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Abstract 
This study explores using control strategies to reduce overall building energy load. According to the 
literature review, most researchers used complex model-based methods or less effective Q-learning. The 
paper introduces a new technique for Heating, Ventilation, and Air Conditioning system control in mid-
sized office buildings, leveraging an intelligent reinforcement learning controller built upon the model-free 
Proximal Policy Optimization algorithm. Our methodology integrates EnergyPlus building simulations, 
enabling an accurate and dynamic representation of system behavior across various control scenarios, with 
a specific focus on supply air temperature regulation. To refine our control strategy, we developed a 
Gymnasium co-simulation environment, which served as a robust platform for implementing and 
optimizing reinforcement learning algorithms. The performance of our developed deep reinforcement 
learning controller was evaluated against a traditional controller that employed an outdoor air temperature 
reset approach. The results revealed a substantial 27.8 % improvement in energy savings achieved while 
maintaining comfortable indoor temperature, humidity, and CO2 concentration levels. The reinforcement 
learning methodology demonstrates the potential to make sophisticated control strategies more accessible 
and easier to deploy in real-world building management systems. This study emphasizes the synergy 
between AI and building control systems, facilitating the adoption of intelligent energy management 
solutions in practical scenarios. In contrast to traditional model-based optimization techniques, deep 
reinforcement learning operates without the need for precise mathematical models of the physical system. 
Instead of relying on complex equations, control decisions are derived directly from the observed 
relationships between the actions taken and their subsequent effects on the system's state. 
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1. Introduction

Buildings are a major contributor to global energy consumption and CO2 emissions, accounting for 
about 30 % compared to other consumers. This significantly affects climate change and forces to 
build new green (energy-efficient) buildings and work on renovation plans for existing buildings to 
meet energy efficiency targets. In old buildings, it is essential to use control strategies or policies that 
can reduce overall energy consumption [1].  

Building management systems often depend on predefined rule-based thresholds and simple 
heuristics, limiting their ability to optimize energy consumption effectively. Smart regulation 
techniques, such as model predictive control (MPC) and reinforcement learning (RL), present 
compelling options and have demonstrated significant capability to outperform conventional 
approaches. MPC requires explicit physics process modeling in the building system, which can be a 
very complex problem. Building systems can also be represented using Semantic Web Technologies 
that can standardize different existing equipment vendors and sequence control strategies [2]. 
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In RL, the agent (the demand response controller) discovers the best strategy of action by learning 
from its experiences through trial and error instead of depending on pre-programmed instructions. 
This model-free characteristic makes RL highly adaptable for tackling control and optimization 
challenges, even when dealing with systems that are not fully understood or where information is 
limited. 

Deep RL (DRL) represents a more sophisticated evolution of this approach, consolidating deep 
learning (DL) with RL principles. By learning from data, DRL can uncover complex patterns and 
automatically optimize control policies. Numerous studies have demonstrated that both MPC and RL 
can lead to significant energy savings in buildings without compromising occupant comfort. These 
findings highlight the potential of these advanced control techniques for creating more sustainable 
and efficient building systems. 

This research goal is to investigate how a controller (agent) with advanced Heat, ventilation, and 
air conditioning (HVAC) control policy based on a novel model-free RL algorithm can improve 
energy efficiency compared to traditional methods. 

Tasks include analyzing the state of art for control strategies, finding methods commonly used, 
determining issues in current approaches, choosing the appropriate algorithm, integrating it into the 
co-simulation software framework, training and tuning of optimal control policy, and comparing the 
energy savings and user comfort with baseline method.  

This research introduces a novel approach by developing an RL agent using an advanced Proximal 
Policy Optimization (PPO) algorithm for supply air temperature control, aiming to enhance multiple 
optimization goals. We tackle the challenges associated with MPC strategies by employing a data-
driven RL approach that doesn't require explicit system physics process modeling, simplifies and 
speedup development and utilization in real case scenarios, where there can be a diversity of different 
building structures and creating models for individual buildings is not reasonable as it is time, 
resource and cost consuming.  

2. Literature review 

Researchers extensively explored predictive control methods for HVAC systems, demonstrating their 
capability to decrease building energy consumption and enable more adaptable system operation. A 
recent study [3] showcased a simple, affordable, and scalable method to implement MPC in 
commercial buildings with older equipment, replacing traditional weather-based controls. The 
system cleverly uses the ventilation exhaust temperature to estimate the indoor temperature. Testing 
showed promising results, including a 33 % reduction in energy costs during a one-month spring 
period.  

