_var (_ BitVec 8))

(define-fun ord ((x (_ BitVec 8)) (y (_ BitVec 8))) Bool
(bvult x y))

(define-objective objla OBJECTIVE_MAX bv_var
rorder ord
:assumption (= (bvand bv_var #b0o 1) #b 000
:strategy STRATEGY_BINARY
:lower #b10000000
cupper #b11111111)

The second version uses a linear strategy, specifically specifies that bvult is to be used for the order,
and moves all constraints to background assertions.

(declare-const bv_var (_ BitVec 8))

(assert (= (bvand bv_var #b00000001) #b0o 00))
(assert (= ((_ extract 7 7) bv_var) #b1))

(define-objective objlb OBJECTIVE_MAX bv_var
:order bvult
:strategy STRATEGY_LINEAR)
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The final version is the same as the previous one, except that we don’t specify the order at all. The
solver uses bvult for the order since that is the default for bitvector sorts.

(declare-const bv_var (_ BitVec 8))

(assert (= (bvand bv_var #b00000001) #b00000000))
(assert (= ((_ extract 7 7) bv_var) #b1))

(define-objective objlc OBJECTIVE_MAX bv_var
:strategy STRATEGY_LINEAR)

Example 2. Consider a single-objective optimization problem using linear real arithmetic: given the line
3z + 5y + 1 = 0 and an interval constraint x € [—3, 3], find the smallest possible value of y such that the
point (x,y) lies on the line and satisfies the interval constraint on .

We can encode the example as follows. Again, no order is specified, so the solver uses the arithmetic
less-than operator. We also do not specify a strategy, so the solver will use its default strategy.

(declare-const x () Real)
(declare-const y () Real)

(assert (= (+ (* 3 x) (* 5y) 1) 0))
(assert (and (>= x (- 3)) (<= x 3)))

(define-objective obj2 OBJECTIVE_MIN y)

Multi-Objective The define-multi-objective command defines a multi-objective optimization
problem. The arguments are: a name for the objective, a multi-objective kind, and a sequence of
previously declared objectives. Solver-specific attributes can also be optionally supplied as arguments.

This command also defines a GOMT problem (¢, <, ¢), formed by composing the objectives provided
according to the multi-objective kind. A full description of how this is done is given in [40], but we
provide an informal overview here. The objective ¢ is typically a tuple of the individual objectives, the
constraint ¢ is the conjunction of the constraints from the individual objectives, and the order < is deter-
mined by the multi-objective kind. If the kind is OBJECTIVE_LEX, then < is the lexicographic tuple-order
induced by the orders in the provided objectives. If the kind is OBJECTIVE_PARETO, then < is defined as:
at least one value in the tuple is better while none gets worse. If the kind is 0BJECTIVE_MINMAX, then
< is defined as reducing the maximum value (OBJECTIVE_MAXMIN is similarly defined as increasing the
minimum value). Finally, OBJECTIVE_BOX simply optimizes each of the objectives individually and can
be seen as a special case of OBJECTIVE_PARETO.

Example 3. Letobj3str andobj3lia be two single objectives over the theories of strings and linear integer
arithmetic, respectively. The objective obj3str maximizes the string s according to the lexicographic order
using the linear search strategy, while the objective obj31lia minimizes the integer int_ub_len_s using
the binary search strategy with an upper bound of 3. We also wish for the integer variable int_ub_len_s to
serve as an upper bound on the length of the string s. For simplicity, assume that strings are over characters
ranging only from ’a’ to’z’.

We can encode the problem of finding a Pareto-optimal value for the two objectives as follows.

