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Abstract

In the ever-evolving fashion industry, sustainability has become a primary focus, driving companies to make
significant changes to their business models. Corporate social responsibility is now crucial, emphasizing ethical
practices and eco-friendly material sourcing throughout the supply chain. A key part of this collective effort
involves the adoption of real-time image classification technologies. This paper introduces the XG-ViT method,
an innovative approach that employs a customized Vision Transformer (ViT) for real-time clothing recognition,
specifically utilizing the Fashion MNIST dataset. To ensure the ViT model’s reliability, we use the Grad-CAM
algorithm, which highlights the pixel areas that are most important during predictions in the final attention layer
of our XG-ViT model.

Our experimental results demonstrate the state-of-the-art performance of the XG-ViT method on the Fashion
MNIST benchmark for real-time image classification. Notable metrics include an impressive accuracy of 92.83%,
precision of 92.87%, a loss of 21.13%, an F1 score of 92.63%, and a recall of 92.65%. These outcomes clearly validate
the effectiveness of the XG-ViT method in meeting the demands of real-time image classification tasks.
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1. Introduction

In the current fashion industry landscape, a significant transformation in business strategies is occurring,
driven largely by an increased focus on sustainability [1]. Companies are progressively shifting their
operations to align with sustainable practices, emphasizing corporate social responsibility throughout
their supply chains [2]. This strategic shift involves responsible sourcing, prioritizing eco-friendly
materials, and adhering to ethical labor standards [3]. The push towards a sustainable future highlights
the importance of integrating advanced technologies, such as real-time image classification, which
can act as a catalyst for industry-wide change [4] [5]. Utilizing such technology enables businesses to
enhance supply chain efficiency, minimize waste, and increase transparency [6].

Concurrently, the adoption of deep learning has emerged as a viable alternative to traditional machine
learning for clothing recognition [7], offering a strategic approach to effectively categorize garments [8]
[9]. Deep learning’s superior accuracy helps reduce the likelihood of customer returns and dissatisfaction
by supporting more informed purchasing decisions [10]. Although convolutional neural networks
(CNNs) are widely used for clothing classification, their localized processing and high computational
costs limit their practicality for real-time applications [11]. Vision Transformers (ViTs), which use
self-attention mechanisms for a global understanding of context, provide a promising alternative,
offering both computational efficiency and suitability for real-time tasks [12]. However, enhancing
transparency and interpretability in ViT models remains crucial. Class Activation Mapping (CAM)
techniques, particularly Grad-CAM, visually highlight the key areas influencing model predictions [13].
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Despite the strong performance of ViTs, they are prone to overfitting, which can degrade accuracy and
generalization, especially when trained on smaller datasets [14]. Overfitting leads to poor performance
on unseen data, undermining the accuracy of clothing classification models.

To address these challenges, this research introduces the XG-ViT methodology, which combines the
ViT model with tthe Grad-CAM algorithm. This integration allows for the visualization of specific pixel
areas emphasized during predictions. Furthermore, the study employs k-fold cross-validation (K-FCV)
to ensure a comprehensive representation of each class’s characteristics and to mitigate potential
overfitting issues. The paper is structured as follows: Section 2 explores the vision transformer model,
the Grad-CAM algorithm, the overfitting problem, and the K-FCV technique. Section 3 provides a
literature review on image classification using the Fashion-MNIST dataset. Section 4 discusses the
dataset and the proposed XG-ViT method. Experimental results and discussions are presented in Section
5. Finally, Section 6 concludes the study and suggests future research directions.

2. Background

In this section, we will delve into the key elements of our novel approach: the Vision Transformer, the
Grad-CAM algorithm, the fundamental issue of overfitting, and the K-fold cross-validation method. We
will also emphasize how each of these components is pertinent to our contribution.