As a model-free, real-time learning strategy, RL enables agents to engage directly with their 
surroundings, capturing uncertainties as they happen. In [4], the authors presented a comprehensive 
review of RL applications in the energy sector, categorizing existing research and analyzing their 
strengths and limitations. The review highlights that while many studies demonstrate the potential 
of RL for improving energy system performance by 20 %, there is still room for improvement. The 
authors observed a lack of utilization of advanced DRL techniques and a reliance on simpler methods 
like Q-learning (QL). While data-driven approaches like RL offer a promising alternative, the 
adoption of RL in complex energy systems is not straightforward.  

In [5], the authors introduced a novel approach for managing home energy systems that combines 
MPC with RL. The system focuses on optimizing energy use in a house. The primary goal is to 
leverage the house's thermal properties and battery storage to shift energy consumption away from 
peak pricing periods and capitalize on selling excess solar energy back to the grid. To address 
challenges due to model inaccuracies, uncertainties in weather forecasting, and unpredictable user 
behavior, the researchers developed a solution that uses a parameterized MPC framework to 
approximate the optimal energy management strategy. This framework is continually refined using 
a compatible delayed deterministic actor-critic algorithm, a type of RL method. Simulations 



demonstrated that their approach effectively balances user comfort with economic considerations, 
even when faced with imperfect models and unpredictable real-world factors.  

Research [6] explores the potential of RL as a more intelligent and energy-efficient alternative to 
the commonly used simple strategies based on predefined if-then rules. The authors presented a 
multi-agent RL framework that optimizes HVAC operation to minimize energy use while 
simultaneously incorporating occupant feedback on thermal comfort. The study investigates 
techniques like parameter sharing among multiple agents and various pre-training strategies. The 
results demonstrate that this framework can save controller training time and achieve notable energy 
savings, around 6 % for an entire building and up to 8 % for a single room, compared to traditional 
rule-based control. Importantly, these energy reductions are achieved without compromising 
occupant comfort, as feedback remains comparable to or even better than the baseline system. 

Study [7] introduced a new method for optimizing the energy performance and thermal comfort 
of multizone buildings by using a combination of Artificial Intelligence (AI) and rule-based control 
for the central Air Handling Unit (AHU). The researchers first trained a DRL agent to make energy-
efficient decisions regarding the AHU's supply water temperature, chiller valve, and economizer 
damper. To make this complex AI logic applicable in real-world building automation systems, they 
developed a method for extracting clear, actionable rules from the DRL agent's decision-making 
process. Results showed that the rule-based controller derived from the AI agent achieved almost the 
same energy efficiency while being much simpler to implement. This approach demonstrates the 
potential of combining AI and rule-based systems to make advanced energy management more 
accessible for real-world applications. 

Occupants' unpredictable behavior, especially hot water usage patterns, presents a significant 
challenge in optimizing building energy systems. Traditional control systems often rely on 
conservative, energy-intensive strategies to ensure user comfort. Study [8] employed a model-free 
RL approach, allowing the system to be transferable to different buildings without requiring detailed 
building-specific models. The RL agent is trained offline using a stochastic hot water use model to 
simulate realistic occupant behavior and accelerate the learning process. The framework's 
effectiveness was validated using real-world data collected from a residential house, demonstrating 
significant energy savings (about 20 %) compared to conventional rule-based control systems. These 
energy savings were achieved without compromising occupant comfort or hot water availability. 
The authors highlight the potential of RL-based control systems to optimize building energy 
management by effectively learning and adapting to the dynamic and often unpredictable behavior 
of occupants. 

Research [9] addresses the potential of demand response in residential buildings for achieving 
significant energy savings. Recognizing the need for fully automated energy management systems 
to unlock this potential, the authors proposed an approach using RL. They formulated the energy 
management system scheduling task as an RL problem, arguing that it can be effectively addressed 
by dividing appliances into clusters and optimizing each cluster's schedule independently. Compared 
to existing methods, this approach offers several advantages: it eliminates the need for explicitly 
modeling user satisfaction, enables the energy management system to proactively initiate tasks, 
allows users to make more flexible requests, and reduces computational complexity. The study 
demonstrated the application of QL to illustrate the effectiveness of their proposed framework.  

