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Abstract 
This paper presents an integrated, resource-conscious framework for detecting and mitigating security 
threats in ZigBee-based IoT networks. The proposed solution combines a graph-oriented description of 
network topology with a formal attack model and a purely statistical anomaly-detection engine. Normal 
behaviour for every node is profiled on-line with a modified Z-score that relies on the median and median-
absolute deviation, making the detector robust to noise, outliers and bursty traffic. Anomalous events
those that exceed statistically justified limits are enriched with contextual attributes (device ID, parameter 
type, duration, weight) and matched against a library of formalised attack templates. When a match is 
confirmed, a response selector estimates potential damage by factoring impact intensity and node criticality, 
then triggers the least-cost counter-measure: node isolation, route restructuring, key rotation or channel 
switching. All stages monitoring, classification, reaction and post-action verification operate in a closed 
loop and require no prior training on labelled data, which is crucial for low-power ZigBee devices. 
A prototype was validated with three representative threats (DoS, Spoofing, Jamming). The system 
accurately identified each attack phase, initiated the correct counter-action within two seconds and 
automatically logged the incident for audit purposes. Because the framework is statistical and lightweight, 
it adapts readily to heterogeneous hardware and dynamic traffic patterns. Future work will extend the 
feature set and benchmark hybrid statistical learning schemes to further strengthen the resilience of large-
scale IoT deployments. 
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1. Introduction

Drill-free, low-impact security measures have progressed from niche solutions to broadly adopted 
technologies underpinning intelligent alarm systems, automated controls, and industrial sensing 
networks. Within this landscape, the ZigBee protocol has assumed a prominent position. It enables 
self-healing mesh topologies, operates with very low energy consumption, and accommodates large 
device populations. However, its use of publicly accessible radio bands, shared node resources, and 
default cryptographic material (including standard keys) renders ZigBee vulnerable to a variety of 
attacks, ranging from traffic redirection to coordinator impersonation and rogue-network 
reconstruction. 
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The growing incidence of such attacks in both domestic and commercial environments 
demonstrates that mere detection of anomalous activity is insufficient. A critical performance metric 
is response latency the interval between threat emergence and its localization and neutralization. 
Meeting this criterion demands dynamic defence mechanisms that integrate statistical anomaly 
detection, adaptive topology management, and automated countermeasures. Consequently, a 
systematic appraisal of contemporary ZigBee-focused protection strategies is warranted. Such an 
assessment should identify their respective strengths and limitations and highlight avenues for 
future advancement. 

2. Classification of attacks on the ZigBee network 

Security threats in ZigBee-based Internet of Things systems can be divided into two main categories: 
implementation-level vulnerabilities and architectural protocol weaknesses. 

Implementation-level vulnerabilities include insecure key storage, plaintext transmission during 
device onboarding, and misconfigured access policies. For example, CVE-2015-3974 and CVE-2020-
6007 allowed attackers to extract cryptographic keys from device memory or intercept them in 
unencrypted form. 

Architectural protocol weaknesses involve the use of static default keys (e.g., CVE-2019-18984), 
acceptance of unsolicited ACK packets, and limitations in the CSMA/CA channel access mechanism, 
which open up opportunities for jamming and medium-saturation attacks. 

Based on the scope of impact, attacks can be classified as local, targeting individual nodes or links 
(e.g., DoS, spoofing), or systemic, affecting network topology or coordinator integrity. 

Table 1 summarizes the main types of threats, their typical causes, target elements, and potential 
consequences. 

Table1 
Classification of threats in ZigBee networks 

Category Typical issue Attack examples Target elements Potential impact 

Implementation-
level 

Key leakage, 
weak 
configuration 

CVE-2015-3974, 
CVE-2020-6007 

End devices, 
gateways 

Unauthorized 
access, instability 

Protocol-level Static keys, ACK 
handling, 
CSMA/CA flaws 

CVE-2019-18984, 
jamming 

Channels, 
routers 

Connectivity 
loss, routing 
disruption 

Local attacks Flooding, 
spoofing 

DoS, identifier 
replay 

Individual node 
or link 

Temporary 
service 
degradation 

Systemic attacks Coordinator 
hijacking, route 
poisoning 

MITM, 
impersonation 

Coordinator, 
network 
topology 

Structural 
degradation, 
global instability 

 
This classification enables a unified understanding of threat types and serves as a foundation for 

the formal attack model and response mechanisms described in the next section. 

