
A model for probabilistic monitoring and proactive
restart of real-time operating systems under intensive

state changes in cyber-physical systems⋆

Oleksandr Kozelskyi1,∗, , Andriy Drozd1, , Bohdan Savenko1, , Piotr Gaj2,

1 Khmelnytskyi National University, Khmelnytskyi, Instytutska street 11, 29016, Ukraine
2 Silesian University of Technology, Gliwice, ul. Akademicka 2A, 44-100, Poland

Abstract
The article presents a model of probabilistic monitoring and proactive restart of real-time operating systems
(RTOS) in conditions of intensive changes in the states of cyber-physical systems. The proposed model uses
a probabilistic approach to assess the risk of failures, which allows for timely prediction of potential
problems and prevention of their critical impact on the functioning of the system. It provides proactive
local recovery of problematic components using a dual watchdog mechanism, which includes both
hardware and software control levels. This approach allows not only to detect failures at an early stage, but
also to promptly respond to deviations from the normal operating mode of the system. A key aspect of the
developed model is the ability to locally restart individual tasks before the hardware watchdog timer is
triggered. This significantly reduces the overall computational load on the microcontroller, preventing
excessive use of resources and reducing the likelihood of a complete emergency restart of the system.
Integration of the proposed approach with real-time operating systems, such as FreeRTOS, provides ease
of implementation and increases the efficiency of resource management in systems with limited
capabilities. In addition, the model allows you to adapt to changing operating conditions and provides
flexible tuning of monitoring parameters in accordance with the specifics of the operation of cyber-physical
systems. Experimental studies have demonstrated the high effectiveness of the proposed method in
reducing downtime and increasing the overall reliability of real-time operating systems. The proposed
approach allows you to minimize the consequences of unexpected failures, increase the system's resistance
to changes in the external environment and ensure the stability of its operation even in critical operating
conditions.

Keywords
RTOS, probabilistic monitoring, watchdog timer, fault tolerance, cyber-physical systems, reliability1

1. Introduction

Modern real-time operating systems (RTOSs) are characterized by a large number of concurrent tasks
and a deep integration of hardware and software components. This complexity poses significant
challenges for maintaining continuous system operation while satisfying stringent timing
constraints (deadlines). Such requirements are especially critical in cyber-physical systems, where
even minor errors or delays in managing physical processes can lead to severe consequences
system failures, equipment damage, or the compromise of safety-critical functions [1,2]. Given the
potentially high cost of these failures, ensuring system reliability and fault tolerance remains a
primary research focus in embedded and real-time computing.

A primary mechanism for mitigating failure risks and enhancing reliability is the watchdog timer,
which may be implemented at both hardware and software levels. The conventional approach relies
on rebooting the microcontroller when a crash or core failure is detected. However, this reactive

July 04, 2025, Khmelnytskyi, Ukraine
1∗ Corresponding author.

These authors contributed equally.
 oleksandr.kozelskiy@khmnu.edu.ua yi); andriydrozdit@gmail.com (A. Drozd); savenko_bohdan@ukr.net

(B. Savenko); piotr.gaj@polsl.pl (P. Gaj);
 0009-0002-7157-6499 (yi); 0009-0008-1049-1911 (A. Drozd); 0000-0001-5647-9979 (B. Savenko); 0000-0002-

2291-7341 (P. Gaj);
© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:oleksandr.kozelskiy@khmnu.edu.ua
mailto:andriydrozdit@gmail.com
mailto:savenko_bohdan@ukr.net
mailto:piotr.gaj@polsl.pl
https://orcid.org/0009-0002-7157-6499
https://orcid.org/0009-0008-1049-1911
https://orcid.org/0000-0001-5647-9979
https://orcid.org/0000-0002-2291-7341
https://orcid.org/0000-0002-2291-7341

strategy addresses issues only after they occur, incurring significant computational and temporal
overhead. As system complexity and reliability demands grow, hybrid methods that combine
hardware and software monitoring have become increasingly relevant. In particular, a dual-
watchdog architecture can enable proactive, localized restarts of individual software components via
a probabilistic risk-assessment model, facilitating early failure detection, avoiding full-system
reboots, and substantially reducing overall downtime.

Embedded systems often operate under severe constraints limited processing power, tight real-
time deadlines, and restricted memory availability [3]. Under these conditions, computationally
intensive analytical techniques, such as machine learning algorithms or comprehensive formal
models, may be impractical. Simplified probabilistic approaches, in contrast, allow real-time
estimation of failure risk based on a small set of key system parameters. This capability supports a
software-based predictive control layer that identifies early warning trends before system freezes or
critical failures occur. Consequently, targeted local restarts of malfunctioning tasks, drivers, or
modules can be executed to prevent complete system failures.