In [10], the authors applied a DRL approach to optimize energy management within smart 
buildings. They authors established a comprehensive framework for the building energy 
management system, modeling various components such as energy storage, photovoltaic generation, 
electric vehicle charging, and household appliances. The authors developed a QL model 
incorporating relevant operational restrictions. Simulations validated the effectiveness of the 
proposed approach. The results have shown that the DRL-based energy management strategy can 
effectively meet the energy demands of the intelligent building while ensuring efficient energy 
allocation. The proposed method outperforms other control algorithms, maintaining errors within 
an acceptable range of 10 %. 



Traditional building management systems struggle to handle the increasing complexity and 
diversity of data from various sources, such as sensors and occupant schedules. In [11], the authors 
addressed the challenge of managing indoor air quality in buildings using a knowledge graph-
enhanced DRL approach. They proposed using semantic web knowledge graphs to represent diverse 
building information related to indoor air quality in a structured and interconnected manner. This 
knowledge graphs-based approach captures the relationships between various factors influencing 
indoor air quality, providing a more comprehensive and context-aware representation of the 
building's state. The authors outlined that this approach simplifies building management, reducing 
the complexity faced by facility managers in maintaining optimal indoor air quality. 

In [12], the authors applied an RL-powered energy management system designed for smart 
buildings operating within a smart grid, where buildings can intelligently exchange energy with the 
grid, incorporating local renewable sources like solar panels, energy storage systems, and electric 
vehicle charging stations with vehicle-to-grid capabilities. The proposed system described the energy 
management task as Markov decision process (MDP), defining the possible states, actions, transition 
probabilities, and rewards. A QL algorithm was employed to enable the system to learn optimal 
energy dispatch decisions over time, adapting to uncertain factors such as building load demands, 
charging requirements, and solar energy generation. Simulations using real-world data 
demonstrated the algorithm's effectiveness in reducing energy costs compared to existing methods 
and random decision-making. The system effectively minimizes expenses. The authors outlined that 
this RL-based approach can be applied to various smart grid environments, including microgrids and 
industrial settings.  

Research [13] introduced a multi-agent control system for optimizing building comfort and 
energy efficiency. Their framework consists of three independent agents, each responsible for 
managing a specific aspect of indoor environmental quality: air quality and visual and thermal 
comfort. A stochastic model, leveraging probabilistic and evolutionary algorithms, estimates 
occupant presence based on CO2 levels. System parameters are represented using fuzzy logic to 
account for uncertainty. The control agents utilize Fuzzy QL to handle the continuous nature of the 
building's state and control actions. Simulations demonstrate the system's effectiveness, showcasing 
accurate occupancy estimation and significant energy savings of up to 56 % while maintaining decent 
levels of occupant comfort. 

The deep Q-learning (DQL) approach utilizes artificial neural networks instead of the traditional 
discrete Q-table in conventional QL, allowing it to investigate more extensive action and state spaces. 
In [14], the authors proposed a system based on a neural network-based QL algorithm, enabling it to 
learn and adapt to household energy consumption patterns intelligently, aiming to reduce peak 
energy demand and promote energy conservation in residential buildings. By employing an 
advanced Neural Fitted QL technique, the system makes agile and efficient decisions regarding 
energy usage, striking a balance between minimizing costs and maintaining comfort. Simulations 
using a classic Canadian home demonstrated the system's ability to significantly decrease energy 
consumption during peak hours, contributing to a smaller carbon footprint for residential dwellings. 
The authors outlined that widespread adoption of such an approach in residential areas could 
substantially reduce peak demand, leading to optimized resource allocation for utility companies and 
potentially lower energy tariffs for consumers. 