(declare-const s String)
(declare-const int_ub_len_s Int)

(assert (< (str.len s) int_ub_len_s))

(define-objective obj3lia OBJECTIVE_MIN int_ub_len_s
:strategy STRATEGY_BINARY
:upper 3)

(define-objective obj3str OBJECTIVE_MAX s
:strategy STRATEGY_LINEAR)

(define-multi-objective obj3par OBJECTIVE_PARETO obj3lia obj3str)
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Note that we provide an upper bound for the first objective but no lower bound. In such cases, the solver
can either infer a lower bound (in this case, a lower bound of 1 can be inferred from the first assertion),
use heuristics to attempt to guess and check a lower bound, or use a different search strategy. There are
three Pareto-optimal solutions to this problem: {int_ub_len_s — 1,s — "'}, {int_ub_len_s — 2, s
— "z"},and {int_ub_len_s — 3, s — "zz"

We next encode the problem of finding a lexicographically minimal solution.

(declare-const s String)
(declare-const int_ub_len_s Int)

(assert (< (str.len s) int_ub_len_s))
(assert (str.in_re s (re.* (re.range ""a"" ""z""))))

(define-objective obj3lia OBJECTIVE_MIN int_ub_len_s
:strategy STRATEGY_BINARY
supper 3)

(define-objective obj3str OBJECTIVE_MAX s
:strategy STRATEGY_LINEAR)

(define-multi-objective obj3lex OBJECTIVE_LEX obj3lia obj3str)

The order in which we provide the objectives in the define-multi-objective command determines
the lexicographic order used when optimizing. The unique solution to this problem is {s — "',
int_ub_len_s — 1}.

Box optimization can be used to solve obj3lia and obj3str independently as follows.

(declare-const s String)
(declare-const int_ub_len_s Int)

(assert (< (str.len s) int_ub_len_s))

(define-objective obj3lia OBJECTIVE_MIN int_ub_len_s
:strategy STRATEGY_BINARY
rupper 3)

(define-objective obj3str OBJECTIVE_MAX s
:strategy STRATEGY_LINEAR)

(define-multi-objective obj3box OBJECTIVE_BOX obj3lia obj3str)

Here, obj3str is unbounded, meaning that for every string s, there is a larger string satisfying all
constraints. This is possible because the upper bound constraint : upper 3 applies only to obj3lia,
meaning it does not have to be satisfied when optimizing obj3str, since with box optimization, each
objective is optimized completely independently. On the other hand, obj31lia has a unique optimal
solution: {int_ub_len_s — 1,s — ""}.

Example 4. Given two linesx +y+1=0andx —y+ 2 = 0 and a circle x> + y*> = 1, find a point
(z,y) on the circle that is as far as possible from the closer of the two lines.

We can encode this as a MaxMin problem as follows. To simplify the objective terms, we use the squared
distance from the point (z, y) to each line as the optimization objective.

(declare-const x Real)
(declare-const y Real)

(assert (= (+ (x x x) (xy y)) 1)
(define-objective obj4a OBJECTIVE_MIN (/ (* (+ x y 1) (+ xy 1)) 2))
(define-objective obj4b OBJECTIVE_MIN (/ (* (+ x (* -1 y) 2) (+ x (x =1 y) 2)) 2))

(define-multi-objective obj4 OBJECTIVE_MAXMIN obj4a obj4b)

The exact optimal solution to this problem is at the point (z,y) = (v/3/2,1/2). The value of obj4 at
this point is 1/2+3+/3/4. Since these are irrational values, they cannot be exactly represented using
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rational constants. However, an approximation can be computed and returned—this is discussed further
in Section 4, which covers examples of various OMT command responses.

Note that define-multi-objective does not permit the inclusion of an objective_attribute. Strate-
gies and assumptions can only be provided at the single objective level. However, solver-specific
extensions can provide additional attributes at the multi-objective definition stage.

MaxSMT The define-maxsmt-objective command initiates the definition of a MaxSMT objective
by assigning it a name. The semantics is that a hidden GOMT objective (¢, <, ¢) is created, where < is
arithmetic greater-than, >, and ¢ is True. Initially, ¢ is set to 0.0. However, it changes every time an
assert-soft command is issued.