2.1. Vision Transformer

ViT (Vision Transformer) [15] is a recent breakthrough in the area of computer vision.The history of
the ViT dates back to 2017, when it was initially designed for natural language processing (NLP) [16].
However, in 2020, its application expanded to computer vision tasks, marking the advent of the "vision
transformer” [17]. In 2021, the ViT surpassed the Convolutional Neural Networks (CNNs) in terms of
performance and efficiency, especially in image classification[5]. The ViT stands out for its ability to
capture complex patterns in images thanks to its attention-based approach, thus offering an effective
alternative to traditional architectures based on convolutions. These advances have positioned ViT as a
promising method for image classification, opening up new perspectives in the field of deep learning
applied to vision.

2.2. Gradient-weighted Class Activation Mapping (Grad-CAM)

Grad-CAM is widely used in image classification tasks to provide a visual interpretation of how deep
neural networks make decisions. It achieves this by highlighting significant regions in an input image
that influence its final classification [18]. This method produces a class activation map by capturing
gradients associated with the target class in the feature maps of the final convolutional layer [19]. By
identifying critical regions, Grad-CAM offers insights into the attention mechanisms of the network,
thereby enhancing interpretability and transparency in deep learning models [19]. For an illustrative
example, please refer to Figure 2.

2.3. Overfitting Problem and K-fold Cross Validation

Overfitting presents a common issue in attention models, where an excessive grasp of training data
details impedes effective generalization [20]. Despite achieving high accuracy on training data, overfit
models struggle with new data due to interpreting random variations as essential concepts. Addressing
this concern, the widely adopted K-fold Cross Validation (K-FCV) technique in machine learning,
particularly beneficial with limited datasets, partitions the dataset into k subsets [21]. The model
undergoes iterative training k times, using k-1 folds for training and one fold for validation in each
iteration, providing a comprehensive evaluation and minimizing the risk of overfitting to specific
observations [21].



3. Literature review

Methods for identifying photos have advanced significantly recently, especially when the Fashion MNIST
dataset is used. As Table 3 summarizes, the goal of these investigations has been to increase classification
accuracy using different deep learning architectures. We summarize significant contributions and place
our work within the framework of this developing topic below.

A convolutional neural network method for picture categorization was presented by Kadam et al.
[22], and it was tested on the Fashion-MNIST dataset. Their method attained an accuracy of 93.5%
on the Fashion-MNIST dataset by experimenting with multiple architectures and fine-tuning several
hyperparameters, including activation functions, optimizers, and dropout rates. This showed that their
method is effective in categorizing more complex picture.

A Multiple Convolutional Neural Network (MCNN15) with 15 convolutional layers was proposed by
Nocentini et al. [23] to improve the accuracy of apparel image classification on the Fashion-MNIST
dataset. Their strategy concentrated on solving problems related to garment manipulation in the
context of service robotics for senior care. They assessed several neural network models and using the
Fashion-MNIST dataset, they were able to obtain a classification accuracy of 94.04%.

Mukherjee et al. [24] introduced a new deep learning framework called OCFormer (One-Class
Transformer Network for Image Classification), leveraging ViT. Their approach achieved an accuracy
of 92.71%.

Chhabra et al. [25] introduced PatchRot, a self-supervised technique designed specifically for vision
transformers. By rotating images and image patches and training the network to predict rotation angles,
PatchRot effectively learns both global and local features, achieving an accuracy of 92.6%.

Chhabra et al. [26] introduced PatchSwap, a regularization technique that involves swapping patches
between two pictures to create new inputs for transformer regularization. Its straightforward approach
facilitates easy extension to semi-supervised environments with minimal effort, achieving an accuracy
of 92.6%.

Sun et al. [27] introduced MADPL-net (Multi-layer Attention Dictionary Pair Learning Network), an
integrated model that combines convolutional neural network learning schemes, deep encoder learning,
and attention dictionary pair learning (ADicL) into a cohesive framework. Their approach achieved an
accuracy of 91.24%.

A ViT model, optimized with transformer blocks and self-attention mechanisms, was presented by
Abd Alaziz et al. [28] for the classification of fashion images. The model’s efficacy across many CNN
architectures was demonstrated by its 95.25% accuracy, 95.20% precision, 95.25% recall, and 95.20%
F1-score on the Fashion-MNIST dataset.