In [15], the use of DRL was investigated to optimize energy consumption scheduling in residential 
buildings. The authors explored DQL and Deep Policy Gradient (DPG) algorithms to determine their 
effectiveness in managing household energy usage patterns. The study examined two specific goals: 
decreasing energy costs and smoothing the overall energy consumption profile. The authors 
explored the impact of dynamic electricity pricing signals to actuate shifting energy use to off-peak 
hours. Through simulations using the Pecan Street dataset, the study demonstrated that a single DRL 
agent can effectively tackle multiple energy management objectives. The results showed that DPG 
outperforms DQL for real-time energy scheduling. However, using RL for energy management in 
actual buildings presents some challenges. The exploration phase for agents in a real building setting 
can result in higher operational costs and longer training durations. To overcome this, authors have 



applied the Transfer Learning (TL) approach in [16], which has shown promise as a way to make 
DRL more practical for managing building energy use. This is important because DRL often requires 
a lot of data and can be difficult to implement in real-world settings. They achieved enhanced 
temperature regulation and energy savings and, therefore, demonstrated the online TL as a viable 
way to make DRL controllers more scalable and practical for real-world building applications. 

Thus, this research will contribute to improving the development of robust energy-efficient 
control solutions. According to the literature review most researchers used less effective Q-Learning 
or complex model-based methods. Our research employs an advanced Reinforcement Learning 
control approach with a cutting-edge PPO algorithm to enhance building energy efficiency, 
maintaining multiple occupant comfort objectives. 

3. Methodology 

In our research, we applied an advanced model-free approach with Reinforcement Learning [17]. RL 
is a type of machine learning in which an agent (controller) learns the best way to solve a problem 
through a process of experimentation [18]. The controller learns by experiencing consequences, 
either positive or negative, based on its choices within the environment. The agent's learning process 
involves finding the best action to take in each possible state to maximize its overall reward [19]. 
The agent's goal is to develop a strategy that leads to the highest total reward over time. This involves 
a trade-off: the agent must balance exploring new and potentially better strategies with exploiting 
the knowledge it has already gained [20]. 

3.1. Proximal policy optimization 

We applied the Proximal Policy Optimization (PPO) algorithm, a flexible and widely used RL 
technique for solving control problems. Recently, the PPO algorithm has gained prominence and has 
been the standard RL algorithm at OpenAI since 2018. PPO algorithm has been utilized in various 
domains, including energy system scheduling. It shows superior fit to hyperparameters and 
enhanced training efficiency when compared to DDPG, along with delivering better objective 
function values. Researchers indicated that the PPO algorithm effectively explores continuous action 
spaces with a more stable update mechanism, resulting in lower operating costs than DDPG [21]. 

The PPO algorithm enhances the stability of RL agent training by preventing excessively large 
updates to the policy. It achieves this by employing a ratio that reflects the disparity between the 
current and previous policies and then clipping this ratio within a predetermined range. This clipping 
mechanism ensures that policy updates remain moderate, promoting greater stability during 
training. Essentially, PPO aims to improve training stability by restricting the extent to which the 
policy is altered in each training episode, thereby avoiding abrupt and potentially detrimental shifts. 

3.2. Markov decision process 

A number of researchers described optimal building control Reinforcement Learning tasks as Markov 
decision process (MDP), defining possible states, actions, transition probabilities, and rewards 
[22,23]. Accordingly, our RL problem can be structured as MDP defined by: 

• {S}  different possible situations the agent might encounter (state space) 
• {A}   actions the agent can take (action space) 
• Pa (st, st+1)  the probability of transitioning between states st and st+1 based on action a  
• Ra (st, st+1)   reward received after transition from state st to st+1 with action a  

At each time step t, the agent, following a policy 𝜋, reacts with the environment by taking an 
action at based on the observed state st according to (1) 

𝑎𝑡 = 𝜋(𝑠𝑡). (1) 



The environment responds to this action with a reward 𝑅𝑎𝑡
 value and then acquires a new state 

st+1 and provides the agent with a scalar reward 𝑅𝑎𝑡+1
.  The agent's goal is to discover the best 

strategy, denoted as , which leads to the highest total reward over a series of actions, as illustrated 
in (2)  

𝑚𝑎𝑥 E [∑ 𝛾𝑡𝑅𝑎𝑡
(𝑠𝑡, 𝑠𝑡+1)

∞

𝑡=0

], 
(2) 

where 𝛾  discount factor, determines the relative importance of rewards, 0 ≤ 𝛾𝑡 ≤ 1. 

