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Abstract 
Traditional Deep Packet Inspection (DPI)-based cybersecurity solutions face serious issues due to the 
growing amount of encrypted traffic in contemporary communication systems. Intelligent, non-invasive 
detection techniques are essential since attackers use encrypted connections to hide Distributed Denial of 
Service attacks. This research uses unsupervised learning with autoencoder neural networks to provide an 
anomaly-based method for detecting DDoS attacks in encrypted network traffic. The software picks up on 
typical network traffic patterns and recognises any deviations that might point to possible threats. We go 
over the model design, evaluation measures, dataset preprocessing, and system architecture. The suggested 
approach ensures efficacy and privacy preservation by achieving high detection accuracy without the need 
for packet decryption. The outcomes show that deep learning-based anomaly detection methods are feasible 
to use in encrypted communication settings. 
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1. Introduction

Modern cyber threats are evolving rapidly as hackers increasingly leverage encrypted
communication channels to hide complex attacks and bypass detection systems. Among these, 
Distributed Denial of Service (DDoS) attacks remain particularly disruptive and difficult to mitigate
especially when embedded in encrypted traffic streams [1, 27]. Traditional detection methods like 
Deep Packet Inspection (DPI) become less effective or infeasible due to privacy constraints. 

This study focuses on anomaly-based detection, which does not rely on signature matching or 
packet content inspection but instead identifies deviations from learned normal traffic behavior [2]. 
We explore the use of autoencoder neural networks an unsupervised deep learning technique for 
detecting DDoS attacks within encrypted communications. Leveraging dimensionality reduction 
techniques [16 18], the system autonomously learns baseline traffic patterns and detects abnormal 
activity with high sensitivity. 

2. Related works

With the rise of encrypted communication, attackers increasingly exploit it to evade detection,
making modern cyber threats more complex. Among them, Distributed Denial of Service (DDoS) 
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attacks remain particularly disruptive, especially when hidden within encrypted traffic [1]. 
Traditional methods like Deep Packet Inspection become less viable due to privacy concerns. 

Recent progress in deep learning, particularly with autoencoders, has opened new possibilities 
for cybersecurity [16]. Neural networks enable effective dimensionality reduction and anomaly 
detection in high-dimensional traffic data [17], supported by robust theoretical frameworks [18]. 

As encrypted traffic grows, there is a pressing need for detection techniques that respect privacy. 
This study focuses on anomaly-based detection, which identifies deviations from learned normal 
behavior instead of analyzing content or signatures [2]. Specifically, we explore autoencoder neural 
networks to detect DDoS attacks in encrypted channels. These models autonomously learn baseline 
patterns and detect anomalies with high sensitivity. 

The proposed method is scalable and adaptable [28], requiring fewer manual updates than rule-
based systems. Retraining with new data enhances resilience to evolving threats. Integration into 
security operations centers (SOCs) [29] can improve situational awareness, acting as an early 
warning system for encrypted traffic anomalies. 

As encrypted communication becomes dominant, intelligent anomaly-based detection is both a 
technical solution and strategic necessity. 

3. Anomaly-based detection of DDoS attacks in encrypted network 
traffic using autoencoder neural networks 

The suggested approach uses a single-layer autoencoder neural network trained on features taken 
from encrypted network data as part of an anomaly detection framework. Data collection and 
preprocessing, feature extraction, model training, and evaluation are the four main phases of the 
entire procedure (Figures 2). 

 
Figure 1: System overview. 

3.1. Data collection and preprocessing 

To make sure it was relevant to current traffic patterns, we combined simulated and publically 
accessible datasets. The CIC-DDoS2019 dataset was chosen as the main source because it covers a 
variety of DDoS vectors, such as SYN floods, UDP floods, and HTTP GET floods, and contains both 
encrypted and unencrypted traffic samples [9].  

Five-tuple identifiers (source IP, destination IP, source port, destination port, and protocol) were 
used to split encrypted traffic samples into network flows after they had been filtered using protocol 
information (such as TLS or SSH). During cleaning, redundant flows and corrupted packets were 
eliminated. To guarantee homogeneity in the feature space, we used min-max scaling to normalise 
all numerical values to the range [0,1]. 

