
Customized Convolutional Neural Networks for Plant
Disease Detection on Leaf Images
Walid Ben Mesmia1,2,*, Ghazala Hcini3, Omar Mansouri2, Kamel Barkaoui4 and Imen Jdey3

1Sys’Com, ENIT, Tunis, Tunisia
2Higher Institute of Management of Gabès, University of Gabès, Gabès, Tunisia
3ReGIM-Lab. REsearch Group in Intelligent Machines (LR11ES48), ENIS, Sfax, Tunisia
4CEDRIC-CNAM, Paris, France

Abstract
Ensuring agricultural productivity and food security depends on effectively detecting and classifying plant leaf
diseases. In this study, we present a tailored Convolutional Neural Network (CNN) approach specifically designed
to identify plant leaf diseases. Our methodology is based on a carefully curated dataset that includes 29 distinct
disease classes. By using transfer learning and fine-tuning techniques, we carefully optimize the CNN architecture
to suit the unique characteristics of the dataset, resulting in improved accuracy and robustness. Through extensive
experimentation and evaluation, we demonstrate the effectiveness of our approach in accurately diagnosing
plant leaf diseases across multiple classes. Our model achieves impressive performance, with a notable accuracy
of 96.53% and a minimal loss of 0.1. Outperforming existing methods on a range of evaluation metrics, we
emphasize the superiority of our customized CNN approach through comprehensive comparative analyses. This
study represents a significant advancement in computer vision techniques for agriculture by providing a reliable
and efficient solution for automated plant disease diagnosis. The proposed methodology holds great promise for
practical implementation in agricultural systems, enabling early disease detection and management to reduce
crop losses and promote sustainable agricultural practices.
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1. Introduction

Plant diseases represent a major threat to global food security [1], [2], leading to significant yield losses
and imposing heavy economic burdens on agricultural industries worldwide. Timely and accurate
detection of these diseases is critical for implementing effective intervention strategies to prevent
extensive crop damage. Recent advancements in computer vision and machine learning have shown
great promise in automating the detection and diagnosis of plant diseases through the analysis of leaf
images [3], [4]. Convolutional Neural Networks (𝐶𝑁𝑁𝑠) have proven to be highly effective for image
classification tasks [5], [6], including the detection of plant diseases. However, achieving optimal
performance in this area involves addressing several challenges, such as dataset heterogeneity, class
imbalance, and symptom variability across different plant species. Moreover, existing CNN architectures
often require customization to effectively manage the specific characteristics of plant disease datasets
[29]. In this paper, we introduce a customized CNN approach designed specifically for identifying plant
leaf diseases. Our study utilizes a modified dataset encompassing 29 distinct disease classes, representing
a wide variety of plant species and pathologies. Our contribution has two primary objectives: first,
to develop a robust and precise model capable of accurately distinguishing between multiple disease
classes; and second, to address the limitations of existing CNN architectures by tailoring the model
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to better accommodate the unique characteristics of the plant disease dataset. By utilizing transfer
learning and fine-tuning techniques, we optimize the CNN architecture to adapt to the unique features
of the dataset, thereby improving both accuracy and robustness. Through extensive experimentation
and evaluation, we showcase the effectiveness of our approach in accurately diagnosing plant leaf
diseases across multiple classes. Furthermore, we conduct comprehensive comparative analyses to
highlight the advantages of our customized CNN approach over traditional methods. Overall, our
study aims to advance computer vision techniques in agriculture by offering a reliable and efficient
solution for automated plant disease diagnosis. By tackling the challenges associated with plant disease
classification, our customized CNN approach shows significant potential for practical implementation
in agricultural systems. This can facilitate early disease detection and management, helping to mitigate
crop losses and promote sustainable agricultural practices. We begin with an Introduction section that
delineates the motivation, objectives, and primary contributions of our study. Subsequently, the Problem
Statement section delineates the challenges in plant disease detection and articulates the specific aims of
our research. In the Related Works section, we scrutinize existing methodologies, elucidating how our
approach advances the field. The Methodology section elaborates on the specialized dataset, the design
of the customized CNN architecture, the training process, and techniques for hyperparameter tuning.
The Results and Discussion section presents the performance metrics of our model, deliberates on its
generalization and scalability, and confronts the challenges of deploying deep learning models on diverse
datasets, including issues pertaining to interpretability and transparency. Finally, the Conclusion and
Future Works section recapitulates our findings and delineates potential avenues for further research
and practical implementations.