3.2.1. State space 

For each step, the agent receives environment observations, which represent the state of the system 
at this time point according to (3)  

𝑠𝑡 = { 𝑇𝑜𝑢𝑡 , 𝑇𝑖𝑛, 𝐻𝑖𝑛, 𝐶𝑖𝑛, 𝑇ℎ𝑡𝑔_𝑠𝑝𝑡 , 𝑇𝑐𝑙𝑔_𝑠𝑝𝑡 , 𝐸ℎ𝑒𝑎𝑡𝑖𝑛𝑔_𝑙𝑜𝑎𝑑 , 𝐸𝑐𝑜𝑜𝑙𝑖𝑛𝑔_𝑙𝑜𝑎𝑑   }, (3) 

where Tout, Tin  temperature of outdoor air and room air, Hin  room air relative humidity, Cin 
 room air CO2 concentration, Thtg_spt, Tclg_spt  setpoint temperature for heating and cooling, 

Eheating_load  natural gas heating load, Ecooling_load  electricity cooling load. 
The DRL agent's decision-making process considered eight different variables, measured in the 

case study building during simulation with a time step of 15 minutes. These variables, along with 
their allowable ranges and units, are outlined in Table 1. 

Table 1 
State space variables 

Variable Min Max Unit Description 
Tout -40 40 °C Outdoor air temperature 
Tin 0 40 °C Room air temperature 
Hin 0 100 % Room air relative humidity 
Cin 0 100000 ppm Room air CO2 concentration 

Thtg_spt 0 30 °C Setpoint temperature for heating  
Tclg_spt 0 30 °C Setpoint temperature for cooling 

Eheating_load 0 28 kWh Natural gas heating load 
Ecooling_load 0 28 kWh Electricity cooling load 

3.2.2. Action space 

The agent makes actions at each time step t (every 15 minutes), representing the decisions for control 
of the building  HVAC system with heating and cooling devices. Within this study, the agent 
determines the optimal supply air temperature as a control variable that serves as the agent's 
mechanism for optimizing the energy efficiency, so actions at time step t can be represented as (4). 
The action space is discrete, with 100 possible actions.  In our study, these discrete actions are 
rescaled to a continuous range of 15.0 to 30.0, representing supply air temperature setpoint ranges. 

𝑎𝑡 = { 𝑇𝑠𝑎𝑡𝑡
}, (4) 

where 𝑇𝑠𝑎𝑡𝑡
 supply air temperature at time step t. 

3.2.3. State transition 

When the agent makes a control decision, it affects the state of the environment, potentially leading 
to a new situation. The transitioning to a particular new state depends not only on the action taken 



but also on various unpredictable factors within the environment. Modeling these transitions can be 
very complex due to the inherent uncertainty in how the environment responds [24]. However, DRL 
offers a way to sidestep this challenge by learning directly from experience. Instead of trying to 
explicitly model the probability of each transition, DRL uses neural networks to capture the effects 
of uncertainty based on the observed data. 

3.2.4. Reward function 

The main function of the DRL controller is to optimize the supply air temperature (Tsat) by regulating 
the actuator variable every 15 minutes.  The supply air temperature setpoint is within a range from 
15 °C to 30°C. The optimization process aims to minimize zone temperature discomfort, as well as 
maintain humidity within acceptable limits while minimizing energy consumption and CO2 level. 
The reward function Rt used for the DRL agent is provided in (5). By structuring the reward function 
in this way, the MDP seeks to identify energy management schedules that maximize the cumulative 
reward over time, leading to minimized operational costs. 

𝑅𝑡 = −(𝐸𝑝𝑒𝑛𝑎𝑙𝑡𝑦 + 𝑇 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 +  𝐻𝑝𝑒𝑛𝑎𝑙𝑡𝑦  + 𝐶𝑂2𝑝𝑒𝑛𝑎𝑙𝑡𝑦), (5) 
where:  
𝐸𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = (𝐸ℎ𝑒𝑎𝑡𝑖𝑛𝑔_𝑙𝑜𝑎𝑑 + 𝐸𝑐𝑜𝑜𝑙𝑖𝑛𝑔_𝑙𝑜𝑎𝑑), 

𝑇 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = {
min((𝑇𝑖𝑛 − 𝑇𝑐𝑙𝑔_𝑠𝑝𝑡), (𝑇ℎ𝑡𝑔_𝑠𝑝𝑡 − 𝑇𝑖𝑛)),  𝑖𝑓 (𝑇𝑖𝑛 <  𝑇𝑐𝑙𝑔_𝑠𝑝𝑡  𝑜𝑟 𝑇𝑖𝑛 >  𝑇ℎ𝑡𝑔_𝑠𝑝𝑡) 

0, 𝑒𝑙𝑠𝑒
 , 

𝐻 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = {
min((𝐻𝑖𝑛 − 40), (60 − 𝐻𝑖𝑛)),  𝑖𝑓 (𝐻𝑖𝑛 <  40 𝑜𝑟 𝐻𝑖𝑛 >  60) 

0, 𝑒𝑙𝑠𝑒
, 

𝐶𝑂2𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝐶𝑖𝑛 . 
 