Li et al. [29] introduced MLPEPS (Multi-Layered PEPS), a tensor network model designed for image
classification. MLPEPS employs PEPS to extract features layer by layer from pictures, leveraging these
features in Hilbert space to capture pixel correlations while preserving structural information. Their
approach achieved a classification accuracy of 90.44%.

Selecting a Vision Transformer for real-time garment recognition is extremely appropriate, given the
growing popularity of ViTs in picture classification. ViTs are useful for real-time scenario detection of
complex features and garment designs since they are good at seeing global patterns in photos. Moreover,
ViTs can perform better than CNN-based models in terms of accuracy and computational efficiency,
which is important for tasks demanding quick and accurate classification.

4. Methodology

This section offers a comprehensive explanation of our methodology, which includes the Fashion MNIST
benchmark and details our approach involving the integration of ViT with the Grad-CAM method and
k-FCV technique.



4.1. Fashion Mnist dataset

Several datasets are used for image recognition in the fashion sector, including Fashion MNIST [30],
DeepFashion [31], Fashion IQ [32], FGVCx Fashion [33] , iMaterialist [34], and ModaNet [35]. The
quantity of research articles over the years is the primary criterion for determining which database
is most prevalent. These data sets can be compared in terms of picture classification tasks thanks to
this method. Adhering to the guidelines of Keele et al. [36], the approach employed for this analysis
comprises manual searches conducted on digital resources, including IEEEXplore Digital Library,
SpringerLink, Digital Library, ACM Digital Library, Wiley Online Library, and Science Direct. Based on
the information gathered and displayed in Figure 1, "Fashion-MNIST" is the most often used dataset,
accounting for nearly 59.9% of research projects.
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Figure 1: Different database of the fashion industry between 2020 and 2023 in the image classification task [8].

The Fashion MNIST dataset, created by Zalando, contains 70,000 grayscale images showcasing
different fashion items in 10 distinct categories [8]. This collection is divided into a training set of 60,000
and a test set of 10,000 pictures, as shown in Table 1. Each image has dimensions of 28x28 pixels and is
labeled according to its respective clothing category.



Table 1
Data distribution of Fashion Mnist.
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4.2. XG-ViT method and Experimental Setup

In this study, we presented our proposed XG-ViT architecture, and we detailed the implementation
process by describing each step of the model’s design.

4.2.1. XG-ViT method:

Building upon the Fashion MNIST benchmark, this study elaborates on our methodology, focusing on
key elements. We utilize the ViT approach for classification, aiming to enhance interpretability and
pinpoint crucial image features using the Grad-CAM algorithm. Additionally, to address overfitting and
ensure representative evaluation across diverse classes, we employ K-FCV.

Our XG-ViT architecture depicted in Figure 2 processes input images of size 72 x 72. Initially, pictures
are divided into patches, with XG-ViT accommodating variable patch counts. These patches are treated
akin to word embeddings in natural language processing, undergoing transformer-based processing.
The resulting patch embeddings are then linearly projected into a consistent model dimension D.

Linear Transformation of Patches to Vectors: Patches are transformed into vectors through a
learnable linear projection:

Xlinear = [X;E, XSE, s »XévE] + Epos_lineah (1)

Here, X;; represents each patch, multiplied by a learned projection matrix £, with Epo jinear incorpo-
rating positional information.

Adding Position Tokens: Position tokens are integrated with class tokens and transformed patch
vectors:

Zy = [Xclass; Xlinear] + EpOS7 (2)

where Zy combines class and linear outputs with positional information.
Encoder Layer with Grad-CAM Integration: The encoder processes Zj through multiple blocks,
each containing Multi-Head Self Attention (MHSA) and Multi-Layer Perceptron (MLP) components.
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Figure 2: XG-ViT architecture.