3. Overview of detection and protection methods 

Signature-based intrusion-detection systems (IDSs) operate by matching observed traffic against a 
database of known attack patterns. They typically exhibit the lowest false-positive rates and provide 
rapid responses to well-documented threats; however, they cannot recognise novel or obfuscated 
attacks and demand continual signature updates. Sadikin and Kumar [1] mitigate these limitations 
through a hybrid scheme that augments signature matching with a rule-based component. 

Rule-based IDSs rely on deterministic heuristics or statistical thresholds to flag anomalies. They 
require neither training nor significant computational resources, which is advantageous for ZigBee 



deployments. Techniques founded on the modified Z-score, CUSUM, and entropy analysis can detect 
deviations from normal behaviour in near real time. A recent survey confirms that such rule-based 
approaches remain competitive despite the growing popularity of machine-learning methods. 

Autoencoder-based IDSs constitute a class of machine-learning models that identify anomalies 
by reconstructing input data and measuring reconstruction error. Lightweight autoencoder 
architectures achieve detection accuracies above 95 % in resource-constrained IoT environments [2-
7], enabling multi-class classification with minimal changes to network infrastructure. 

Reference [8] proposes a convolutional neural network (CNN) combined with a long short-term 
memory (LSTM) layer, thereby capturing both spatial and temporal dependencies in traffic flows. 
The resulting IDS detects complex, multi-stage attack patterns and is particularly suitable for smart-
home scenarios, where device interactions exhibit regular structure. The approach delivers high 
accuracy but entails notable computational overhead and requires extensive offline training. 

Federated-learning (FL) frameworks, exemplified by FLAD, aggregate locally trained models 
without transmitting raw data, thus preserving privacy. Reference [8] demonstrates FL-based IDSs 
that maintain inter-node model compatibility without a central server. Principal challenges include 
inter-device synchronisation and maintaining model relevance across heterogeneous nodes. 

Reinforcement learning (RL) employs an agent that interacts with its environment and iteratively 
refines its policy via reward feedback. Reference [6] applies RL to ZigBee key-rotation management, 
yielding adaptive responses to evolving threat levels. Although RL can generate dynamic security 
policies, it requires numerous training episodes, which limits feasibility on edge devices lacking 
simulation support. 

Challenge response protocols enable authentication without disclosing secret credentials. 
Reference [9-12] presents a lightweight ZigBee-oriented protocol that thwarts replay and node-
substitution attacks. Its computational footprint suits simple sensors, yet authentication introduces 
latency and necessitates time synchronisation. 

Ensemble-based classifiers combine outputs from multiple base learners (e.g., random forest, 
support-vector machine) to enhance robustness. Experiments in [8] show that ensembles reduce false 
positives and adapt more readily to emerging attack patterns, albeit at the cost of additional 
processing complexity. 

The Phy-MAC-NWK framework [13] performs multi-layer traffic analysis, simultaneously 
examining physical, MAC, and network-layer parameters. This holistic perspective uncovers attacks 
that camouflage themselves at one layer but leave artefacts elsewhere. Its effectiveness is offset by 
implementation complexity and the need for fine-grained access to the ZigBee stack. 

Z-Fuzzer [14] subjects ZigBee implementations to malformed and boundary-value inputs, 
exposing vulnerabilities prior to deployment. Although indispensable for security audits, it is 
unsuitable for real-time detection and may induce temporary instability during testing. 

Reference [15] employs wavelet transforms to examine low-level radio signals, enabling the 
detection of physical-layer attacks such as jamming. The method is sensitive to subtle anomalies 
beyond the reach of conventional metrics but is computationally expensive and highly dependent on 
filter configuration. 

Finally, the authors of [16] present an anomaly detector that leverages the structure of MQTT 
topic graphs, demonstrating its efficacy in identifying atypical communication patterns within 
ZigBee-enabled IoT systems. 

4. Abstract model of a method for countering attacks in a ZigBee 
network 

An analysis of attacks on wireless IoT networks ZigBee in particular reveals a steady increase in 
both the complexity and variability of malicious techniques designed to destabilise the network or 
seize control of its operation. 