The main scientific contributions of this study include the development of a lightweight
stochastic monitoring model that can run inside an RTOS task; the proposal of a two-level fault-
tolerance architecture combining a Predictive Watchdog Task (PredictiveWDT) with a hardware
watchdog timer (HW WDT); the implementation of a prototype on an STM32F407 microcontroller
that detects task hangs in 0.11 0.13 s and finishes a local soft reset in 0.35 s whereas a full recovery
via the HW WDT takes almost 3 s thereby cutting total system downtime from 4.5 % to 1.88 % (-42
%); and the demonstration that the approach markedly reduces global restarts while introducing only
negligible computational overhead, together with a clear statement of its practical limitations.

2. Analysis of known solutions

Existing fault-tolerance strategies for embedded real-time operating systems (RTOS) can be classified
into hardware-based, software-based, and hybrid models, each with its own characteristics in terms
of performance, resource usage, and implementation complexity. The main classes of fault-tolerance
models are illustrated in Figure 1: hardware watchdog timers, redundancy-based architectures,
formal verification methods, machine-learning models.

A HW WDT is typically implemented either as an integrated peripheral module within the
microcontroller or as an external supervisory device with its own clock generator. In such a scheme,
the application is required to periodically refresh the timer counter or send a signal indicating normal
system operation. If this refresh does not occur within a specified interval, the watchdog interprets
it as a system fault and initiates a complete system reset. Due to its independence from the real-time
operating system (RTOS) kernel, the timer is capable of restoring operation even in cases of total
system hang or deadlock. However, this approach is purely reactive, since the reset is triggered only
after a failure has already occurred, resulting in the loss of execution context and system downtime.
In safety-critical domains such as automotive electronics, industrial automation, or medical devices,
even short interruptions lasting several seconds may be unacceptable. The redundancy-based model
entails duplicating critical system components to enhance overall fault tolerance. Common
implementations include N-modular redundancy with majority-voting logic or hot/cold-standby
configurations, in which a backup module immediately (or near-instantaneously) takes over when
the primary fails [20,21]. Such schemes are essential in applications where even a momentary
interruption is unacceptable, for example, in avionics systems [16] or continuous industrial conveyor
operations. However, redundancy requires substantial additional hardware, sophisticated state-
synchronization mechanisms, and incurs considerable financial cost [12,17], rendering it impractical
for many resource-constrained embedded platforms [5].

Figure 1: Taxonomy of existing fault-tolerance models for RTOS.

Formal methods and verification techniques
checking -178C, ISO 26262) to
demonstrate the absence of specific error classes and deadlocks during the design phase [4]. These
techniques enable rigorous analysis of system dynamics and formal proof of specification
conformance. However, their application to operational (online) failure detection is frequently
constrained [10] by high computational deman
space explosion problem encountered in realistic systems [6,7].

Machine-learning (ML) techniques have been widely adopted in large-scale cloud infrastructures
and high-performance computing (HPC) clusters for tasks such as load forecasting, anomaly
detection and predictive task migration [14]. Despite their potential for real-time data analysis, the
performance of ML models critically depends on the chosen evaluation metrics [26], while also
imposing substantial demands on system resources namely, memory capacity, processing power,
and high-quality training datasets. Deploying even relatively lightweight ML algorithms on
resource-constrained microcontrollers (e.g., STM32, AVR, ESP32) can therefore be prohibitive in
terms of computational overhead and energy consumption, as illustrated by the challenges of
achieving Byz -
driven methods under rare or corner-case scenarios is difficult, which conflicts with the stringent
verification requirements of safety-critical domains such as avionics and medical devices.

In summary, while hardware watchdog timers ensure reactive recovery from global hangs and
software monitors enable more granular, rapid local response, each approach has drawbacks:
redundancy schemes incur heavy hardware overhead, and formal or ML-based models are often too
resource-intensive for simple embedded platforms.

A hybrid strategy that combines these paradigms offers the most promise. In this model, a
hardware watchdog acts as the ultimate safeguard against catastrophic system freezes, while a
lightweight software layer proactively detects emerging fault trends and performs localized restarts
of only the affected components. Implementations of this predictive layer range from simple
threshold-based heuristics to analytical probabilistic risk-assessment models [11]. Given the
constraints of embedded environments and the requirement for low-latency execution, simplified
probabilistic models with a limited number of discrete states represent a practical compromise. Such
approaches have been successfully applied in domains like automated guided vehicle (AGV) systems
and predictive maintenance of industrial equipment [13], where analysis of historical state
transitions enables early risk estimation and thus reduces reliance on full-system resets
minimizing downtime and enhancing operational continuity.