The energy load reflects the overall energy used by building HVAC system, it combines the 

energy load of a natural gas meter (measures heating) and an electricity meter (measures cooling). 
Zone temperature discomfort is minimized by penalizing the deviations of zone air temperature (Tin) 
from heating setpoint temperature (Thtg_spt) and cooling setpoint temperature (Tclg_spt). When room 
temperature falls below the heating setpoint temperature, the penalty increases proportionally to 
how much it's too cold. However, when the temperature rises above the cooling setpoint 
temperature, the penalty increases proportionally, reflecting the discomfort of being too warm, 
particularly during summer periods when cooling is needed. For optimal humidity level, the penalty 
is applied whenever the humidity (Hin) goes outside its defined comfortable range of 40 % to 60 %. 
This penalty increases accordingly as the humidity moves further away from this allowed range. 

4. Development of RL agent 

This section describes the development of the RL controller that makes decisions based on its pre-
trained optimal policy and transmits control signals to the simulated HVAC system. We developed 
a DRL controller in Python 3.11 language, using Farama Foundation Gymnasium framework 0.28.1 
(fork of Open AI Gym). Gymnasium is specifically designed to develop and test RL algorithms using 
Gymnasium environments, a configurable space where agents iteratively interact with and learn 
from the environment via actions and rewards mechanisms under specified conditions and refine its 
control strategy.  

We developed a custom Gymnasium environment for EnergyPlus 24.2, a comprehensive building 
energy simulation engine that models energy consumption in buildings for various purposes, 
including heating, cooling, and ventilation. It has specified paths to selected medium office building 

We defined observation space 
according to (3), specifying appropriate EnergyPlus variables and meter names as Gym Box with 
possible value ranges according to minimum and maximum limits specified in Table 1. We 
implemented the action space defined in (4) as a discrete Gym space with 100 possible actions.  Then, 



these discrete actions are rescaled to a continuous range of 15.0 to 30.0, representing supply air 
temperature setpoint ranges. The schema of the constructed co-simulation is described in Figure 1. 

Figure 1: Constructed RL co-simulation with EnergyPlus and Gymnasium. 

The reward function was constructed according to (5) to quantify the effectiveness of actions 
taken by the agent in achieving desired objectives, such as minimizing energy consumption while 
maintaining comfort levels, it is crucial in taking control of the learning process.  

We used the EnergyPlus Python API programmatic access to communicate with the EnergyPlus 
simulation process, which provides integration capabilities with the Gymnasium framework, 
allowing the Gymnasium Environment to send commands to and receive data from EnergyPlus 
simulations. This integration defines the bidirectional communication channel, where the evolving 
state of the simulation is continuously fed back into the learning algorithm, and actions proposed by 
the algorithm are applied in EnergyPlus. Using Ray RL Library 2.20.2 (RLib), the algorithm is then 
configured to operate within this custom environment. RLib is an open-source high-level library that 
provides sophisticated, production-ready, scalable RL algorithms, including the PPO algorithm and 
many others.  

For configuring the PPO algorithm, we employed the following set of parameters.: the discount 
factor gamma=0.95, learning rate lr=0.003, Adam optimizer was applied, KL divergence start 
coefficient kl_coeff=0.3, train_batch_size=2880, sgd_minibatch_size=360, value function loss 
coefficient vf_loss_coeff=0.01, clip parameter clip_param=0.2,  use critic as baseline use_critic=true, 
use the Generalized Advantage Estimator (GAE) use_gae=true, Long Short-Term Memory (LSTM) 
layer was enabled to improve performance with temporal dependencies. The Torch framework was 



used for training. A number of training and validation cycles were conducted to refine the model, 
involving iterative simulation runs where the agent's policies continually evolve based on feedback 
from the environment. The training loop continues until a specified number of timesteps=2880000 
(1000 episodes) have been completed, after which the best-performing policy is saved. 