MHSA involves scaled dot-product attention:

. QKT
Attention(Q, K, V') = Softmax V, (3)
Vi,
Followed by:
MHSA(Q, K, V) = concat(Atten,, . .., Atten; )W ©, (4)

where WQ, wE , WV are learned weights, h denotes attention heads, and WO is the output matrix.
Classification Layer: The final encoder layer output, enhanced by Grad-CAM, feeds into a classifier:

y = Layer Normalization(Z?). (5)

Here, y represents model output, ensuring both accuracy and visual insights from Grad-CAM.
We integrated the k-FCV technique into our methodology, dividing Fashion MNIST into %k subsets
for comprehensive validation:

In our approach, the Fashion MNIST dataset is divided into k equal subsets. The K-fold
cross-validation iterates k times, using one subset for testing and the rest for training per
iteration. Performance metrics from all folds aggregate to assess model generalization,
ensuring robust evaluation across diverse dataset subsets.

4.2.2. Experimental Setup

Both ViT and XG-ViT implementations were conducted using Python 3.x and TensorFlow on Google
Colab. A Tesla K80 GPU was utilized to accelerate model training and results generation. Hyperparam-
eters used in our experiments are detailed in Table 2. The input pictures were resized to 72 x 72 pixels,
with a patch size of 6 for the input sequence. A batch size of 256 was chosen to optimize accuracy.
The initial learning rate was set to 0.001 after extensive evaluation. The AdamW optimizer with a
momentum of 0.9 was selected based on its superior performance in comparative experiments. Our
model architecture includes 5 attention heads, 8 transformer layers, and was trained for 25 epochs.
A weight decay of 0.0001 was applied to regularize the model. We employed 5-FCV to ensure robust
evaluation and enhance generalization of the model across different subsets of the dataset.



Table 2
The range values of hyperparameters.

Hyperparameter | Definition value

Image_size Refers to the dimensions of an image, encompassing its height | 72 x 72
and width, measured in pixels.

Patch_size Refers to the dimensions of a small segment within an image. A | 6
smaller patch implies a localized area with a compact size, where
external influences are more pronounced and extend towards
the inner parts.

Batch_size Pertains to the number of data samples processed together | 256
during each iteration of model training

Learning rate Governs the extent to which the model adjusts its weights in | 0.001
response to the computed error during each iteration.

Optimizer choice TIt adjusts the model weights according to the gradients calcu- | AdamW

lated during backpropagation to minimize the loss function.

Data augmentation

Involves increasing the size and diversity of a training dataset
by applying various transformations to existing data.

Auto-Augment

weight decay Is a regularization technique penalizes large weights in the | 0.0001
model, helping to prevent overfitting.

Heads The term “heads’ indicates the number of parallel self-attention | 5
heads present in the transformer layers.

Layer The quantity of transformer layers defines the depth of the | 8
model.

N-epochs is an important hyperparameter that determines how long the | 25
model trains and how many times it updates its parameters.

N-folds Represents a partition or a subset created during the division of | 5

the dataset.

5. Results and Discussion

This section presents the outcomes of our methodology, highlighting the efficacy of our ViT-based
approach, integration of K-FCV, and Grad-CAM algorithm. We discuss the achieved results in detail
and analyze the strengths and challenges encountered during our experiments.

5.1. Performance Evaluation Metrics

Our XG-ViT method’s performance was evaluated using several key metrics to assess its effectiveness
in image classification tasks. These metrics provide a comprehensive view of model performance across
different aspects:

« Precision: Precision measures the accuracy of positive predictions. It is calculated as:

TP
Precision = ——— 6
TP+ FP (©)
where TP (True Positive) and FP (False Positive) represent correct and incorrect positive predic-
tions, respectively.
+ Recall: Recall measures the proportion of correctly predicted positive instances out of all actual
positive instances. It is defined as:

TP
R@C(lll = m (7)

where FN (False Negative) represents instances incorrectly classified as negative.
+ F1 Score: The F1 score is the harmonic mean of precision and recall, providing a balance between

the two metrics:

Precision x Recall
F18 =2 8
core % Precision + Recall ®)




« Accuracy: Accuracy indicates the proportion of correctly classified instances among all instances:

TP+TN
TP+TN+ FP+FN

©)

Accuracy =

where TN (True Negative) represents correctly classified negative instances.
« Top 5 Accuracy: This metric measures the percentage of samples for which the correct label is
among the top 5 predicted labels. It is computed as:

Top 5 Accuracy = (%) x 100 (10)

where C' is the number of samples correctly classified among the top 5 predictions, and N is the
total number of samples.