Building on classical intrusion models, we have developed an adapted framework that captures 
the full attack chain for ZigBee infrastructures. Similar to traditional compromise scenarios that 



exploit human error, network weaknesses, or device-level vulnerabilities, ZigBee-focused attacks 
frequently proceed through multi-stage actions directed at individual end devices, routers, 
communication links, or the network coordinator [17]. 

Within this framework, the threat actor delivers a crafted impact against a selected segment of 
the ZigBee infrastructure. The vector may involve direct compromise of the coordinator or a router, 
interception of the communication channel, or impersonation of an end node. Resulting effects 
include disrupted routing, loss of connectivity, topological changes, exhaustion of nodes or channels, 
and the suspension of critical functions. 

The model distinguishes local attacks those limited to a small subset of nodes (e.g., denial-of-
service, spoofing, flooding) from global attacks that reshape the topology or trigger cascading 
failures. Figure X (below) illustrates the adapted penetration model for ZigBee, developed by analogy 
with the canonical intrusion pathway for conventional computer systems [18,19]. 

 

Figure 1: Generalized scheme of attacks on ZigBee network infrastructure. 

 
the network as a coordinated ensemble of logically related components, each of which fulfils a 

description of the behaviour of network elements under normal conditions, but also enables the 

actions. By modelling the ZigBee network as a functionally distributed system, we define its structure 
as the following set: 

𝑀𝑧𝑏 = {𝐶, 𝐷, 𝑅, 𝑍, 𝐹𝑧𝑏 , 𝐴𝑧𝑏} (1) 

Where 𝐶 = {𝑐ℎ1, 𝑐ℎ2, … , 𝑐ℎ𝑛}   a set of communication channels that implement physical or 
logical routing between nodes, 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛}  a plurality of terminal devices that collect, or 
generate, or receive data; 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑛}  a set of routers responsible for relaying, building and 
maintaining the route; 𝑍 = {𝑧}  network coordinator, the central element of network management 
and initialization; 𝐹𝑧𝑏 = {𝑓0, 𝑓1, … , 𝑓𝑛}  a set of functional roles and services that ensure the operation 
of the ZigBee network: addressing management, routing, protection, synchronization; 𝐴𝑧𝑏 =
{𝑎0, 𝑎1, … , 𝑎𝑛}  a set of activation conditions that determine the dependence of the operation of 
elements on events, requests, or topology changes. 

Given that a ZigBee network is usually geographically or logically distributed, and its components 
can be located on different physical devices or in different spatial zones, each component of the 



model will be represented as a combination of components of the corresponding subnetworks (or 
groups of nodes), which operate autonomously, but perform functions within the general 
infrastructure: 

𝑀𝑧𝑏 = 

{
  
 

  
 

𝐶 =  𝑈𝑖=1
𝑁 𝐶𝑖

𝐷 =  𝑈𝑖=1
𝑁 𝐷𝑖

𝑅 =  𝑈𝑖=1
𝑁 𝑅𝑖

𝑍 =  𝑈𝑖=1
𝑁 𝑍𝑖

𝐹𝑧𝑏 = 𝑈𝑖=1
𝑁 𝐹𝑧𝑏 ,𝑖

𝐴𝑧𝑏 = 𝑈𝑖=1
𝑁 𝐴𝑧𝑏 ,𝑖

 (2) 

where N is the number of fragments or logical segments of the ZigBee network (e.g., rooms, 
clusters, floors, control zones) that operate with partial autonomy. Each subset of components  
𝐶𝑖 , 𝐷𝑖 , 𝑅𝑖 , 𝑍𝑖 may have different criticality, fault tolerance and degree of impact on the overall integrity 
of the network. For this purpose, a weighting characteristic is introduced for each type of element: 

𝑊𝑧𝑏 = {(𝐶, 𝜔𝑐), (𝐷, 𝜔𝑑), (𝑅, 𝜔𝑟), (𝑍, 𝜔𝑧)} (3) 

Where 𝜔𝑐  [0,1]   weight coefficient reflecting the importance of the type of components in the 
overall structure of the network; 𝜔𝑐  ≈ 1.0  the coordinator is a critical point of failure; 
𝜔𝑟 [0.7; 0.9]  routers are of high importance for topology stability; 𝜔с [0.5; 0.8]  channels are 
vulnerable to intentional overloading; 𝜔𝑟 [0.2; 0.4]  end devices have local impact 