3.2. Feature extraction 

We used statistical features obtained from flow metadata because it is impossible to perform deep 
packet inspection on encrypted data. Flow duration, number of packets per flow, average and 
standard deviation of inter-arrival time, average packet size, bytes per second (throughput), and 



directional entropy (inbound vs. outbound packet variance) are among the features that were chosen 
based on previous research.  

These characteristics record patterns of behaviour that change when an attack occurs. For 
example, abrupt bursts of brief flows with consistent packet sizes and short inter-arrival durations 
are frequently used in DDoS assaults. 

3.3. Autoencoder architecture and training 

The anomaly detection core consists of a single-layer autoencoder neural network, trained in an 
unsupervised manner using only benign traffic samples. The network structure is as follows: 

• Input Layer: 10 neurons, corresponding to the number of extracted features. 
• Hidden Layer (Encoder): 5 neurons, compressing the input space into a lower-dimensional 

representation. 
• Output Layer (Decoder): 10 neurons, reconstructing the original input. The activation 

function used is ReLU for the encoder and sigmoid for the decoder. The network is trained 
using mean squared error (MSE) as the loss function and optimized via the Adam optimizer 
with a learning rate of 0.001. The training process spans 100 epochs with early stopping to 
avoid overfitting. 

Autoencoder Architecture Diagram (Figures 2): 

 

Figure 2: Autoencoder Architecture Diagram. 

3.4. Autoencoder network design 

A single-layer autoencoder neural network that has only been trained on safe encrypted traffic data 
forms the basis of the suggested anomaly detection method. This design was selected because it 
strikes a compromise between interpretability [30], computational efficiency, and simplicity
particularly in real-time applications. 

Ten normalised statistical features taken from encrypted flow metadata are sent to the 
autoencoder's input layer. The network may concentrate on macro-level communication patterns 
without the need for payload examination thanks to these characteristics, which provide a concise 
numerical summary of flow behaviour. 

The encoder compresses the input data into a latent representation using a single hidden layer 
with five neurons and ReLU activation. This bottleneck layer forces the model to learn an efficient 
encoding of the data distribution. The decoder then reconstructs the original input using a mirrored 
structure, with a final sigmoid activation layer to match the [0,1] scaling of the input features. 

Mathematically, the encoder function can be defined as: 

𝑧 = 𝑓(𝑊𝑥 + 𝑏) (1) 

Where: 



• x is the input feature vector, 
• W and b are the learned weights and biases, 
• f(.) is the ReLU activation function, 
• z is the latent representation. 

The reconstruction output \hat{x} is obtained as: 

𝑥 = 𝜎(𝑊′𝑧 + 𝑏′) (2) 

 are the decoder parameters. 
Training is performed by minimizing the mean squared error (MSE) between the original input 

and the reconstructed output: 

𝑀𝑆𝐸 = 1/n(𝑥𝑖 − 𝑥𝑜𝑖)
2
 (3) 

When the network is unable to precisely recreate input samples, it is penalised by this loss 
function. Since only regular traffic is used to train the model, any deviation usually brought on by 
DDoS activity increases reconstruction error and initiates anomaly detection.  

Because of its small size, the single-layer autoencoder is especially well-suited for use in high-
throughput settings where accuracy and speed are crucial, like edge gateways or network monitoring 
probes. 

3.5. Anomaly detection and evaluation 

The trained autoencoder tries to reconstruct incoming traffic samples during inference. The 95th 
percentile of training mistakes used as the basis for defining a reconstruction error threshold. A 
DDoS attack may have been indicated by samples that above this threshold, which were marked as 
anomalies.  

We employed ROC-AUC, F1-score, precision, and recall measures to assess the model. To make 
sure the approach is practical for real-time deployment, we also measured latency. Traffic matrix 
prediction with LSTM-RNN models has been proposed to simulate complex future threat scenarios 
and train resilient detection systems [24]. 

4. Experimental results 

4.1. Dataset and experimental setup 

The Canadian Institute for Cybersecurity's CIC-DDoS2019 dataset was used to test the suggested 
anomaly-based DDoS detection technique. This dataset includes a wide variety of malicious and 
benign traffic, including DDoS assaults like HTTP GET Flood, SYN Flood, and UDP Flood, among 
others. Using a variety of operating systems and network configurations, the data was gathered in 
settings that mimicked actual network situations [10]. 