We adopt the assert-soft command from the OptiMathSAT OMT syntax extension [38]. The
assert-soft command takes a formula, exactly one assert_attribute of the form :objective, which
specifies the name of the MaxSMT objective to associate this formula with, and an optional weight,
specified using :weight. The weight is 1.0 by default if not provided explicitly. The semantics of
(assert-soft a :objective obj :weight w) is that the objective term ¢ for the MaxSMT objective
obj is updated to ¢ + ite(a, w, 0.0). Note that incremental MaxSMT can be supported by using push
and pop and/or by adding soft constraints between queries.

It is important to note that the objective term in a MaxSMT objective is not explicitly shown but is
implicitly associated with obj and internally constructed by the solver. A MaxSMT definition may also
include strategy attributes, which are applied as usual, but to the hidden GOMT objective.

Example 5. Consider a MaxSMT example with x >0 and y >0 as hard constraints and 4x +y — 4>0
and 2z 4+ 3y — 6 >0 as soft constraints, with the weights 2.0 and 1.0, respectively.

Recall that the goal is to satisfy all hard constraints and as many soft constraints as possible. The
problem can be encoded as follows.

(declare-const x Int)
(declare-const y Int)

(assert (>= x 0)
(assert (>=y 0)

(define-maxsmt-objective obj5)

(assert-soft (>= (- (+ (* 4 x) y) 4) 0) :objective obj5 :weight 2.0)
(assert-soft (>= (- (+ (* 2 x) (* 3 y)) 6) @) :objective obj5)

A solution to this problem is the point (z,y) = (1, 2), which satisfies both soft constraints. The hidden
objective thus has the maximum possible value of 3. There are infinitely many solutions which achieve
this optimal value.

The dual of MaxSMT is MinSMT, in which we want to satisfy as few soft assertions as possible. We
do not explicitly support MinSMT objectives. However, a MinSMT problem can easily be converted
into a MaxSMT problem simply by negating all of the soft assertions.

3.2. Optimization Commands and Solver Responses

The optimize-sat command takes as an argument the name of an objective and instructs the solver to
find an optimal solution for that objective. Zero or more instances of assumption_attribute provide
additional assumptions that must be satisfied by any solution. Additional solver-specific attributes
may also be provided. The solver should aim to compute an optimal solution for the GOMT problem
associated with the objective name that also satisfies all assertions currently in the context as well as
any bounds and assumptions associated with the objective or assumptions provided as arguments to the
optimize-sat command. If one or more search strategies is associated with the objective, the solver
should follow those strategies during its search for an optimal solution if possible.
There are several possible responses to an optimize-sat command:
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« optimal indicates that the solver has found an optimal solution to the GOMT problem for the
specified objective.

. indicates that the solver has found a solution to the GOMT problem. The solution
found is not optimal, but (7) no optimal solution exists; and (¢¢) the amount that the found solution
can be improved is bounded.

« unbounded indicates that the solver has found a solution and also determined that for every
solution to the given problem, a solution exists that is better by more than any bounded amount.

. indicates that the solver found a solution but not an optimal solution, and the
solver was not able to determine the problem to be in either the or unbounded
categories.

« unsat indicates that the constraints of the problem alone (without considering optimization) are
unsatisfiable

« unknown indicates that the solver is unable to find a solution, is unable to determine that the
problem is unsat, and is unable to further categorize the problem.

If the most recent optimized objective is of kind OBJECTIVE_BOX, then instead of returning a single
response, the solver returns a list of responses, one for each boxed objective.

The optimize-sat-next command is available immediately after a successful (response of optimal)
call to optimize-sat or optimize-sat-next. It instructs the solver to attempt to find an optimal
solution to the same problem it just solved (with the same constraints) that is different from those
computed so far, if any. If there are no additional optimal solutions, it returns unsat. Otherwise, the set
of possible responses are the same as above.