To build an effective system for detecting and countering attacks in ZigBee networks, it is 
necessary to formally describe malicious influences as a set of parameters that characterize the 
nature of the attack, its time dynamics, scope, and consequences for the integrity of the 
infrastructure. In general, the attack 𝐴𝑖can be represented as a five-component structure: 

𝐴𝑖 = (𝑇𝑖 , 𝑆𝑖 , ϕ𝑖(𝑡), ψ𝑖 , δ𝑖) (4) 

Where 𝑇𝑖  ∈   T  type of attack (e.g., DoS, spoofing, MITM, jamming); 𝑆𝑖  ⊆   V ∪  E  the target 
subset of network elements (nodes or links) on which the influence is directed; ϕ𝑖(𝑡): 𝑅

+ → [0,1]  the attack 
intensity function over time, which describes the evolution of the threat; ψ𝑖() damage function, which 
determines whether the component  will fail at time t depending on the impact force and the resistance 
threshold  

ψ𝑖() = {
1 ϕ𝑖 >  та   ∈  𝑆𝑖  

0, 𝑒𝑙𝑠𝑒
 

(5) 

δ𝑖() = 𝑊()ψ𝑖() — assessment of the criticality of the consequences for each element, taking 
into account its weight in the network structure. The total impact of an attack on the infrastructure 
at time t can be expressed as: 

Δ𝑖(𝑡) =  ∑δ𝑖()

∈V

 (6) 

This value allows you to calculate the degree of degradation of the network operation caused by 
a specific attack scenario. Depending on the goal, attacks can be destructive (destruction of elements, 
channel overload, router blocking) or passive (interception, substitution, eavesdropping) and be 
directed at components with different criticality: communication channels C, end devices D, routers 
R or coordinators K. 

This formalized approach allows you to unify the description of attacks, provide their analysis in 
dynamics and determine which network elements are most vulnerable to specific types of influences. 
Such a model is also the basis for the further construction of reactive or adaptive protection 
mechanisms [20]. 

The next step is to adapt the anomaly detection method to the conditions of the network model, 
taking into account typical attacks and their expected dynamics. If the original Modified Z-score 
method allows us to determine deviations of parameters from the norm in a general way, then for 
the needs of the protection system we modify it so that each recorded anomaly can be compared 
with a specific attack scenario. 



This is achieved by introducing additional attributes to each anomalyThis is achieved by 
introducing additional attributes to each anomaly: spatial localization (device identifier 𝑖); 
functional context (the type of parameter 

𝑖
 is related to the impact of the attack), time duration τ𝑖 

as an analogue of the integral force of influence, the weight of the parameter μ𝑖 to take into account 
the criticality of the deviation, The interaction is described by the correspondence condition: 

𝑗 → 𝐴𝑗  ⇔ 

{
 
 

 
 𝑗  𝑆𝑖 
 𝑖 ~  𝑇𝑖
𝑑𝑗 > 𝑗  
τ𝑖 > τmin 

 (7) 

𝑗   the device affected by the anomaly, 𝑇𝑖  type of attack corresponding to the nature of the 
parameter 

𝑖
, 𝑑𝑗  deviation threshold for the device, τmin  minimum significant duration of the 

anomaly 
Thus, 𝑗 is interpreted as the implementation of 𝐴𝑗 if this system of conditions is met. This allows 

us to integrate signal observations into a formal model of malicious influence and proceed to 
decision-making in the protection system [21]. 

After detecting an anomaly and comparing it with the formalized attack model, the next stage is 
necessary - making decisions on response in order to minimize the consequences and prevent the 
escalation of the impact on the network. Response is implemented as a functional transition of the 
current state of the network to a new one, in which the attack effect is weakened or neutralized. 

Formally, each counteraction is defined as a function: 
𝑅𝑘 = ∶ 𝑍(𝑡) →  𝑍

`(𝑡 +  𝛿𝑡) (8) 

Where 𝑍(𝑡) is the current structural state of the network, and  is the reaction implementation 
time. The result is a new state Z^` with reduced attack impact. 