The objective of this study is to develop and validate a proactive component-restart model for
embedded real-time systems, grounded in probabilistic failure-risk monitoring and integrated with
conventional hardware watchdog mechanisms. This approach aims to reduce the frequency of
system-wide reboots, thereby minimizing the time and computational costs associated with recovery.
Moreover, integrating the proposed model with hardware-level controls is expected to enhance the
fault tolerance of resource-constrained cyber-physical systems subject to rapid state changes. By
providing a computationally efficient solution, the model offers practical value to embedded-system
designers, ensuring high availability of critical applications while mitigating the impact of potential
failures. It should be noted that optimizing task allocation in multiprocessor embedded systems
remains an important research direction, as confirmed, in particular, by the findings of study [27].

3. Formulation of the problem

An evaluation of existing fault-tolerance mechanisms for embedded real-time systems reveals
inherent trade-offs. Hardware watchdog timers guarantee a full system reboot following a critical
failure; however, they activate only after system operability has been lost, resulting in total context
loss and necessitating complete reinitialization. Software watchdogs, by contrast, can detect failures
at the task level at an earlier stage, yet their efficacy depends on the underlying RTOS kernel
remaining operational. Although redundancy-based schemes achieve high reliability, they impose
significant overhead in terms of hardware replication and complex synchronization algorithms.
Similarly, formal verification methods and machine-learning-based approaches often require
substantial computational resources or incur prohibitive verification costs, making their deployment
on resource-constrained microcontrollers impractical.

To address these limitations in resource-limited devices, a hybrid fault-tolerance architecture is
proposed. In this design, the HW WDT serves as a last-resort mechanism for recovering from global
system freezes, while an intelligent software layer continuously monitors system metrics, detects
emerging fault conditions, and executes localized recovery procedures thereby reducing the
frequency of full system resets.

The principal challenge in realizing this hybrid model lies in devising a lightweight yet effective
state-assessment mechanism capable of estimating the likelihood of critical events such as system
freeze, task-deadline violations, or queue overflows in real time. Employing oversimplified triggers
(e.g., fixed thresholds on queue occupancy) risks generating false alarms, whereas sophisticated
predictors based on machine learning or formal methods exceed the computational budgets of typical
embedded processors.

Accordingly, this work aims to develop a resource-efficient crash-prediction model that enables
rapid estimation of the probability of transition to a critical system state, while integrating seamlessly
with a software watchdog timer to initiate soft resets of individual components. The model is
designed to preserve normal operation in the presence of non-fatal anomalies and to delegate full
recovery to the HW WDT in cases of unrecoverable system freezes.

Given these requirements, hybrid models that combine implementation simplicity with adequate
prediction accuracy present a promising solution [18]. In particular, lightweight probabilistic
frameworks requiring only minimal computational resources offer an effective balance between

.

4. The main part

4.1. Basic architecture of the RTOS and its modification taking into account
probabilistic monitoring.

Effective resource management and maintaining stable operation of real-time operating systems
(RTOS) are key tasks for their reliable operation, especially in the case of use in cyber-physical
systems (CPS) and the Internet of Things (IoT). The expansion of RTOS application areas is

accompanied by the need for fast processing of large amounts of data in real time, which requires
effective mechanisms for ensuring fault tolerance.

The standard RTOS architecture includes several key components. The scheduler determines the
execution order of tasks using algorithms such as priority-based scheduling or Earliest Deadline First
(EDF). Tasks are independent processes responsible for various functions, including data collection
from sensors, information exchange, and control of actuators. Task execution can be either periodic
or event-driven. System services such as timers, queues, and semaphores facilitate inter-task
communication, synchronization, and data transfer. They may also include logging and
configuration utilities. Device drivers provide interfaces for interacting with hardware modules such
as UART, SPI, 𝐼²𝐶, and ADC, offering the necessary APIs for software components. The HW WDT
functions as an autonomous microcontroller module that monitors system stability and triggers a
forced restart in case of a loss of functionality.

In a standard RTOS, the watchdog timer is configured to have its counter periodically refreshed
by calling feed_watchdog(), which prevents it from expiring during normal operation. If this refresh
does not occur in time for example, because a critical component has frozen the watchdog timer
triggers a full microcontroller reset.

Although this mechanism reliably restores system functionality, it suffers from a fundamental
limitation: it is purely reactive, invoking a reset only after a failure has already occurred.

 a behavior that can be
unacceptable in stringent real-time environments such as industrial process control or embedded
medical devices.

In practice, developers attempt to mitigate unnecessary resets by instrumenting key execution
points with calls to feed_watchdog(). While this approach can reduce avoidable restarts, it provides
no proactive assessment of system health and offers no means to confine faults locally. Under severe
conditions such as a scheduler deadlock or data-bus blockade the system still must perform a
full restart, leading to service interruption and the loss of all volatile state.