Normalising numerical data to the [0,1] range and eliminating aberrant or corrupted records were 
preprocessing stages. Ten network traffic statistics, including flow duration, packet count, average 
packet size, and inter-arrival periods, were chosen. The capacity of these characteristics to represent 
traffic behavioural trends without gaining access to packet contents a critical capability for 
analysing encrypted communication led to their selection [26]. 

4.2. Model performance evaluation 

F1-Score, and the Area Under the Receiver Operating Characteristic Curve (AUC). The training 
process of the autoencoder neural network was carried out over 100 epochs using the Adam 
optimizer and mean squared error (MSE) as the loss function. The training loss gradually decreased 
and stabilized, indicating convergence and effective learning of the baseline traffic behavior, as 



shown in Figure 3. Testing was performed on a dataset partition not used during training. The results 
are presented in Table 1. 

Table 1 
Model Performance Metrics 

 

 

Figure 3: Autoencoder training loss over epochs. 

These findings demonstrate how well the suggested technique detects DDoS attacks in encrypted 
communication. Interestingly, the high AUC value indicates that the model is highly capable of 
differentiating between typical and unusual traffic. 

A comparison with other modern DDoS detection techniques, such as those that make use of 
variational autoencoders and LSTM-autoencoders, was done in order to assess the benefits of the 
suggested method. Table 2 displays the comparing results. 

The chart makes it clear that the suggested method outperforms the other strategies in terms of 
performance measures, especially when it comes to traditional statistical methods, which 
demonstrate much lower accuracy and anomaly detection skills in scenarios involving encrypted 
traffic. 

Table 2 
Comparative Performance of DDoS Detection Methods 

Metric Accuracy (%) 
Accuracy 98.7 
Precision 97.8 

Recall 96.8 
F1-Score  97.1 

AUC 99.2 

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
Proposed 

Autoencoder 
98.7 97.5 96.8 97.1 

Variational 

Autoencoder 
97.8 96.2 95.5 95.8 

LSTM-Autoencoder 96.5 94.8 93.7 94.2 
Traditional 

Statistical Method 
89.3 85.7 84.7 84.9 



4.3. Extended evaluation and robustness analysis 

We tested the suggested autoencoder-based detection method's effectiveness against a variety of 
DDoS attack types included in the CIC-DDoS2019 dataset, such as SYN Flood, UDP Flood, HTTP GET 
Flood, and others, in order to determine how robust it is. For each sort of assault, metrics including 
Accuracy, Precision, Recall, and F1-Score were used to gauge the model's detection capabilities. 

Table 3 
Detection Performance per DDoS Attack Type 

The findings show that the model is versatile and resilient in recognising a range of attack 
patterns, maintaining a high detection accuracy across multiple DDoS assault types. 

The performance of machine learning models is significantly affected by the selection of input 
features. To evaluate how different feature sets influence the proposed method's ability to detect 
DDoS attacks, we conducted a series of experiments using three distinct types of feature sets: time-
based features, basic statistical features, and a combined set incorporating both. 

The time-based features included indicators such as: 

• average inter-arrival time between packets; 
• flow duration; 
• packet rate (packets per second); 
• and connection start time. 

These features aimed to capture the temporal patterns of traffic flows, which are particularly 
relevant in detecting anomalies caused by high-frequency or irregular traffic bursts typical of DDoS 
attacks. 

The statistical features, on the other hand, were derived from aggregated flow-level statistics, 
including: 

• average packet size; 
• standard deviation of packet size; 
• total number of packets and bytes per flow; 
• and protocol-based distribution measures. 

These features capture general traffic behavior but may overlook timing irregularities critical for 
real-time detection. By combining time-based and statistical characteristics, the hybrid feature set 
enables the model to effectively learn both structural and temporal patterns of network activity. 

Table 4 
Impact of Feature Sets on Detection Performance 

Attack Type Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
SYN Flood 99.1 98.7 98.5 98.6 
UDP Flood 98.5 97.9 97.3 97.5 

HTTP GET Flood 97.8 96.5 96.0 96.3 
DNS Amplification 98.9 98.3 98.0 98.1 

Feature Set Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
Statistical Features 96.5 95.0 94.2 94.6 

Time-Based 

Features 
97.3 96.0 95.5 95.7 

Combined Features 98.7 97.5 96.8 97.1 



The best performance metrics were obtained when statistical and time-based features were 
combined, indicating that including different feature types improves the model's capacity to identify 
DDoS attacks. 