Table 2. 
Quantification of detected anomalies in IoT device traffic 

Reaction 𝑅𝑘 
 

The essence of the action Activation condition 

𝑅1 Node isolation Physical or logical 
disconnection of node v from 
the topology 

ψ𝑖(𝜐) = 1 ∧  δ𝑖(𝜐) >0.6 

𝑅2 Rerouting Building an 
alternative route to the 
coordinator 

𝜐 𝜖 𝑅 ∧  𝐹(υ) = 0 ∧W(υ)
> 0.7 

𝑅3 Key rotation Replacing cryptographic 
keys in a local cluster 

𝑇𝑖  ∈ {spoofing, key exposure} 

𝑅4 Changing the channel Switching to another logical 
or physical communication 
channel 

v ∈ C =∧ 𝑑𝑗(𝑡) >  𝑗   ∧  𝜇о
> 0.5 

𝑅5 Traffic filtering Restricting/blocking 
suspicious packets 

𝑇𝑖 = 𝐷𝑜𝑆 ∧ 𝜏𝑗 > 𝜏𝑚𝑖𝑛 

𝑅6 Notification Signal transmission to the 
monitoring center or 
administrator 

∆(𝑡) > 0.8 

 
The choice of response is based on the attributes of the detected anomaly 𝛼𝑗, which are associated 

with the attack 𝐴𝑖 
consequences, which is evaluated using a damage  

δ𝑖(𝜐) = 𝑊(𝜐) ψ𝑖(𝜐) (9) 

If the damage δ𝑖(𝜐) for a node exceeds a predetermined threshold, the corresponding reaction 𝑅𝑘  
is activated that best matches the nature of the attack and the type of target. For example, when 



detecting a flooding attack on a router with a weighting factor W=0.9, if a long-term anomaly with 
intensity 𝑑𝑗(𝑡)=3.1 is observed, then the calculated damage δ𝑖(𝑅3)1 = 0.9*1 = 0/9 leads to the 
activation of reaction 𝑅1 isolation of the affected node. 
The expected effect of applying the reaction is to reduce the harm function: 

∆(𝑡) =  ∑δ𝑖(𝑡)  ⇒  Δ′(t + δt)
𝜐𝜖𝑉

< ∆(𝑡) (10) 

or returning the node state to active: 
𝐹(𝜐, 𝑡 + δt ) =1 (11) 

The diagram on Figure 2 shows the general architecture of the proposed ZigBee network protection 
system. The central object is the ZigBee network, which generates telemetry data about its current 
activity. This data is sent to the Collection module, where the initial collection and aggregation of 
parameters takes place. Then the information is transferred to two parallel logical blocks. 

 

Figure 2: the general architecture of the proposed ZigBee network protection system. 

The Attack Model component stores formalised attack templates and matches incoming events 
against known threat scenarios, whereas the Anomaly Detection module performs statistical analysis 
of network parameters applying the modified Z-score to flag abnormal deviations. When 
suspicious activity is detected and confirmed to fit a known template, the Response block is triggered 
and automatically executes the appropriate counter-measure, such as isolating a node, rotating 
cryptographic keys or rerouting traffic. Working together in real time, these modules form a single, 
integrated IDS that ensures continuous protection of the ZigBee infrastructure. On the Figure 3 
shows the algorithm of operation of the integrated detection and response system in ZigBee 
networks. 

The integrated detection-and-response algorithm for ZigBee networks relies on a formalised 
model of device behaviour combined with statistical deviation criteria. The system continuously 
monitors key node parameters in real time. For each parameter it computes the modified Z-score  
that is, the deviation from the current median normalised by the median absolute deviation  to 
quantify operational stability [22]. 

If the calculated deviation remains below the predefined threshold, the system simply resumes 
monitoring. When the threshold is exceeded, the event is logged as an anomaly and checked against 
stored attack patterns, taking into account the affected parameter, device type, duration and intensity 
[23]. Once a match is confirmed, the potential damage is estimated by combining the impact intensity 
with the criticality weight of the affected element. If this damage score surpasses the local or global 
limit, an appropriate response is triggered: node isolation, route restructuring, key rotation or 
channel switching [24-26]. 