An interaction model of a conventional RTOS setup utilizing a hardware watchdog for basic fault
recovery is shown in Figure 2 (left).

Figure 2: Graph-based models of typical RTOS with HW WDT and an enhanced probabilistic
monitoring system.

Figure 2 (right) illustrates an enhanced RTOS supervision model that complements the classical
scheme with a predictive and locally recoverable layer. This additional layer enables the system to
intercept and mitigate emerging faults before they escalate into critical failures. The full system
architecture, including all interacting components, is depicted in Figure 3 and is designed in such a

, 25].
The enhanced architecture comprises the following primary components:

• Scheduler continues to execute standard task scheduling algorithms without changes.
• Tasks executes the function similarly to the traditional RTOS architecture.
• System services and device drivers: retain their existing interfaces to the kernel timers,

queues, semaphores, and peripheral abstractions (e.g., UART, SPI) unchanged.
• HW WDT serves as a secondary safeguard, triggering a full microcontroller reset if the

system experiences an unrecoverable freeze.
• PredictiveWDT has been added

monitoring and proactive recovery. Although referred to as the Predictive Watchdog Timer
in the architectural diagram (see Figure 3), this component operates as a full-fledged RTOS
task rather than a conventional timing mechanism. Its main functions are as follows: system
activity analysis gathers operational metrics (e.g., queue lengths, task execution times,
heartbeat signals) via message queues or global variables to assess system stability; failure
prediction employs a lightweight probabilistic model to estimate the likelihood of a transition
into a critical state; preventive error correction initiates a localized restart of a failing task
(via vTaskDelete and xTaskCreate) or reinitializes a faulty driver (ReInitDriver) whenever
the predicted risk exceeds a predefined threshold; HW WDT supervision refreshes the
hardware watchdog during normal operation. If local recovery fails, withholding the refresh
prompts the HW WDT to execute a full system reset.

Figure 3: General architecture of the proposed RTOS for cyber-physical systems with intensive state
changes, with the Predictive Watchdog Timer module highlighted in green.

Algorithm for interaction of the PredictiveWDT with system components:

1. Each critical task periodically transmits an activity signal for example, by updating
lastSeenTime[taskID] or sending a heartbeat message to the PredictiveWDT queue.

2. The PredictiveWDT runs at high priority at regular intervals (e.g., every 150 250 ms),
processes the gathered signals, and assesses the current system state.

3. If the analysis indicates a high probability of a hang or critical state, a soft reset of the
problematic module is performed. If after several attempts at local recovery the system

remains in a critical state, the PredictiveWDT stops updating the watchdog timer, which
leads to a global reset.

4. Under normal conditions, the PredictiveWDT transmits a control signal to the HW WDT,
which confirms stable system operation.

Thus, the proposed architectural model with PredictiveWDT provides an optimal combination of
preventive analysis, local fault elimination and the classic emergency restart mechanism. This allows
to increase the RTOS resistance to failures, reduce downtime and improve the system adaptability to
changing operating conditions.

4.2. Failure prediction and preventive component restart model in RTOS

The proposed model involves the integration of a hardware watchdog as a mechanism of the final
level of protection and intelligent software control (Software Watchdog), which predicts possible
failures and locally restores components to their critical state.

The functional scheme provides a two-stage mechanism:

1. Software level of preventive control analyzes the system state and performs local soft reset
of individual tasks or drivers in case of detection of anomalous deviations in operation. This
can be both a simple failure and anomalous actions for example from the point of view of
malicious software [19,22].

2. Hardware level of protection in case of ineffective software recovery or general system
freeze, the HW Watchdog Timer is activated, which initiates a full restart.

Such a two-level strategy significantly reduces the number of full reboots (resets), reduces
downtime and ensures stable operation of embedded and cyber-physical systems with limited
resources and strict time requirements. The proposed model assumes that the system state is
evaluated discretely, at time points 𝑡 = 𝑘 ⋅ 𝛥𝑡, where 𝛥𝑡 is the execution period of the
PredictiveWDT in the real-time operating system. At each step, the system is in one of the defined
states (for example, {𝑁, 𝐶, 𝐹}: "Normal," "Critical," or "Fail"). The transition between states is based
on the analysis of current performance indicators, in particular, task processing time, queue load or
activity signal update frequency. The model uses a probabilistic approach, which allows predicting
possible failures and initiating preventive recovery before the transition to a critical state.

Let 𝑆 = {𝑁, 𝐶, 𝐹} be a finite set of states. At each time step 𝑡𝑘 = 𝑘𝛥𝑡, the system (or
PredictiveWDT, reflecting system health monitoring) is in one of the states 𝑥(𝑘) ∈ 𝑆.

For simplicity, let us assume that:

1. N (Normal) the system is in the normal range (queues are not crowded, signals about the
activity of all tasks arrive on time).