2. Problem Statment

In the fields of agriculture and forestry, detecting plant diseases is vital for ensuring healthy crop
production and forest management [26]. However, traditional methods of disease detection have
significant disadvantages [27]. They rely on manual inspection and semi-automated processes, which
are costly, time-consuming, prone to error, and lack precision and specificity [28]. Furthermore, these
methods are not exhaustive and struggle to predict disease outbreaks accurately, resulting in delayed
responses and potential agricultural losses (figure 1). The current detection methods involve visual
inspection and manual data collection, which are labor-intensive, time-consuming, and prone to human
error. These methods do not provide real-time results and often fail to accurately predict disease
outbreaks, leading to delayed responses and significant agricultural losses. Given these drawbacks,
there is an urgent need for an advanced solution that can overcome these limitations. The proposed
solution should be automated, cost-effective, provide real-time results, be precise, and offer accurate
predictions with a low error rate. Additionally, it should be exhaustive in its analysis, covering a
wide range of potential diseases and environmental stressors. Artificial Intelligence (AI) presents a
promising alternative to traditional detection methods. By using AI technologies, it is possible to
develop systems that meet these criteria, thereby enhancing disease detection and management in
agriculture and forestry. AI can process large amounts of data quickly and accurately, providing real-
time insights and predictions that enable proactive measures to protect plant health against various
threats. In conclusion, transitioning to AI-based detection methods can address the critical shortcomings
of traditional approaches, offering a comprehensive and efficient solution for managing plant diseases
and adapting to environmental changes.

3. Background of the study

3.1. Deep learning theory

The concept of Deep Learning (DL) was introduced in a seminal paper by Hinton et al., published
in Science in 2006 [8]. Deep learning involves the use of neural networks for data analysis and



Figure 1: Limitations of traditional plant disease detection methods and the impact of artificial intelligence

feature learning [9]. In this approach, multiple hidden layers are used to extract features from the
data. Each hidden layer acts as a perceptron, extracting low-level features that are then combined to
form more abstract, high-level features. This approach effectively addresses the issue of local minima.
Unlike traditional algorithms that rely on manually designed features, deep learning automates feature
extraction, which has generated significant interest among researchers. It has been successfully applied
in various domains, including computer vision [10], pattern recognition [11], speech recognition, natural
language processing, and recommendation systems. Conventional methods for image classification and
recognition rely on manually designed features, which only capture basic features and struggle to extract
deep, complex information from images. Deep learning overcomes this limitation by directly learning
from raw images, obtaining multi-level feature information that ranges from low-level to high-level
semantic features [12]. Traditional algorithms for detecting plant diseases and pests primarily rely
on manually designed features, which is a challenging and experience-dependent process that cannot
automatically learn from images. On the other hand, deep learning models, with their multiple layers,
possess robust autonomous learning and feature representation capabilities, allowing for automatic
feature extraction in image classification and recognition tasks. This makes deep learning highly
promising in the field of plant disease and pest image recognition[32]. Currently, several well-known
deep neural network models have been developed within the realm of deep learning, including deep belief
networks (DBN), deep Boltzmann machines (DBM), stacked de-noising autoencoders (SDAE), and deep
CNNs. These models offer significant advantages over traditional manual feature extraction methods by
automating feature extraction from high-dimensional feature spaces in image recognition tasks [21]. As
the volume of training data increases and computational power improves, the representational power
of deep neural networks continues to grow. The rise of deep learning is transforming both industry
and academia, with deep neural network models consistently outperforming traditional approaches.
Among these models, deep convolutional neural networks have become the most popular framework in
recent years.