Anytime Optimization The optimize-sat command can, optionally, respect SMT-LIB’s resource
limiting options, such as :reproducible-resource-1limit. If the solver’s optimization routine sup-
ports this option, setting it to 0 disables it. Setting it to a non-zero numeral n, causes the optimize-sat
command to terminate within a bounded amount of time dependent on n. As in SMT solving, the
internal implementation of the : reproducible-resource-1imit option and its relation to run time or
other concrete resources can be solver-specific. However, if the solver cannot find an optimal solution
within the resource limit and cannot determine whether the problem is unsatisfiable, unbounded, or
limit-optimal, then optimize-sat must return either unknown or . It returns unknown
if no solution (even a non-optimal one) has been found, and returns if some solution
has been found. In the latter case, the best solution found so far can be retrieved upon request. This
behavior is in line with both standard SMT solving with resource limits and MaxSAT anytime solving.

3.3. Interpreting Results

We propose adding or modifying the three get commands described below.

The get-value command is overloaded to take as an argument a list of objective names. This version
of get-value is available after a call to optimize-sat or optimize-sat-next that returns anything
other than unsat or unknown. It returns a list of pairs, each of which contains an objective name as the
first element of the pair and the corresponding value of that objective’s objective term in the computed
solution as the second element of the pair.

The get-model command is similarly available whenever the most recent invocation of
optimize-sat or optimize-sat-next returns something other than unsat or unknown. It returns
a representation of the computed model that is a solution to the optimization problem, using the same
format as is used in the SMT-LIB 2.7 standard. There is one exception to this. If the most recent
optimized objective is of kind OBJECTIVE_BOX, then get-model instead returns a list of pairs. The first
element of each pair is the name of one of the boxed objectives, and the second element is the model
for that objective.

The get-info command can be used to query the solver for additional information about the most
recent optimization attempt if that attempt returned either : 1imit-optimal or : unbounded. In addition,
if that attempt was for an objective of kind OBJECTIVE_BOX, then the first argument of get-info is
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the name of the sub-objective (within the set of boxed objectives) for which information is requested.
Otherwise, that argument is omitted. In either case, it always takes an argument specifying the value
returned, indicating that more information is desired about that value. There are two possible values:
:limit-optimal and :unbounded.

In the first case, issuing the command get-info :1limit-optimal returns an explanation of what
the solver knows about the limit-optimality, such as some value that is approached in the limit by
the objective. In the second case, issuing the command get-info :unbounded provides details on the
cause of unboundedness, such as whether the solver can determine if the objective term tends toward
positive or negative infinity. In both cases, the solver should return a term, and the specific format of
the term is solver-specific (i.e., it could be a string literal or it could have a richer term structure).

4. Examples

In this section, we show several full examples illustrating different commands and responses. We first
revisit Example 1.

(set-logic QF_BV)

(set-option :produce-models true)
(set-option :enable_omt true)
(declare-const bv_var (_ BitVec 8))

(assert (= (bvand bv_var #b00000001) #b00000000))
(assert (= ((_ extract 7 7) bv_var) #b1))

(define-objective objlc OBJECTIVE_MAX bv_var
:strategy STRATEGY_LINEAR)

(optimize-sat objic)

(get-model)

The output of a successful run is shown below.

optimal

((objlc #b11111110))
(
(define-fun bv_var () (_ BitVec 8) #b11111110)
)

The initial response is optimal. The result of the call to get-value shows that the objective term of
obj1c has the value #b11111110 in the optimal solution. And the call to get-model simply returns the
definition of the objective term, since it is the only user-declared symbol.

We next consider an example that tries to minimize the value of 1/z.

(set-logic QF_LRA)

(set-option :produce-models true)
(set-option :enable_omt true)
(declare-const x Real)

(assert (> x 0))

(define-objective obj6 OBJECTIVE_MIN (/ 1 x))
(optimize-sat ob3j6)

(get-value (ob3j6))

(get-model)
(get-info :limit-optimal)

A possible output from a solver is shown below.

((obj6 0.0001))

(

(define-fun x () Real) 10000.0)
)

(:limit-optimal "As x approaches infinity, the objective term approaches 0.")
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Since the objective approaches but never reaches 0, the call to optimize-sat returns .
In this case, the solver finds a model that is within 10~% of the limit value. The request for more
information returns a string explaining the limit.