2. C (Critical) the risk of a quick failure is high (significant delays, frequent missed deadlines,
the task stops sending activity signals).

3. F (Fail) actual hang/failure (in the model, this is an absorbing state or an indicator that a
global reset has occurred).

Transitions between states are governed by a probability matrix 𝑃 ∈ 𝑅3×3:

𝑃 = [
𝑃𝑁𝑁 𝑃𝑁𝐶 𝑃𝑁𝐹

𝑃𝐶𝑁 𝑃𝐶𝐶 𝑃𝐶𝐹

0 0 1
],

(1)

where 𝑝𝑖𝑗 = 𝑃(𝑥 + 1) = 𝑗|𝑥(𝑘) = 𝑖), and 𝑥(𝑘) denotes the system state at time step 𝑘. The
state 𝐹 is absorbing, implying that once reached, the system initiates a full hardware reset. At each
time step 𝑘, the predictive monitoring component estimates the probability of failure at the next
step:

𝑃𝐹(𝑘) = 𝑃(𝑥(𝑘 + 1)) = 𝐹|𝑥(𝑘)), (2)

this can be computed as:

𝑃𝐹(𝑘) = 𝑃𝐶𝐹 ⋅ 𝐼𝑥(𝑘)=𝐶 + 𝑃𝑁𝐹 ⋅ 𝐼𝑥(𝑘)=𝑁 = 𝑁, (3)

where 𝐼 is the indicator function. Let 𝜃 ∈ [0,1] denote the failure risk threshold. If the condition

𝑃𝐹(𝑘) ≥ θ (4)

is satisfied, a software restart of the task considered the cause of the critical state is performed.
Let 𝑅(𝑇𝑖) denote the restart or reinitialization operation:

𝑅(𝑇𝑖): = 𝐷(𝑇𝑖) ∘ 𝐶(𝑇𝑖), (5)

where 𝑇𝑖 is the identifier of the task to be restarted, 𝐷(𝑇𝑖) denotes the deletion of the task from
the RTOS scheduler, 𝐶(𝑇𝑖) represents the recreation of the task with its initial configuration, ∘ is the
composition operator (sequential execution of actions).

Let 𝛥𝑡 be the monitoring interval, and 𝑇𝐻𝑊 the timeout of the HW WDT. Let f denote the
hardware watchdog feed function (feed_HW_WDT). If the system remains in the critical state 𝐶 for
𝑚, consecutive monitoring steps and the local recovery attempt fails, the Predictive Watchdog
deliberately suppresses the hardware watchdog feed signal at time step 𝑘 + 𝑚:

𝑓(𝑘 + 𝑚) = 0 (6)

This action triggers a full system reset. To maintain adaptivity, the transition probabilities 𝑝𝑖𝑗 can
be updated using an exponentially weighted moving average:

𝑃𝑖𝑗
(𝑘)

= 𝛼 ⋅ 𝐼𝑥(𝑘−1)=𝑖∧𝑥(𝑘)=𝑗 + (1 − 𝑎) ⋅ 𝑃𝑖𝑗
(𝑘−1)

, (7)

where 𝛼 ∈ (0,1) is the smoothing coefficient, 𝐼𝑥(𝑘−1)=𝑖∧𝑥(𝑘)=𝑗is the indicator function that equals
1 if the system was in state 𝑖 at time 𝑘 − 1 and in state 𝑗 at time 𝑘 , and 0 otherwise.

Thus, the definition of 𝑁, 𝐶, 𝐹 depends on the application scenario and the thresholds set. Such
thresholds are determined empirically or based on the specifics of the application.

The probabilities of transitions between states in Predictive Watchdog are dynamic and can be
adjusted in real time depending on changes in key system metrics. The main influencing factors are
queue fullness, system activity signal latency, memory usage, and other system performance
parameters.

The proposed model implements a two-stage approach to system recovery. If the analysis
PredictiveWDT initiates a

local recovery procedure by performing a soft reset of the problematic component. If the system fails
to stabilize after the soft reset and remains in the Critical (C) state, the software layer deliberately
refrains from updating the HW WDT (i.e., the feed() function is not called). As a result, after the
expiration of the hardware watchdog timeout 𝑇𝐻𝑊, a full microcontroller reset is triggered, restoring
the system to the Normal (N) state.

Thus, when deviations remain within tolerable limits, a soft reset obviates the need for a global
restart and thereby reduces system downtime. The HW WDT is retained as a final safeguard should
the software layer lose control. Formally, if at step k the soft reset procedure is started, then at
step 𝑘 + 1 we artificially set 𝑥(𝑘 + 1) = 𝑁 (if the restart was successful).