Our developed co-simulation application has a console interface. The sample output with the 
current iteration, episode, and reward is provided in Figure 2. EnergyPlus simulation settings include 
options for generating CSV output files containing simulation results. eplusout.csv  is 
generated at the end of the simulation so we can review the state of output variables, setpoints, and 
meters during all steps of the simulation. This data was used to create charts and visualize the 
simulation process. Ray library logs results to the Tensor Board allowing the analysis of the training 
metrics during all iterations.  

 

Figure 2: Developed co-simulation application console output. 

5. Results 

Our experiments were implemented on an Asus Vivobook Pro laptop supplied with AMD Ryzen 7 
6800H 8 core processor (3.20 GHz), 32 GB RAM, and AMD Radeon 680M 12 core graphics processor 
with Windows 11 Pro operating system.  

The study utilized a simulated building environment using EnergyPlus 24.2.0. We used a medium 
office building model from OpenStudio Application 1.8.0 example models illustrated in Figure 3. We 

UKR_LV_Lviv.Intl.AP.333930_TMYx.2009-2023.epw
downloaded from the Repository of Building Simulation Climate Data. The building has one story 
with 3m height, four spaces with 10m width and 10m length each, it is constructed with 100mm brick 
exterior walls, 100mm lightweight concrete roof, two windows, and one metal door.  

 

Figure 3: Medium office building model used for simulation. 



The building model has an air loop HVAC system controlling a single thermal zone represented 
in Figure 4.  

 

Figure 4: Air Loop HVAC system. 

The system incorporates an electric-powered cooling mechanism. For heating, the air circulation 
system utilizes a gas-operated heating element. A simple fan model circulates air through the system. 
The outdoor air system is responsible for managing the outdoor air intake and ventilation for the 
main air loop. It controls the mixing of fresh outdoor air with return air, which has already circulated 
through the building. This mixed air stream then gets conditioned (cooled or heated) before being 
supplied back to the zones. The system uses constant airflow to the zone without the ability to adjust 
airflow or reheat. The model has people, lights, and electric equipment load definitions for each 
space. Schedule for lightning, number of people, electric equipment, and cooling/heating setpoints 
covers different hours of the day, working days, and holidays.  

We performed a series of experiments with the training of our DRL agent hyperparameters tuning 
within the developed co-simulation environment, starting with a short simulation period duration 
(1 day), 96000 time steps, and 1000 episodes, this allowed the PPO algorithm more frequent policy 
updates, making it easier for the agent to learn the daily patterns, reduce the variance in experiences 
and therefore adjusted reward function can provide a more consistent learning signal. We followed 
a curriculum learning approach with gradually increased simulation duration as the agent 
performance improved. This speeds up the development and testing cycle but requires extending to 
longer simulation periods as a refined approach to capture all the complexities of HVAC control. 
EnergyPlus simulation takes a one-month period, from April 1 to April 30 2023.  with timestep=4 (15 
minutes), other model and simulation parameters are provided in Table 2. 

Following this training phase, the effectiveness of the learned control strategy was evaluated by 
deploying it and controlling our building model over a month period. The DRL controller 
performance was assessed by analyzing the total accumulated rewards. Overall, the results 
demonstrated the controller's capability to effectively optimize multiple objectives defined in (5) 
concurrently. 

After the training phase, the DRL controller performance was compared with a baseline supply 
utdoorAirReset Setpoint Manager. 

This manager provides a good balance between the warmest and coldest strategies based on the 
outdoor air temperature reset method. The setpoint manager was configured to dynamically adjust 



the supply air temperature based on outdoor conditions, with a setpoint of 12.8 °C when the outdoor 
temperature is 15.6 °C or below, gradually increasing to a setpoint of 18.3 °C when the outdoor 
temperature reaches 26.7 °C or above, providing efficient cooling while maintaining comfort across 
a range of weather conditions.  