3.2. Convolutional neural network

Convolutional Neural Networks (CNNs) are a type of deep learning model [22] that is particularly
well-suited for image classification tasks, such as detecting leaf diseases. The architecture of a CNN
consists of multiple layers, including fully connected layers, max pooling, and normalization layers. The
initial layer is the input layer, followed by convolutional layers, which apply various 2D filters to the
image to extract features [23]. These features are then downsampled through pooling layers, creating
a more compact representation. Fully connected (FC) layers, which are considered learnable features,
process these extracted features to learn and optimize weights [24]. These FC layers are also crucial for
making classifications, such as recognizing different plant diseases. The CNN [30],[31]learning process
begins with training, using labeled images as input. Once trained, the model can accurately identify
different types of diseases.

4. Related Works

We’ll examine various studies that have utilized machine learning and deep learning methods for plant
disease detection. Throughout this review, we’ll focus on their methodologies, findings, and pinpoint
the gaps our approach seeks to address. So, In the literature we detect several works related to our
study. We illustrate some of them as follows:

∙ Xu et al. [7] tackled the task of identifying corn leaf diseases (healthy, leaf blight, rust) in intricate
field settings with a scarcity of data. They introduced a CNN model leveraging VGG16 and
transfer learning. By utilizing weight parameters pre-trained on ImageNet, they attained an
average recognition accuracy of 95.33%.

∙ In (Hatuwal, B., and Thapa, D. (2020)) [15], the authors aimed to tackle significant crop losses
in developing nations like Nepal, stemming from the delayed identification of plant diseases.
They proposed a method to classify and predict plant diseases utilizing machine learning models,
including Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Random Forest Classifier
(RFC), and CNN. The study utilized Haralick texture features such as contrast, correlation, entropy,
and inverse difference moments for SVM, KNN, and RFC models, while CNNs were directly fed
with images. Their findings revealed that CNN achieved the highest accuracy at 97.89%, surpassing
RFC (87.43%), SVM (78.61%), and KNN (76.96%) across sixteen distinct image categories. These
results underscore the superior efficacy of CNNs in plant disease classification.

∙ In (Roy, A., and Patel, D. (2024))[16], the authors tackled the prevalent issue of leaf diseases in
agriculture through disease classification employing deep learning techniques. They evaluated
the performance of VGG-16, VGG-19, InceptionV3, and DenseNet-121 architectures, providing
a comparative analysis. DenseNet-121 achieved the highest accuracy at 91.75%. The study
encompassed training a dataset containing 13 different diseases, accompanied by an analysis
based on validation accuracy, loss, and the number of epochs. This research underscored DenseNet-
121’s superiority over other deep learning models, affirming its efficacy in accurately classifying
leaf diseases.

∙ The work by (Lingwal et al. (2023)) [17] addresses the critical need for early detection and
classification of plant diseases to prevent their spread and minimize crop damage. By using deep
learning techniques, specifically CNNs, the study focuses on classifying tomato leaf diseases using
the PlantVillage dataset. This dataset includes nearly 16,000 leaf images, which were divided into
training, test, and validation sets with ratios of 70%, 20%, and 10%, respectively[17]. The research
compares a custom-developed CNN model with four transfer learning models: DenseNet121,
ResNet50, Inception-V3, and VGG-16. Performance evaluations based on accuracy and cross-
entropy loss indicated that both VGG-16 and the custom CNN model achieved impressive results,
with validation accuracies of 90% and 83% on the test set, respectively[17]. These findings
underscore the effectiveness of CNNs, especially transfer learning approaches, in accurately
classifying tomato leaf diseases, thereby providing a valuable tool for early disease detection in
agriculture[17].



∙ The study by (Zheng et al. (2023)) [18]emphasizes the critical role of computer vision in detecting
plant diseases, particularly the necessity for accurate pattern recognition. A CNN was trained
using a dataset comprising 22,930 tomato leaf images. The baseline model achieved a training
accuracy of 90% [18]. Comparative analysis of various architectures, including VGG16, MobileNet,
and InceptionV3, revealed that MobileNet had the highest training accuracy of 91% and was the
most efficient[18]. Despite MobileNet’s superior performance, the proposed CNN architecture
offers faster training due to its shallower design. This research lays the foundation for future
efforts in developing lightweight, fast, and accurate algorithms for classifying plant diseases,
ensuring their practical application in agriculture[18].