After the response is executed, the system reassesses the deviation and verifies whether normal 
functionality has been restored. If the anomaly has subsided, the incident is marked as resolved; 
otherwise, the system launches a secondary counter-measure or escalates the response. This closed-



loop strategy enables fully automated, adaptive protection against threats while respecting the 
resource constraints typical of ZigBee environments. 

 

Figure 3: Algorithm of operation of the integrated detection and response system in ZigBee 
networks. 

The presented block diagram reflects the final stage of the functioning of the integrated detection 
and response system, which is activated after fixing an anomaly interpreted as an attack. Its purpose 
is to implement an adaptive approach to minimizing the impact of malicious influence through 
sequential analysis, execution of measures and evaluation of the result. This allows not only to 
automatically identify the incident, but also to provide the logic of further actions without operator 
intervention. 

The scheme covers the key stages: receiving the generated anomaly with the appropriate 
parameters, comparing it with known attack patterns, calculating the criticality of the damage and 
selecting the appropriate response mechanism. In the event of a response, the system re-evaluates 
the degree of deviation from the norm. If the attack intensity is reduced below the threshold, the 
incident is considered localized. Otherwise, an escalation scenario or a retry is activated. 

The presence of such a model provides a structured, consistent and scalable response in real time, 
which is critically important for ZigBee networks with limited resources. It allows you to unify 
decision-making logic and increase the effectiveness of protective mechanisms, reducing the risk of 
downtime or loss of control over the topology. 

5. Evaluation of the effectiveness of the method 

This study presents a purely statistical approach for detecting anomalies in ZigBee network traffic. 
The method builds numerical profiles for each node, defines baseline operating ranges and then flags 
deviations.  

By combining a modified Z- -Winters exponential-
smoothing model, the system can capture both isolated and clustered anomalies in time-series data
without any prior training on labelled datasets, a vital advantage for resource-constrained IoT 
devices.  



On the figure 4 the algorithm is computationally lightweight, adaptable to heterogeneous 
hardware and capable of running on low-power edge nodes. The obtained plots on figure 5 illustrate 
the typical behaviour of a ZigBee network in three stages: before the attack, during the DoS impact, 
and after the defence mechanism is applied. In the upper chart, the traffic remains stable until the 
30-second mark, followed by a sharp rise in intensity (attack phase) and a gradual return to normal 
once the system intervenes. This patter
incident in real time, but also the effectiveness of the response mechanism, which reduces traffic to 
a safe level. 

 

Figure 4: The flowchart shows the final stage of the functioning of the integrated detection and 
response system. 



 

Figure 5: Network traffic vefore, During and after Dos Attack. 

The lower chart depicts the real-time calculation of the modified Z-score. After the transition to 
the anomalous phase, the deviation values rise sharply above the threshold (dashed line), allowing 
the system to classify those events as threats. The red markers highlight the moments when the 
violation intensity was sufficient to trigger an automatic response. The subsequent drop in the 
number of anomalies confirms that the network stabilises after the counter-measure is executed.  

The bar chart depicts the number of detected anomalies across the three operational phases of 
the system: before the attack, during the attack, and after the response measures have been applied. 
In the initial phase (before the attack), the system logs only a minimal number of deviations, 
indicating stable network conditions and the absence of disruptive activity. This confirms that the 
baseline threshold is correctly configured and that telemetry remains steady under normal operation. 

During the attack phase, the anomaly count rises sharply because the traffic parameters deviate 

threat period. After the defence mechanism is executed, the number of anomalies drops markedly, 
confirming the effectiveness of the counter-measures. Overall, the chart shows that the model not 
only detects threats but also successfully mitigates their impact. 

The diagram on figure 6 illustrates network behaviour during a Spoofing attack, which is less 
aggressive than a DoS attack but can last longer and undermine node authenticity. In the upper plot, 
traffic rises gradually during the attack phase without the sharp spikes typical of flooding assaults. 

etection system still registers the change in node behaviour and 
correctly flags the corresponding interval as suspicious. 

The lower plot on figure 7 shows the modified Z-score calculated throughout the entire 
observation period. During the attack phase, Z values cross the predefined threshold several times
enough to trigger the response mechanisms. Although the deviation intensity is lower than in the 

influences. This confirms its suitability for safeguarding networks under complex, multi-phase threat 
conditions. 

 



 

Figure 6: Anomalies Detected During each operational phase. 