Also we evaluated the suggested method's performance against that of existing deep learning 
techniques, such as LSTM-Autoencoders and Variational Autoencoders (VAE), in order to confirm 
its efficacy. Using the same dataset, the comparison concentrated on important performance 
indicators. 

 
Table 5 
Performance Comparison with Other Deep Learning Methods 

Across all assessed parameters, the suggested autoencoder-based technique fared better than the 
VAE-based and LSTM-Autoencoder approaches, demonstrating its greater capacity to identify DDoS 
attacks. 

4.4. Deployment considerations and future directions 

Scalability and interoperability are key when integrating the proposed autoencoder-based DDoS 
detection into existing infrastructures. The system supports real-time traffic analysis and can 
function as a modular component of SIEM systems [15], utilizing metadata from tools like NetFlow 
or sFlow with minimal overhead [6]. Its lightweight architecture enables deployment in high-
throughput environments without affecting performance. Unsupervised learning allows it to adapt 
to changing network behavior without frequent retraining [7]. 

To counter advanced evasion tactics, such as low-rate attacks or traffic mimicry, the system uses 
anomaly detection rather than signature-based methods [2]. Ensemble learning further strengthens 
resilience by combining models trained on different behavioral aspects [4]. 

Future work includes integrating more data sources, applying deep reinforcement learning for 
dynamic adaptability [8], and exploring federated learning for privacy-compliant collaboration [5]. 
Hybrid frameworks combining autoencoders with classifiers are also being actively explored [25]. 

5. Conclusion 

An This paper introduced an anomaly-based method for detecting Distributed Denial of Service 
(DDoS) attacks in encrypted network traffic using a single-layer autoencoder neural network. The 
proposed model leverages unsupervised learning techniques and statistical flow metadata features 
to detect deviations from learned baseline behavior without requiring access to encrypted packet 
content. This privacy-preserving architecture enables real-time threat detection while ensuring 
minimal intrusion into user communication. 

Numerical results confirm the high effectiveness of the proposed method. In experimental 
evaluations on the CIC-DDoS2019 dataset, the system achieved: accuracy  98.7%, precision  97.5%, 
recall  96.8%, F1-score  97.1%, and AUC  99.2%. 

Furthermore, the model demonstrated consistent performance across various DDoS attack types, 
such as SYN Flood (F1-Score: 98.6%), UDP Flood (F1-Score: 97.5%), and HTTP GET Flood (F1-Score: 
96.3%). Feature importance analysis revealed that a combined set of time-based and statistical 

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
Proposed 

Autoencoder 
98.7 97.5 96.8 97.1 

VAE-Based Method 

[13] 
97.8 96.3 95.5 95.8 

LSTM-Autoencoder 
[14] 

96.5 94.8 93.7 94.2 



features offered the best detection performance, outperforming models trained with only one feature 
type. 

Compared with other deep learning-based approaches, including Variational Autoencoders 
(VAE) and LSTM-Autoencoders, the proposed autoencoder method outperformed them across all 
major evaluation metrics. Its lightweight architecture and fast inference time make it suitable for 
deployment in high-throughput environments such as edge gateways and SIEM systems.  

Despite its strong results, the proposed method has several limitations. First, it relies on the 
assumption that benign traffic is available for unsupervised training; if training data contains 
undetected malicious flows, model performance may degrade. Second, while the model captures 
general behavioral deviations effectively, it may struggle with detecting sophisticated low-rate or 
mimicked DDoS attacks that closely resemble normal traffic patterns. Third, the current 
implementation is tailored to flow-based statistical features; it does not yet incorporate payload-
independent encrypted protocol behavior or metadata-specific temporal signatures, which may limit 
its detection granularity in some advanced attack scenarios. 

Looking forward, there are multiple perspectives for future research. Incorporating deep 
reinforcement learning could enable the model to adaptively tune detection thresholds and strategies 
based on dynamic network conditions. Employing federated learning would allow collaborative 
model training across multiple organizations without violating data privacy, thereby enhancing 
model generalization. In addition, ensemble learning frameworks that combine multiple 
unsupervised and supervised models such as autoencoders, random forests, and graph neural 
networks  could further improve resilience to adversarial evasion techniques. Finally, integrating 
threat intelligence and context-aware traffic analytics may lead to more nuanced and proactive 
anomaly classification. 
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