Table 2 
Building model simulation parameters 

Parameter Value Unit 

People per space floor area 0.05 people/m2 

Carbon dioxide generation rate 0.000038 L/s ∙ 𝑊 
Watts per space floor area (lightning) 10 W/m2 

Watts per space floor area (electric equipment) 5 W/m2 

Watts per space floor area (printer) 200 W 
Setpoint for heating (from 22 PM to 6 AM) 15.6 °C 
Setpoint for heating (from 06 AM to 22 PM) 21 °C 
Setpoint for cooling (from 22 PM to 6 AM) 26.7 °C 
Setpoint for cooling (from 06 AM to 22 PM) 24 °C 
Algorithm for heat balance  Conduction transfer function  
Algorithm for room air heat balance  Third order backward difference  
Inside surface convection algorithm TARP  
Outside surface convection algorithm DOE-2  
Number of time steps per hour 4  

 
The results of the supply air temperature control policy by RL agent and baseline for the first 

week of April are represented in Figure 5, for comparative analysis, we included data on temperature 
thresholds for heating and cooling systems, as well as a graph depicting external air temperature 
variations. 

 
Figure 5: Supply air temperature control policy for 1 week period by RL agent and baseline. 

It can be observed that on April 1, at the start of the day working hours both controllers tried to 
increase the supply air temperature to raise room temperature inside comfort ranges. Then, during 
the day, the supply air temperature goes down as outdoor temperature increases. On April 3, during 
working hours, the RL agent tries to increase the supply air temperature to satisfy room temperature 



inside heating and cooling thermostat setpoints. On the other hand, the baseline controller tries to 
decrease the supply air temperature to the minimum value, providing the room temperature at the 
minimum comfort level. A comparison of room comfort conditions, including room temperature, 
humidity, and air concentration, is represented in Figure 6. 

 
Figure 6: Zone comfort comparison. 

The cumulative sum of the natural gas load established by our RL agent and the conventional 
control system utilizing a setpoint manager is illustrated in Figure 7. As we can see, the RL algorithm 
demonstrates superior efficiency, with 962.5 kWh of energy load per month. This represents a 
significant 27.8 % energy reduction compared to the standard controller, which utilizes 1248.8 kWh 
over the same period while maintaining an appropriate room comfort level. Our research shows that 
proposed advanced control strategies, specifically based on the DRL approach, can make buildings 
use energy much more efficiently. 

 
Figure 7: Cumulative natural gas load by RL agent and baseline. 

Conclusion 

This research proposes an innovative approach to Heating, Ventilation, and Air Conditioning system 
management in medium-sized office buildings, employing a smart RL controller based on a model-



free Proximal Policy Optimization algorithm. Our framework integrates EnergyPlus building 
modeling, which facilitates a precise and dynamic description of system behavior within different 
control tasks, specifically focusing on supply air temperature regulation. We developed a 
Gymnasium co-simulation environment to refine the custom control strategy using RL algorithms. 
The developed DRL controller's performance was benchmarked against a conventional controller 
employing an outdoor air temperature reset method. Results demonstrated a significant 27.8 % 
enhancement in energy savings achieved while maintaining comfortable indoor temperature, 
humidity, and CO2 concentration levels. According to [25] authors used fuzzy logic for similar smart 
home optimization task which give efficiency gain in 25.7%, which indicates  that our RL approach 
with PPO algorithm provides similar or better results. 

RL methodology presents the potential to make sophisticated control strategies more 
approachable and easier to deploy in real HVAC systems. Compared to traditional model-based 
optimization, DRL is model-free and does not require precise mathematical representations of the 
physical system. Instead of relying on intricate equations, control decisions are derived directly from 
the observed connections between actions taken and their resulting effects on the system's condition. 
The study highlights the promising synergy between the RL approach and HVAC control, making 
the employment of smart energy management applications in real-world scenarios. 

The limitation of the proposed model is it does not take into account the frequency of turning the 
controller on/off, since frequent switching of the heating element can lead to its failure. This can be 
overcome by extending reward function to adding penalty to frequent changes to the actuator 
variable that will provide smoother behaviour without abrupt controller utilization. 

Future research will explore multi-agent reinforcement learning approaches to coordinate 
multiple HVAC zones simultaneously, potentially improving system-wide energy efficiency and 
occupant comfort. Additionally, investigating the scalability of the RL approach to large commercial 
buildings with complex HVAC architectures and exploring integration with smart grid systems for 
demand response optimization represent promising avenues for advancing this technology. 

Declaration on Generative AI 

The author(s) have not employed any Generative AI tools.  
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