The summarized studies encompass a variety of crops and diseases, including those affecting corn,
wheat, tomatoes, apples, and various fungal infections. They employ a range of methods, from traditional
machine learning algorithms such as SVM, KNN, and RFC, to advanced deep learning architectures
like VGG16, CNN, DenseNet-121, MobileNet, and SqueezeNet. The dataset sizes vary considerably,
with image counts ranging from a few thousand to nearly 37,000. The reported accuracy metrics
generally demonstrate high effectiveness in disease detection. Studies utilizing advanced deep learning
methods like CNNs and DenseNets typically achieve higher accuracy levels, highlighting their efficacy
in image-based plant disease detection. Table 1 summarizes these studies, including the accuracy metrics
used for model evaluation.

Table 1
Summary of recent research works about the application of DL and ML for plant diseases detection, (where Cd:
Coefficient of determination and maP: Mean average precision)

Reference Object Method Dataset Performance

Xu et al. (2020) [7] Corn VGG16 – Accuracy=95.33%
Kiruthika et al.
(2019)[14]

Leaf ANN 6108 images Accuracy=93.33%

Hatuwal and Lee
(2020)[15]

Leaf

SVM
KNN
RFC
CNN

36,958 images

Accuracy=78.61%
Accuracy=76.96%
Accuracy=87.43%
Accuracy=97.89%

Roy et al.
(2024)[16]

Leaf DenseNet-121 – Accuracy=91.75%

Lingwal et al. (2023)
[17]

Tomato VGG-16 16,000 images Accuracy=90%

Zheng et al.
(2023)[18]

Tomato MobileNet 22,930 images Accuracy=91%

Shin et al.
(2021)[19]

Fungal SqueezeNet-MOD2 11,600 images Accuracy=92.61%

Zhong et al. (2020)
[20]

Apple DenseNet-121 2462 images Accuracy=92.29%

5. Methodology

Our methodology (see in Figure2) is designed to ensure accurate classification of plant diseases through
a systematic process. First, we curate a customized dataset and preprocess it, carefully splitting it
into training and test sets. Data augmentation techniques are then applied to enhance the dataset,
improving the model’s robustness. We construct a CNN model with precision, selecting convolutional
and pooling layers to effectively extract key features while maintaining efficiency and accuracy. The
model is optimized to balance performance with minimized parameters. After constructing the model,
it is rigorously trained using advanced optimization techniques, followed by performance evaluation on
the test set to assess its effectiveness in real-world scenarios. The final model is deployed for swift and
accurate plant disease prediction, providing a reliable tool for early crop health detection. Throughout



Figure 2: Overview of our methodology

the process, we carefully manage the dataset, model architecture, and parameter optimization to ensure
precise and efficient disease classification.

5.1. Customized Dataset

The database contains a collection of plant leaf images, consisting of 39 different classes (figure 3). These
classes include healthy leaves as well as leaves affected by various diseases or health issues. Each class
represents a specific type of plant disease or health condition, such as apple scab, common corn rust, or
tomato leaf mold. The dataset consists of a total of 61,486 images. After modifying and cleaning the
database, we have created a new dataset with 29 different classes, representing various plant diseases
and health states. The total number of images in the new dataset is now 31,573. To better manage our
model training, we have divided this dataset into two parts: a training set and a test set. The training
set contains 26,830 images, while the test set has 4,743 images (table 2). The purpose of modifying and

Table 2
Customized dataset

Number of classes Training images Testing images
29 26 830 4 743

cleaning the database is to personalize it for our needs. We have used an existing database that includes
16 types of plants and their associated diseases. This optimization helps to streamline processing on the
server by avoiding the need to manage two separate processes.