+ Loss: Loss quantifies the difference between predicted values and actual labels in the dataset,
providing a measure of model performance:

These metrics collectively assess the performance of our XG-ViT model, providing insights into its
classification accuracy, predictive power, and robustness.

5.2. Experimental Results

Our experimental results demonstrate the performance of the XG-ViT model across various evalua-
tion metrics. The model achieved a mean accuracy of 91.30%, precision of 90.64%, recall of 90.56%,
training time of 31:56 min, test top-5 accuracy of 99.92%, loss of 22.86%, and F1 score of 90.51%. These
metrics collectively indicate the model’s robust performance in classifying Fashion MNIST dataset, as
summarized in Table 4.

In analyzing the ViT results, we noted a significant disparity between training and testing accuracies.
While the training accuracy reached 96.54%, the testing accuracy was 91.30%. This discrepancy suggests
that ViT trained on the Fashion MNIST dataset struggles with generalization to new data, indicating
potential overfitting. To validate our model’s generalizability, we employed a 5-fold cross-validation
method. This method effectively mitigates overfitting and enhances the robust utilization of the Fashion
MNIST dataset. Through iterative evaluations with varying k values, we consistently found optimal
results when k£ > 5. Figure 3 illustrates the progression of model evaluation across different k values
up to 5. Moreover, this underscores the effectiveness of leveraging the Fashion MNIST dataset to its
fullest extent, resulting in improved performance for image classification task.
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Figure 3: Performance evaluation of ViT model with 5-FCV.

As illustrated in Table 4, the application of k-FCV notably enhanced the performance of the ViT model.
We observed significant improvements across key metrics: accuracy improved to 92.83%, precision to



92.87%, recall to 92.65%, training time reduced to 20 minutes and 39 seconds, top-5 accuracy reached
99.94%, and the F1 score increased to 92.63%. Moreover, the loss value decreased substantially to 21.13%.
As the number of epochs increased, we observed improved performance. However, this also resulted
in a significant increase in processing time. Therefore, it is essential to find a balance to enhance
performance while reducing execution time.

Following the implementation of k-FCV, we conducted an ablation experiment by integrating the Grad-
CAM algorithm with ViT and k-FCV. Interestingly, our experiment revealed no significant variations
in the results. This experiment confirmed that the inclusion of Grad-CAM did not substantially affect
the performance of our method. Instead, its primary role was to enhance the interpretability of our
model’s decision-making process. The integration of Grad-CAM has proven instrumental in elucidating
the critical regions within input pictures that influence the final classification of our EViT method. By
leveraging Grad-CAM, we visually inspect these pivotal regions, providing a transparent portrayal of
their impact on the model’s decisions. This integration enhances transparency and instills confidence
in the reliability of our model’s predictions, as demonstrated in Figure 4.

Original 1 QOriginal 2 Original 3 Original 4

@011

After Grad-CAM 1 After Grad-CAM 2 After Grad-CAM 3 After Grad-CAM 4 After Grad-CAM 5
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Figure 4: Correct attention regions of the model in the test images.

Original 5

5.3. Discussion

Our study firmly establishes the superiority of the ViT model over CNNs. The self-attention mechanism
in ViTs enhances its ability to capture semantic relationships across long distances, thereby significantly
improving task performance. Importantly, existing research often lacks information on the execution
times of CNNs, which is crucial for computationally efficient applications. CNNs, with their localized
computation nature, may experience prolonged execution times when applied to complex architectures.
In contrast, ViTs proficiency in handling global information suggests their potential to mitigate these
challenges, opening up new possibilities for resource-intensive image processing applications.