Since we have 𝛥𝑡 ≪ 𝑇𝐻𝑊, then the software layer has several attempts (for example, 10–20 cycles
with a step of 𝛥𝑡) to perform a soft reset before the HW WDT timeout expires. If the PredictiveWDT
determines that the system state has returned to Normal (or remains in Warning without progressing
to Critical), it calls HW_WDT_Feed(), continuing normal operation. Otherwise, it deliberately
withholds the feed signal to the hardware watchdog, allowing the timer to expire and trigger a full
system reset (see Figure 4, right).

As a result, the mathematical scheme has the following steps:

1. The state of the system is denoted as 𝑥(𝑘) a discrete moment in time in a finite space 𝑆.
2. The transition between states is determined by probabilities.
3. The probability of failure in one step is defined as  𝑝𝑖𝐹 (from Critical to Fail). When the

threshold 𝜃 is exceeded we launch preventive actions (soft reset).
4. If necessary, we consider the forecast for r steps through 𝑃𝑟.
5. If local recovery is ineffective, the system goes into state C (Critical) and continues to operate

until the HW WDT timeout.

Figure 4: Schematic diagram of the standard watchdog timer workflow (left) and of the enhanced
predictive software-layer watchdog timer (right).

The proposed model is based on a discrete analysis of changes in the system state with the
possibility of dynamically updating the probability matrix P in real time, which ensures effective
detection of potential failures without significant computational costs. The basic concept of the
model combines a probabilistic approach to failure risk assessment with a two-stage recovery
strategy.

The first stage involves local preventive recovery through a soft reset, which is triggered when
an increased risk of failure is detected; this allows for restoring the operability of individual tasks or
drivers without requiring a full system reboot. If the software-based recovery proves ineffective, the
second stage is activated resulting in a global restart initiated by the HW WDT, which ensures
restoration of system functionality in critical scenarios.

Thus, the model allows to effectively avoid minor failures, reducing the need for a full reset, while
ensuring resistance to critical failures when software methods do not work.

5. Experimental research

5.1. Prototype preparation

To assess the effectiveness of the two-stage fault tolerance mechanism (combination of hardware
watchdog timer and software layer with adaptive analysis), a series of experiments were conducted

on the basis of the STM32F407 microcontroller platform (Cortex-M4 core, clock frequency 168 MHz).
The test environment used the FreeRTOS real-time operating system with five application tasks:

1. TaskA the main task that works with the periphery (SPI/UART) and periodically creates
high loads on the system.

2. TaskB, TaskC auxiliary tasks for signal processing and interaction with sensors.
3. Logger a service for recording diagnostic messages and event timestamps.
4. PredictiveWDT a separate task that implements intelligent watchdog control with a

frequency of 100 ms.

The HW WDT had a timeout of 2 seconds. PredictiveWDT checked activity signals from other
tasks on each cycle and analyzed the level of queue filling. A dynamic probabilistic model was used
to assess the system state, taking into account the history of transitions over the last 50 observations.

The system estimated the probability of transition to the Fail state (F). If this indicator exceeded
the set threshold, PredictiveWDT performed a selective soft reset of the problematic module
(deletion and re-creation of the task or driver restart). In the case when local measures had no effect,
the control signal to the watchdog timer was deliberately not transmitted, which caused a global
system restart after 2.7 seconds.

To unify the experiments, special failure scenarios were defined when TaskA was artificially
blocked (frozen) or generated excessive amounts of data, which caused queues to grow by more than
80%, or delayed activity signals. We checked how quickly the software Watchdog Timer would detect
a critical state, whether it would have time to perform a soft reset, and whether a hardware reset
would be required at all. Timestamps were recorded via Logger, as well as via the event tracking
mechanisms in FreeRTOS+Trace. For each scenario, a series of runs (at least 10) were repeated and
the average values of the main indicators were calculated.

The key parameter for assessing the system's effectiveness was the failure detection time (Mean
Time to Detect, MTTD), which determined how much time passed from the moment anomalous
behavior appeared (for example, the absence of an activity signal from TaskA) before the
PredictiveWDT transitioned to the Critical (C) state and increased the probability of failure,
initiating a soft reset. In parallel, the system recovery time (Mean Time to Repair, MTTR) was
measured, which determined how much time it took to return to Normal (N) after a local or global
restart. The time required for a soft reset (recovery of a specific task) was compared with the time
required for a full restart via the HW WDT.

The Global Reset Rate (GRR) was also analyzed, which reflects the percentage of cases when a
local recovery was not successful and a full system reset occurred. It was important to assess how
effectively the PredictiveWDT prevents fatal failures, whether it is too optimistic in its predictions
and misses critical situations, or, conversely, whether it generates an excessive number of false soft
resets when the system could recover on its own.

