
A method to rank nodes in an RDF graph

Alvaro Graves
Dept. of Computer Science
Rensselaer Polytechnic Inst.

agraves@cs.rpi.edu

Sibel Adalı
Dept. of Computer Science
Rensselaer Polytechnic Inst.

sibel@cs.rpi.edu

James Hendler
Dept. of Computer Science
Rensselaer Polytechnic Inst.

hendler@cs.rpi.edu

ABSTRACT
Despite the increasing popularity of RDF as a data repre-
sentation method, there is no accepted measure of the im-
portance of nodes in an RDF graph. Such a measure could
be used to sort the nodes returned by a SPARQL query or
to find the important concepts in an RDF graph. In this pa-
per we propose a graph-theoretic measure called noc-order
for ranking nodes in RDF graphs based on the notion of
centrality. We illustrate that this method is able to capture
interesting global properties of the underlying RDF graph
using study cases from different knowledge domains. We
also show how well noc-order behaves even if the underlying
data has some noise, i.e. superfluous and/or erroneous data.
Finally, we discuss how information about the importance
of different predicates either based on their informativeness,
prior semantic information about them or user preferences
can be incorporated into this measure. We show the effects
of such modifications to the ranking method by examples.

1. INTRODUCTION
Resource Description Framework (RDF) has recently emerged
as a popular data model in many different applications, from
scientific and business domains to social networking appli-
cations. The increasing acceptance of more expressive on-
tology languages such as the various versions of OWL is
expected to continue this trend and lead to development of
large data sets with complex graph structures. The effective
use of these data sets requires new tools for organizing the
content. Currently, nodes are displayed without any kind of
sort which can lead very long unordered list of nodes in large
RDF datasets. Such a method can also be used to find the
important concepts in an RDF data set or discover prob-
lems in the data set (for example for testing whether promi-
nent concepts are well-represented or not). We developed a
method called noc-order (pronounced as knock-order, based
on NOde Centrality Ordering) to rank nodes in an RDF data
set by treating the information in the data set as a labeled
undirected graph.

We base our ranking in the concept of “closeness centrality”
which measures how costly it is to reach all the nodes in the
graph from one specific node. As a motivation, we use the
analogy of a traveler who does not know where to go and has
a limited budget (time or money). Suppose also that she can
start her trip from many different places on the map. Where
should she start? One possible criteria is to choose a central
location from where it is possible to reach to many other
(interesting) places with a low cost. This way, not knowing

where she should go next, she has the highest number of
options. Furthermore, the closer the attractions are, the
better it would be. This way, there are more options at each
leg of the trip as well. We consider exploring nodes in an
RDF graph in a similar manner. If a query is expected to
return nodes, it would be better to return nodes that reach
many other nodes in as few hops as possible. This way, the
explorer examining the results can explore larger portions
of the graph quickly. To model this measure, we use the
notion of centrality of a node as the ranking criteria. The
more central the node is, easier it is to reach the rest of the
graph. We also show that we can incorporate other factors
to this rank, such as “interestingness” of the roads or the
desirability of the short/long paths, etc.

2. CALCULATING NOC-ORDER
The measure of centrality is equivalent to computing the All-
Pairs Shortest Path problem. This problem can be solved
using different approaches [4][7][9][10] and can also be ap-
proximated efficiently [5]. In order to calculate the noc-order
ranking we need to specify certain graph properties and to
define a measure of distance.

In order to calculate the centrality of each node, we found
that it is useful to consider the RDF graph as an undirected,
labeled graph. This is mainly because we are more interested
in how the nodes are connected rather than the direction of
the semantics. Also, it is always possible to find a semantic
inverse of a predicate (e.g. fatherOf as opposite of sonOf).

Definition of distance: We use three main definitions of
distance. First we define d0(x, y, p) = m where m is the
number of edges in path p (this is the usual distance func-
tion). Also we use dw(x, y, p) =

Pm
i=1 w(e) is the sum

of the weights of the edges in the path based on a given
weight function w such that w : E → <. This weight can
based on many different factors or learnt from user feed-
back. In this work, we consider the frequency of occurrence
of each predicate for weights: thus, the more common a
predicate is, the less relevant for our ranking. Finally we
define dαw(x, y, p) =

Pm
i=1(w(e)/αi) where the distance gets

longer as a function of α where 0 ≤ α ≤ 1, i.e. the shorter
paths are even more desirable over longer ones. We then
normalize the distance by the number of nodes reachable by
the given node. Note that this order favors more central
nodes. However, it is as easy to create the reverse ordering
to favor the edge cases.