5.2. CNN architecture

The CNN architecture, outlined in (table 3 and figure4), contains a total of eight layers. It starts with an
input layer that accommodates images of dimensions 256x256 pixels with three color channels (RGB).
The next three layers are Conv2D layers for feature extraction. The first Conv2D layer contains 32



Figure 3: A selection of images depicting plant diseases for analysis

Figure 4: Illustration of the CNN Implementation Process for Image Classification

filters of size 5x5, followed by a Rectified Linear Unit (ReLU) activation function. This is followed
by MaxPooling2D layers with pool sizes of 3x3 and 2x2 to downsample the spatial dimensions of the
feature maps. The subsequent two Conv2D layers contain 32 and 64 filters of size 3x3, respectively, each
with ReLU activation. These are followed by additional MaxPooling2D layers to further downsample
the feature maps. The seventh layer flattens the resulting feature maps into a one-dimensional array.
This is followed by two Dense layers with ReLU activation, containing 512 and 128 units, respectively.
Dropout regularization is applied to the first Dense layer to mitigate overfitting. The final layer is
the output layer, which contains 29 units with a Softmax activation function, facilitating multi-class
classification by outputting class probabilities.

5.3. Hyperparameters configuration

The hyperparameters presented in the table 4 have been carefully selected and fine-tuned through
a series of preliminary tests in order to optimize the performance of the model. These values were
determined using a systematic approach.

• Image Dimensions: The image dimensions were chosen based on the typical size and aspect ratio
of the input images in the dataset. We experimented with various dimensions and found that
256× 256 pixels struck a good balance between capturing important features and computational
efficiency.

• Batch Size: We tried different batch sizes and settled on 32 because it allowed for efficient training
without excessive memory consumption or compromising model performance.

• Number of Classes: The number of classes in the dataset was predetermined based on the nature
of the classification problem. In this case, there are 29 distinct classes representing different types
of plant diseases.



Table 3
CNN Architecture Summary

Layer Type Output Shape Number of Parameters Activation
Input (InputLayer) (256, 256, 3) 0 -

Conv2D (252, 252, 32) 2432 ReLU
MaxPooling2D (84, 84, 32) 0 -

Conv2D (82, 82, 32) 9248 ReLU
MaxPooling2D (41, 41, 32) 0 -

Conv2D (39, 39, 64) 18496 ReLU
MaxPooling2D (19, 19, 64) 0 -

Flatten (23104,) 0 -
Dense (512,) 11829760 ReLU

Dropout (512,) 0 -
Dense (128,) 65664 ReLU
Dense (29,) 3741 Softmax

• Number of Epochs: We trained the model for 13 epochs after determining that it achieved
satisfactory performance within this timeframe. Increasing the number of epochs further did not
yield significant improvements and posed a risk of overfitting.

• Optimizer and Learning Rate: After experimenting with different optimizers and learning rates,
we chose the Adam optimizer with a learning rate of 0.001. Adam showed good convergence
speed and model stability, while a learning rate of 0.001 struck a balance between fast convergence
and avoiding overshooting the optimal solution.

• Data Augmentation: We applied data augmentation techniques such as rescaling, adjusting shear
range and zoom range, and horizontal flipping to augment the training data. These techniques
were selected to introduce variations in the training images, enhancing the model’s ability to
generalize to unseen data and improve overall performance.

These specific values were selected through an iterative process of experimentation and evaluation,
ensuring optimal performance and generalization ability of the model.

Table 4
Hyperparameters Summary

Hyperparameter Value
Image Dimensions 256x256 pixels, 3 channels (RGB)
Batch Size 32
Number of Classes 29
Number of Epochs 13
Optimizer Adam
Learning Rate 0.001

Data Augmentation

- Rescaling: 1./255
- Shear Range: 0.2
- Zoom Range: 0.2
- Horizontal Flip: True



6. Results and discussion

6.1. Results

The customized CNN architecture applied to the customized dataset achieved an outstanding perfor-
mance with an accuracy of 96.53% and a loss value of 0.1. These results indicate that the model is highly
effective at classifying plant diseases, demonstrating both precision and reliability in its predictions.

The figure 5 illustrates the performance of our customized CNN model on the training and validation
datasets.