 

Figure 7: Network traffic during spoofing attack. 

In this study we simulated two of the most common attacks on ZigBee networks DoS (Denial of 
Service) and Spoofing (node impersonation) which differ fundamentally in both impact pattern and 
visibility figure. Logs file on figure 8-9 shows result of detected  

A DoS attack produces an abrupt surge in network load, pushing traffic well beyond allowable 
limits and crippling routers or the coordinator.  
 



 

Figure 8. log file of the detected attack on the communication channel. 

 

Figure 9: Log file for Spoofing attack. 

The proposed IDS flags such behaviour by detecting a critical deviation in the traffic-intensity 
parameter and classifies the event as a high-priority threat. The corresponding response is to isolate 
the affected node or to reroute traffic around it. 

By contrast, a Spoofing attack is more covert: it involves forging device identifiers or duplicating 
frames to compromise authenticity.  

These anomalies do not cause dramatic traffic spikes; instead they are exposed through frequency 
analysis or inconsistencies in telemetry IDs. Here, the system applies the modified Z-score to uncover 
subtle deviations in device behaviour and triggers key rotation or trust verification for the suspicious 
node.  

Both scenarios demonstrate that the proposed framework can respond effectively to highly 
aggressive as well as stealthy threats in ZigBee environments.  

The consolidated log file presents a structured sequence of events recorded by the detection-and-
response system during several attack scenarios. Its layout mirrors standard IDS logging practice, 
dividing the incident life-cycle into four key stages:  

• anomaly capture; 
• threat classification; 
• response initiation 
• execution control. 

Each entry contains a timestamp, node identifier, triggering parameter, computed Z-score, attack 
type, target, response code and a brief action description. 



 

Figure 10: Generalized log file. 

Such a format delivers a transparent, reproducible audit trail for security incidents. For example, 
when a DoS attack occurred, the system logged an over-threshold traffic-intensity value, classified 
the event accordingly, isolated the affected node and rerouted traffic. In the Spoofing case, repeated-
ID anomalies were detected and key rotation was triggered. A channel-jamming attempt concluded 
with an automatic switch to an alternate channel.  

Collectively, the log file demonstrates the seamless integration of detection and automated 
response, underscoring the adaptability and practical applicability of the proposed ZigBee-security 
framework. 

A comparative analysis of detection-and-response effectiveness across different attack types 
 

The highest accuracy 97 percent was observed for DoS attacks, owing to their pronounced 
symptoms, such as a sharp traffic surge. For jamming attacks, the accuracy reached 94 percent, as 
the system effectively captured changes in interference levels. Spoofing proved to be the least 
conspicuous threat, with a detection rate of 92 percent; nevertheless, this level was sufficient to 
trigger the appropriate protective mechanism. 

The response success rate remained high across all scenarios 95 % for DoS, 93 % for jamming 
and 89 % for spoofing. Reaction time ranged from 1.8 seconds for DoS to 2.5 seconds for spoofing, 
reflecting the relative difficulty of recognising and confirming each threat.  

These results on Figure 11 confirm that the system can operate effectively in real time, 
maintaining an optimal balance of speed, accuracy and flexibility when countering different attack 
models. 

6. Conclusions 

As a result of this research, a formalised model for detecting and responding to attacks in ZigBee 
networks has been developed and implemented. The approach unifies a graph-based description of 
the network, a mathematical attack model and real-time statistical analysis of telemetry. At its core 
lies a modified Z-score mechanism that adaptively highlights deviations, maps them to stored threat 
templates and automatically triggers the appropriate counter-measures. All components operate in 
a single feedback loop from anomaly detection to verification of the response outcome. 

Testing with several representative attack scenarios (DoS, Spoofing, Jamming) confirmed that the 
system can accurately identify malicious activity and initiate effective counter-actions within the 



strict resource limits typical of ZigBee devices. Beyond detection, every incident is logged in a 
structured format, providing a transparent audit trail for security events. Overall, the proposed 
architecture delivers automated, scalable and resource-efficient protection for ZigBee infrastructures 
against modern threats. 

 

Figure 11: Comparison of attack detection and response effectiveness. 

Declaration on Generative AI 

AI tools were used solely as translation and proofreading aids. All content was originally authored 
by the submitting party. 
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