Connectedness: We have found that in several cases, the
RDF graph could be disconnected. Specifically, it is possible
to find several examples that consists of a big component
and one or more smaller components. These components
are at least one or two order of magnitudes smaller than the
main component. In these cases, we have to further penalize
the nodes that belong to the smaller components, otherwise
the nodes in the smaller components would be more central,
since the cost to reach all the nodes in their components
would be —in general— smaller. Another approach we use
is to take only the main connected component as the subject
of study, since that in most of the cases it contains more than
99% of the nodes.

3. DATASETS
We have tested the noc-order ranking against several differ-
ent datasets that belongs to very different domains.

• CIA Factbook: This dataset contains information
and facts about different countries of the world. It
contains more than 30,000 nodes and 98,000 edges.
• Terrorist Ontology: Represents information about

people, countries and events related to terrorism, among
others. It contains more than 14,000 nodes and 33,000
edges.
• Wine Ontology: Contains information about differ-

ent types of wines, characteristics, regions, among oth-
ers. It contains 720 nodes and almost 2,000 edges.

Table 1: Comparison between (a) the top 10 and (b)
bottom 10 nodes in CIA Factbook using in-degree
and centrality ranking.

(a)
In-degree ranking Centrality ranking
rdf:Statement org:IOC
cia:Estimate org:WHO
cia:CommodityPercent org:UN
cia:CountryPercent org:ITU
cia:AirportBreakdown org:UNCTAD
cia:Port org:UPU
cia:SexRatioBreakdown org:ICAO
cia:EthnicGroupPercent org:UNESCO
cia:ReligionPercent env:Biodiversity
cia:LanguagePercent env:Climate Change

(b)
In-degree ranking Centrality ranking
cia:A110217 work:priests
cia:A110234 work:nuns
cia:A110239 work:guards
cia:A110323 work:3,000 lay workers live

outside the Vatican
cia:A110329 work:animal husbandry and

subsistence farming
cia:A110335 work:wholesale and retail distr.
cia:A110341 work:prof. and scientific serv.
cia:A110360 work:misc. services
cia:A110365 work:forestry and fishing
cia:A110370 work:entertainment and catering

4. RESULTS
In our implementation, we translate the datasets into the N-
Triples [6] format using Raptor RDF parser library [8]. First
we find the connected components, then we run Dijsktra’s
algorithm [3] to find the shortest path for each node in the
graph using one of the distance functions described earlier.
Using this strategy allowed us to parallelize the problem,
improving the speed and to interrupt the whole computation
to study the partial results and being able to resume it at
will. As an example, the case of the CIA Factbook dataset
we show the results obtained with our ranking and compared
with a ranking made using the in-degree distribution of the
predicates. The results can be seen in table 1. It is easy
to see that for the in-degree ranking, the best ranked nodes
belongs usually to the schema. In our ranking however we
find nodes representing international organizations and some
general-interest topics, like “climate change”. Hence, the
noc-order is able to find the central concepts in that specific
data set. A similar trend can be seen in all our tests, the
higher rank nodes are more general and central concepts
while the lower ranked nodes are the most specific concepts,
allowing the system to tailor the ranking accordingly.

5. CONCLUSIONS AND FUTURE WORK
In this work, we have introduced a simple ranking method
for nodes called the noc-order based on centrality in an RDF
graph. Our ranking method can be used to rank RDF nodes
or combined with other methods to answer different types
of queries [1][2]. In future work, we would like to run our
ranking in big FOAF datasets for validation. Also, it would
be interesting to study the effect of different weight functions
and α values in the ranking. We are also investigating how
to incorporate the semantics in OWL ontologies to improve
the ranking and incorporate user feedback into the ranking
method.

6. REFERENCES
[1] B. Aleman-Meza. Searching and ranking documents

based on semantic relationships. 22nd International
Conference on Data Engineering Workshops
(ICDEW’06), page 5, Mar 2006.

[2] B. Aleman-Meza, C. Halaschek-Weiner, and
I. Arpinar. Ranking complex relationships on the
semantic web. IEEE Internet Computing, Jan 2005.

[3] T. H. Cormen, C. E. Leiserson, , R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press, 2001.

[4] E. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, Jan 1959.

[5] D. Eppstein and J. Wang. Fast approximation of
centrality. Proceedings of the twelfth annual
ACM-SIAM symposium on . . . , Jan 2001.

[6] N.-T. format. www.w3.org/tr/rdf-testcases/#ntriples.

[7] D. Johnson. Efficient algorithms for shortest paths in
sparse networks. Journal of the ACM (JACM),
24(1):1–13, 1977.

[8] R. R. parser library. librdf.org/raptor/.

[9] R. Seidel. On the all-pairs-shortest-path problem in
unweighted undirected graphs. Journal of Computer
and System Sciences, page 4, Oct 1999.

[10] J. Sibeyn. External matrix multiplication and all-pairs
shortest path. Information Processing Letters, Jan
2004.