We next revisit Example 4 with additional commands below.

(set-logic QF_NRA)

(set-option :produce-models true)
(set-option :enable_omt true)
(declare-const x Real)
(declare-const y Real)

(assert (= (+ (x x x) (*y y)) 1))

(define-objective obj4a OBJECTIVE_MIN (/ (*x (+ x y 1) (+ xy 1)) 2))
(define-objective obj4b OBJECTIVE_MIN (/ (* (+ x (* =1 y) 2) (+ x (* -1y) 2)) 2))
(define-multi-objective obj4 OBJECTIVE_MAXMIN obj4a obj4b)

(optimize-sat obj4)

(get-value (obj4))
(get-model)

Recall that the exact optimal solution is when (z,y) = (v/3/2,1/2). However, since the value of x
is an irrational, we cannot represent it precisely. The value of obj4 at this point is also irrational
(1/2+3v/3/4). This is another example where a response of would be appropriate.
However, a solver that is unable to figure this out might instead return and then return a
decimal approximation for x, y, and the objective term. One possible solver output is shown below.

((obj4 (800/289, 1681/578)))

(

(define-fun x () Real (/ 15 17))
(define-fun y () Real (/ 8 17))
)

Here, z, y, and the objective term are approximated with rational constants.
We next show an example with an unbounded objective.

(set-logic QF_LRA)

(set-option :produce-models true)
(set-option :enable_omt true)
(declare-const x Real)

(assert (> x 0))

(define-objective obj7 OBJECTIVE_MAX x)
(optimize-sat obj7)

(get value (obj7))

(get-model)
(get-info :unbounded)

A possible output is given below.

unbounded

((obj7 100000.0))
(
(define-fun x () Real) 100000.0)
)

(:unbounded "The objective term approaches positive infinity as x approaches positive infinity.")

The final example illustrates the use of the optimize-sat-next command with Example 3. It outputs
all three Pareto-optimal solutions, each preceded by the optimal response.

(set-logic QF_SLIA)

(set-option :produce-models true)
(set-option :enable_omt true)
(declare-const s String)
(declare-const int_ub_len_s Int)
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(assert (< (str.len s) int_ub_len_s))
(assert (str.in_re s (re.* (re.range ""a"" ""z""))))

(define-objective obj3lia OBJECTIVE_MIN int_ub_len_s
:upper 3)

(define-objective obj3str OBJECTIVE_MAX s)
(define-multi-objective obj3par OBJECTIVE_PARETO obj3lia obj3str))

(optimize-sat obj3par)
(get-value (obj3par))
(optimize-sat-next)
(get-value (obj3par))
(optimize-sat-next)
(get-value (obj3par))
(optimize-sat-next)

A possible output may be like the one below.

optimal

((obj3par (1, "")))

(

(define-fun int_ub_len_s () Int 1)
(define-fun s () String "")

)

optimal

((obj3par (2, "z")))

(

(define-fun int_ub_len_s () Int 2)
(define-fun s () String "z")

)

optimal

((obj3par (3, "zz")))

(

(define-fun int_ub_len_s () Int 3)
(define-fun s () String "zz")

)

unsat

5. Conclusion

The lack of a standardized SMT-LIB syntax for OMT remains a significant obstacle to the broad adoption
and interoperability of OMT tools. To address this, we have proposed a concrete extension of the
SMT-LIB v2.7 standard that can express all of the optimization modulo theories problems from the
OMT literature. These extensions enhance both expressiveness and flexibility, making it possible to
encode more complex optimization constructs, such as optimization with respect to any definable partial
order, as well as arbitrary combinations of single- and multi-objective problems found in the literature,
including MaxSMT and MinSMT. Future work will focus on refining the syntax through community
feedback and assembling a representative suite of OMT benchmarks. Ultimately, this effort aims to
enable more robust, reusable, and comparable OMT solutions, supporting the growing demand for
optimization in formal methods, automated reasoning, and among end users.
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