Additionally, FreeRTOS was profiled using integrated trace tools to analyze the average additional
CPU load caused by calculating the parameters of the predictive model. This made it possible to
verify that the PredictiveWDT does not create an excessive load on the system and does not
negatively affect the performance of other critical tasks.

5.2. Conducting experiments and comparing efficiency

During testing, PredictiveWDT detected TaskA hangs due to SPI overload in an average of 0.11 0.13
s, since the check period was 100 ms. In the case of a critical condition, it performed a restart of
TaskA, which took up to 0.35 s. In comparison, the HW WDT required almost 3 s to fully recover
the system, which resulted in a 4.5% downtime in 3 minutes (Figure 5). In tests with TaskA deadlock,
PredictiveWDT solved the problem locally in 100% of cases, and in 0% of cases the system restarted
via the HW WDT. The total downtime in this case decreased to 1.88%, which is 42% less than in the
first test. Experimental results confirm that the proposed model, which implements regular soft

restart of problematic components, allows to significantly reduce the average downtime compared
to a full system restart. At the same time, the system maintains a strict level of protection in cases
where software recovery is ineffective. The execution time of the algorithm remains practically
unchanged, since the state estimation process uses a lightweight stochastic model with minimal
computational costs.

Figure 5: Comparison of the system with and without a software watchdog timer (3 minutes) with
random failures.

In Figure 5, two system configurations are compared: the combined PredictiveWDT + HW WDT
scheme (purple line) and the traditional HW WDT-only scheme (turquoise line). In the
PredictiveWDT configuration, two proactive software resets were initiated upon detecting elevated
failure risk, and one hardware reset occurred as a result of a complete system freeze and the
subsequent withholding of the HW WDT feed. By contrast, the HW WDT-only configuration
experienced three hardware resets. The relative thickness of the bars illustrates that the duration of
each software reset is substantially shorter than that of a hardware reset, which collectively leads to
a marked reduction in overall system downtime.

The results obtained indicate the feasibility of using a two-stage (software-hardware) mechanism
to increase the reliability of embedded and cyber-physical systems. The proposed approach is
especially important in areas where simple systems can have critical consequences industrial
automation, robotics, transportation, medical devices but there are strict limitations on hardware
resources, which makes it impossible to use complex ML models or redundant hardware circuits.

Thus, the proposed model provides a compromise between adaptive response to failures and
guaranteed system stability, minimizing the number of global restarts, reducing downtime, and not
creating excessive load on computing resources.

6. Conclusions

The paper presents a two-stage model for increasing fault tolerance for embedded and cyber-physical
systems, which combines a hardware watchdog as the last level of protection against critical failures
and an intelligent software layer (Software Watchdog), which proactively detects the probability of
failure and performs local recovery of individual components. The main idea of the approach is not
to wait for the actual system hang, but to use dynamic analysis of the current state to assess the risk
of transition to a critical mode and initiate preventive actions in advance. If local recovery is
ineffective, the system intentionally allows the hardware watchdog to operate, which provides a full
restart in the event of a deep freeze.

The proposed model demonstrates practical effectiveness for real-time embedded and cyber-
physical systems, where it is necessary to ensure reliable recovery of operability under strict time
constraints. The use of a lightweight probabilistic model allows for quick analysis of the system state
without complex formal or ML methods, and the two-level mechanism minimizes the number of

hardware resets, leaving HW WDT only as a backup protection. The combination of software
preventive recovery with a hardware protection mechanism creates an effective balance between
reactive and proactive strategies for increasing fault tolerance. The results obtained confirm the
feasibility of applying the approach in various industries - from industrial automation and robotics
to automotive and medical systems, where it is critically important to reduce downtime and ensure
stable continuous operation, and also open up opportunities for improving the model and building
new methods. It is worth noting, however, that the current model requires manual tuning of the
failure risk threshold (𝜃), which may limit its generalizability across diverse hardware platforms and
workloads. Addressing this challenge through adaptive or self-learning threshold mechanisms
remains a promising direction for future research.

The experimental results show that the average fault detection time is only 0.11 0.13 s, and a
local soft reset finishes in approximately 0.35 s about 8
Among the main limitations of the method are its sensitivity to probability-threshold selection, the
need for fine-grained tuning on each hardware platform, and a potential increase in power
consumption at high checking frequencies. Future research will focus on adaptive auto-tuning of
thresholds, integrating lightweight ML models into the PredictiveWDT, and extending the approach
to distributed RTOS clusters and digital twins.

Declaration on Generative AI

AI tools were used exclusively for translation and proofreading purposes. All content was originally
written by the author.

References

[1] S. Saraeian, B. Shirazi, Digital twin-based fault tolerance approach for Cyber Physical
Production System, ISA Transactions 130 (2022) 35 50. DOI:10.1016/j.isatra.2022.03.007.

