
Optimizing SPARQL Queries over Disparate RDF Data

Sources through Distributed Semi-joins

Jan Zemánek

Department of Information and
Knowledge Engineering

University of Economics, Prague
Czech Republic

xzemj22@vse.cz

Simon Schenk
Institute for Computer Science

University of Koblenz
Germany

sschenk@uni-koblenz.de

Vojtěch Svátek
Department of Information and

Knowledge Engineering
University of Economics, Prague

Czech Republic

svatek@vse.cz

ABSTRACT
With the ever-increasing amount of data on the Web available at

SPARQL endpoints [1] the need for an integrated and transparent

way of accessing the data has arisen. It is highly desirable to have

a way of asking SPARQL queries that make use of data residing

in disparate data sources served by multiple SPARQL endpoints.

We aim at providing such a capability and thus enabling an

integrated way of querying the whole Semantic Web at a time.

Keywords

SPARQL, RDF, Distributed Querying

1. MOTIVATION
Imagine the following SPARQL query asking for all co-authors of
Tim Berners-Lee's publications and their birthdates and relying on
data from two data sources (DBLP and DBpedia) residing at two
disparate SPARQL endpoints:

SELECT ?coauthor ?birthdate

FROM NAMED <http://www4.wiwiss.fu-berlin.de/dblp/>

FROM NAMED <http://dbpedia.org/>

WHERE {

 GRAPH <http://www4.wiwiss.fu-berlin.de/dblp/> {

 ?paper dc:creator <http://www4.wiwiss.fu-

berlin.de/dblp/resource/person/100007>.

 ?paper dc:creator ?coauthor.

 ?coauthor foaf:name ?name. }

 GRAPH <http://dbpedia.org/> {

 ?person foaf:name ?name.

 ?person dbpedia:birth ?birthdate. }

}

 (1)

At the moment there are two ways how to deal with such a
query: either to copy the content of both data sources into a local
RDF repository and to issue the query against it, or to issue two
separate queries each to the corresponding SPARQL endpoint,
and to treat the received results programmatically. The former
solution may be unfeasible at all due to the amount of data
involved or may result in the local copy of data soon being out of
date. The latter imposes further burden on the user.
Our solution allows to directly issue the query as mentioned

above, thus relieving the user from the burden of maintaining the
local copy of the data or consolidating the results.

2. STATE OF THE ART
There have been presented some solutions to the problem of

querying the data sources at multiple SPARQL endpoints in an

integrated manner, namely, DARQ [2]

(http://darq.sourceforge.net/) and SemWIQ [3]

(http://semwiq.faw.uni-linz.ac.at/). These approaches however

require either supplying of statistics about SPARQL endpoints or

registration of SPARQL endpoints in a catalog, respectively. Both

of them then use statistics about SPARQL endpoints which are

supplied or in case of SemWIQ generated dynamically in order to

determine where to send sub-queries. DARQ and even SemWIQ

impose restrictions on the expressivity of the SPARQL constructs

used.

3. OUR SOLUTION
Our approach is slightly different, as we let the user determine at
which SPARQL endpoint the triple patterns should be evaluated.
We don’t impose any restrictions on the SPARQL expressivity
supported, and our solution is fully compatible with all current
SPARQL-compliant endpoints.

4. IMPLEMENTATION AND
OPTIMIZATION
We have built our solution called Distributed SPARQL [4] on the
top of the Sesame RDF repository by extending Sesame’s SAIL
by our own component Distributed SAIL. The preliminary version
of Distributed SPARQL was presented in [4]; the currently
implemented version however addresses performance issues
through substantial optimization, using the distributed semi-join
operation.

4.1 Remote Queries
We have extended Sesame's SPARQL algebra model and enriched
Sesame's SPARQL query tree by a special node called "Remote
Node". Remote Node is a wrapper for a triple pattern which is to
be evaluated remotely at a given SPARQL endpoint. The received
results are then employed in the next steps of query evaluation. As
mentioned before, the user determines to which SPARQL
endpoint the sub-queries should be sent. This is now done in a
configuration file, where the user is supposed to associate graph
names with respective SPARQL endpoints at which they reside.
(E.g.: graph name “http://dbpedia.org/” in our example above is a
reference to DBpedia’s SPARQL endpoint at
“http://dbpedia.org/sparql”)

4.2 Semi-joins
In order to lower the communication costs involved in sending

and receiving SPARQL queries and results over the Internet, we

implemented a distributed semi-join as an alternative to local join

evaluation strategy. Sesame uses nested-loop implementation of

joins as default, which results in sending a SPARQL query to a

remote SPARQL endpoint for each obtained variable binding set

and thus in low query evaluation performance. Distributed semi-

joins are executed instead of local joins whenever a Remote Node

is reached during Sesame’s evaluation of SPARQL query tree.

Our distributed semi-join algorithm buffers the obtained variable

binding sets and sends them in a batch as conditions in a

SPARQL FILTER expression, appended to the wrapped triple

pattern, to remote SPARQL endpoint. Doing so we save as many

sent and received SPARQL query and result messages as is the

size of our buffer and thus improve the distributed query

evaluation performance while retaining full compatibility with

current SPARQL-compliant endpoints.

5. FIRST EXPERIENCE
The implemented distributed semi-joins according to preliminary
testing results seem to enhance the query evaluation performance
as expected. Detailed evaluation of this impact is ongoing.

6. FUTURE WORK

6.1 Distributed Join-aware Join Re-ordering
We would like to further improve the query evaluation
performance by introducing a distributed join-aware join re-
ordering. We will make use of the current Sesame optimization
techniques for local queries and add our own component which
will be re-ordering joins according to their relative costs. The
costs will be based on statistics taking into account a sub-query
selectivity combined with the distinction whether a triple pattern
is supposed to be evaluated locally or at a remote SPARQL
endpoint.

6.2 SPARQL Endpoints Statistics
In addition to join re-ordering we would like to make use of
statistics about SPARQL endpoints in order to optimize queries
even further. Hopefully the recent initiative called Vocabulary of
Interlinked Datasets
(http://community.linkeddata.org/MediaWiki/index.php?VoiD)
will get to a point where it could be used for this purpose.

7. CONCLUSION
We briefly presented our Sesame extension Distributed SPARQL
which aims at providing an integrated way of querying data
sources scattered across multiple SPARQL endpoints. We shortly
described its implementation and optimization used so far and
outlined the direction for its future development. Distributed
SPARQL is a part of Networked Graphs [4] project and is publicly
available at https://launchpad.net/networkedgraphs.

8. ACKNOWLEDGMENTS
The authors are grateful to Steffen Staab for his support. The

research was supported by the European Commission under

contract FP6-027026, Knowledge Space of Semantic Inference

for Automatic Annotation and Retrieval of Multimedia Content -

K-Space.

9. REFERENCES
[1] Prud'hommeaux, E., Seaborne, A.: SPARQL Query

Language for RDF. W3C Recommendation (January 2008)

http://www.w3.org/TR/rdf-sparql-query/

[2] Quilitz, B., Leser, U.: Querying Distributed RDF Data

Sources with SPARQL. In: The Semantic Web: Research and

Applications. Springer Berlin / Heidelberg (2008) 524-538

[3] Langegger, A., Wöß, W., Blöchl, M.: A Semantic Web

Middleware for Virtual Data Integration on the Web.

Springer Berlin / Heidelberg (2008) 493-507

[4] Schenk, S., Staab, S.: Networked graphs: a declarative

mechanism for SPARQL rules, SPARQL views and RDF

data integration on the web. WWW 2008: 585-594