Figure 5: Training and Validation Performance of the Customized CNN Model

The confusion matrix (Figure 6) provides a detailed breakdown of the performance of our customized
CNN model on the test dataset. Each cell in the matrix represents the number of predictions made
by the model for each class, allowing us to see where the model performs well and where it might be
making errors. The confusion matrix is a crucial tool for evaluating the performance of a classification
model. By examining the diagonal and off-diagonal values, we can identify which classes the model
predicts well and which ones it struggles with. This can guide further improvements in the model or
dataset. It allows us to calculate these metrics for each class:

• Precision: It tells us how many of the predicted positive instances are actually correct.
• Recall: It indicates how many actual positive instances are correctly identified by the model.
• F1-Score: The harmonic mean of precision and recall, providing a single metric that balances

both.

By leveraging the insights from the confusion matrix, we can iteratively refine our model, making
targeted adjustments to enhance its overall performance and reliability.

Figure 6: Confusion matrix



6.2. Discussion

In this study, we have developed a customized CNN architecture tailored for a specialized dataset
containing images of various plant diseases. Our primary objective was to create a model capable of
accurately identifying different plant diseases, making it a vital tool for agricultural management and
disease control.

6.2.1. Model Performance

Our CNN model achieved an impressive accuracy of 96.53% and a loss value of 0.1 on the test dataset.
These metrics underscore the model’s ability to learn and recognize intricate patterns and features
associated with each plant disease class effectively. The robustness of our model is further evidenced by
the training and validation accuracy and loss graphs, as well as the confusion matrix, which illustrates
the model’s proficiency in correctly classifying the majority of plant disease images with minimal
misclassifications.

6.2.2. Hyperparameter Tuning

Finding the ideal hyperparameters for training a deep learning model, such as the learning rate, batch
size, and number of layers, can be a challenging and time-consuming task. It often requires extensive
experimentation.

6.2.3. Interpretability and transparency

Interpretability and transparency are essential when deploying machine learning models, particularly
in scenarios where understanding and justifying decisions is critical. Deep learning models like CNNs
are often considered "black boxes" due to their complexity, making it hard to interpret their internal
workings. This is a significant issue in fields like medical diagnosis or autonomous driving, where trust
in the model’s decisions is paramount. In our study, we tackled this challenge by creating a custom CNN
architecture for plant disease classification. Unlike pre-trained models with many layers and parameters,
our model is simpler, with fewer parameters, reducing complexity and enhancing interpretability. This
streamlined design makes it easier to understand how features are processed and which ones are
most influential in predictions. Additionally, the architecture incorporates domain-specific knowledge,
which aligns the model’s decisions with biological factors behind plant diseases, further increasing
transparency.

6.2.4. Scalability and Adaptability

• Adaptation to New Data: A significant challenge is ensuring that the model can be easily adapted
to new data and different contexts, such as new plant diseases or variations, without requiring
extensive retraining.

• Model Scalability: The model should be able to handle a growing dataset and the addition of new
classes without the need for extensive reengineering, while still maintaining its performance.

7. Conclusion

In this study, we have developed a customized Convolutional Neural Network for identifying plant
diseases using a specialized dataset. The model achieved an impressive accuracy of 96.53% and a low
loss value of 0.1, demonstrating its robustness and potential for practical agricultural applications.
Moving forward, expanding the dataset to include more plant species and diseases, as well as images
from different geographic regions, will improve the model’s generalizability. Additionally, testing the
model under real-world conditions and employing advanced hyperparameter tuning techniques can
further enhance its performance. Exploring model pruning and quantization techniques can also help



reduce computational requirements, allowing for deployment on mobile and low-power edge devices.
To make the model accessible to farmers and agricultural professionals, it is crucial to integrate it with
Internet of Things (IoT) devices for real-time monitoring. Furthermore, developing user-friendly mobile
and web applications will facilitate the use of the model. These efforts will contribute to agricultural
sustainability and food security. In conclusion, our customized CNN model holds great promise for
plant disease detection. With ongoing development and refinement, it has the potential to become a
crucial tool in global agriculture.

Declaration on Generative AI

The authors have not employed any Generative AI tools.
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