In important aspects beyond accuracy, our suggested XG-ViT model performs better than not just
our baseline ViT (Table 4) but also a number of approaches found in the literature (Table 3). Even
though some techniques are more accurate than others, XG-ViT has better explainability thanks to
Grad-CAM, which gives users a visual glimpse into the model’s decision-making process and makes
the results easier to understand and believe. Furthermore, in order to present a complete picture of its
performance, XG-ViT makes use of a wide range of assessment metrics, including accuracy, precision,
recall, F1 score, loss, training time, and test top-5 accuracy. This diversity guarantees that the model is
assessed from several angles, such as its capacity to reduce false positives, identify pertinent examples,
strike a balance between precision and recall, and monitor training efficiency and prediction mistakes.
By lowering overfitting and enhancing generalizability, K-fold cross-validation enhances the model’s
robustness and guarantees dependability across various data subsets. Thus, XG-ViT shows itself to be a
versatile and adaptive model that works well for real-world apparel detection tasks where robustness,
explainability, and consistent performance are crucial.



Table 3
Existing approaches in literature performance.

References Method Accuracy (%)
[22] CNN 93.56

[23] MCNN15 94.04

[24] OCFormer 92.71

[25] PatchRot 92.6

[26] PatchSwap 92.6

[27] MADPL-net 91.24

[28] ViT 95.25

[29] MLPEPS 90.44

We experimented on two additional datasets, Deep Fashion [37], which has 68,000 images (58,000
for training and 10,000 for testing) across 50 categories, and FGVCx Fashion [17], which has 55,000
runway images (50,000 for training and 5,000 for testing) across 50 categories, in order to evaluate the
generalizability of our method. These datasets are particularly difficult for classification tasks because
they include high-resolution photographs with complicated backgrounds and substantial variation in
stance, lighting, and apparel.

In comparison to the other two datasets, our results, which are summed up in Table 4, show a
discernible performance gain on the Fashion MNIST dataset. There are several reasons for these
variations in performance. First off, the Fashion MNIST dataset features pictures of distinct apparel
items against consistent backdrops, which probably made our method’s classification task easier.
Secondly, the Fashion MNIST dataset shows a lower training time while being larger (70,000 pictures
total; 60,000 for training and 10,000 for testing). The reason for this is that the pictures were relatively
simple (lower resolution, 28x28 pixels), which allowed for faster processing, and the extraction of
visual information required a less complicated convolutional model. The performance might have also
been affected by the fact that the class distribution in Fashion MNIST seems to be more balanced than
in the other datasets. Finally, the presence of intricate elements like patterns or accessories in these
photos, along with variations in annotation quality or selection biases in the Deep Fashion and FGVCx
Fashion datasets, may have added to the longer training times and poorer performance. We can better
understand why our method performed differently across datasets by looking at these characteristics,
which increases our confidence in its capacity to generalize.

Table 4

Comparison of the Performance to ViT of different datasets.
Method Accuracy (%) | Precision (%) | Recall (%) | Training time | Test Top 5 accuracy (%) | Loss (%) | F1 score (%)
ViT + Fashion MNIST 91.30 90.64 90.56 31min: 56sec 99.92 22.86 90.51
XG-ViT + Fashion MNIST 92.83 92.87 92.65 20min: 39sec 99.94 21.13 92.63
XG-ViT + Deep Fashion 90.12 87.32 88.15 50min: 29sec 95.02 43.02 89.71
XG-ViT + GVCx Fashion 88.23 81.13 80.35 34min: 22sec 94.13 38.22 81.45

6. Conclusion

In conclusion, this research highlights the effectiveness of employing the ViT model with the Grad-CAM
method and K-FCV method for fashion MNIST classification, particularly in the realm of sustainable
fashion. Our study demonstrates the capability of our approach to achieve high accuracy in image
classification tasks. The Grad-CAM provides valuable insights by highlighting crucial regions in images
that influence classification decisions, while K-FCV ensures robust model generalization and helps
mitigate overfitting. Our experiments underscore the approach’s resilience to hyperparameter tuning,
showecasing its effectiveness in handling diverse classes and intricate image features. Looking ahead,
we plan to explore the applicability of our method across various domains to ensure its scalability
and broader utility in future research endeavors. In particular, we aim to apply this methodology in



healthcare applications, especially for the skin skin disease recognition tasks, where explainability and
reliable predictions are critically important.
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