[2] P. Alho, Service-based Fault Tolerance for Cyber-Physical Systems: A Systems Engineering
Approach, December 2015. DOI:10.13140/RG.2.1.2862.6003.

[3] J. Navarro, Introduction to System Reliability Theory, Springer, New York, 2022, 181 p.
DOI:10.1007/978-3-030-86953-3.

[4] M. Rausand, A. Barros, A. Hoyland, System Reliability Theory: Models, Statistical Methods, and
Applications, 3rd edn., Wiley, 2021, 864 p. DOI:10.1002/9781119373940.

[5] Y. Chou, J. Yang, C. Wu, An energy-aware scheduling algorithm under maximum power
consumption constraints, Journal of Manufacturing Systems 57 (2020) 182 197.
DOI:10.1016/j.jmsy.2020.09.004.

[6] K. Zagalo, Stochastic analysis of stationary real-time systems, Ph.D. thesis, Sorbonne Université,
2023. URL: https://theses.hal.science/tel-04378907v1/file/ZAGALO_Kevin_these_2023.pdf.

[7] K. Zagalo, Y. Abdeddaïm, A. Bar-Hen, L. Cucu-Grosjean, Response Time Stochastic Analysis for
Fixed-Priority Stable Real-Time Systems, IEEE Transactions on Computers 72(1) (2023) 3 14.
DOI:10.1109/TC.2022.3211421.

[8] M. Rahnamania, F. Ashtiani, A New Analytical Approach for Delay Analysis in the Presence of
Correlated Arrivals, in: Proc. 12th Iran Workshop on Communication and Information Theory
(IWCIT), Tehran, Iran, 2024, pp. 1 6. DOI:10.1109/IWCIT62550.2024.10553217.

[9] -
Tolerant Analysis of the Deadline-Failure Probability of Dependent Tasks, in: Proc. IEEE Real-
Time Systems Symposium (RTSS), Taipei, Taiwan, 2023, pp. 317 330.
DOI:10.1109/RTSS59052.2023.00035.

[10] N. Ueter, M. Günzel, J.-J. Chen, Response-Time Analysis and Optimization for Probabilistic
Conditional Parallel DAG Tasks, in: Proc. IEEE Real-Time Systems Symposium (RTSS),
Dortmund, Germany, 2021, pp. 380 392. DOI:10.1109/RTSS52674.2021.00042.

https://theses.hal.science/tel-04378907v1/file/ZAGALO_Kevin_these_2023.pdf

[11] E. Cabral, F. Tofoli, R. F. Sampaio, R. P. Leão, Reliability assessment applied in the design of an
industrial substation in the context of Industry 4.0, Electric Power Systems Research 231 (2024)
110365. DOI:10.1016/j.epsr.2024.110365.

[12] S. Safari et al., A Survey of Fault-Tolerance Techniques for Embedded Systems From the
Perspective of Power, Energy, and Thermal Issues, IEEE Access 10 (2022) 12229 12251.
DOI:10.1109/ACCESS.2022.3144217.

[13] -making algorithm
by RTOS and FPGA tools, AIP Conference Proceedings 2700(1) (2023) 070005.
DOI:10.1063/5.0126813.

[14] S. Ramani, R. H. Jhaveri, ML-Based Delay Attack Detection and Isolation for Fault-Tolerant
Software-Defined Industrial Networks, Sensors 22(18) (2022) 6958. DOI:10.3390/s22186958.

[15] D. Bouhata, H. Moumen, J. A. Mazari, A. Bounceur, Byzantine fault tolerance in distributed
machine learning: a survey, Journal of Experimental & Theoretical Artificial Intelligence (2024)
1 59. DOI:10.1080/0952813X.2024.2391778.

[16]
critical RTOS using UPPAAL model checker, in: Proc. 36th Annual ACM Symposium on Applied
Computing (SAC), Association for Computing Machinery, New York, NY, USA, 2021, pp. 1807
1814. DOI:10.1145/3412841.3442053.

[17] A. Bosio, S. Di Carlo, M. Rebaudengo, A. Savino, Toward the hardening of real-time operating
systems, in: Proc. IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), Austin, TX, USA, 2022, pp. 1 6.
DOI:10.1109/DFT56152.2022.9962356.

[18] D. A. Santos et al., Hybrid Hardening Approach for a Fault-Tolerant RISC-V System-On-Chip,
IEEE Transactions on Nuclear Science 71(8) (2024) 1722 1730. DOI:10.1109/TNS.2024.3406021.

[19] A. Kashtalian, S. Lysenko, O. Savenko, A. Nicheporuk, T. Sochor, V. Avsiyevych, Multi-
computer malware detection systems with metamorphic functionality, Radioelectronic and
Computer Systems 1 (2024) 152 175. DOI:10.32620/reks.2024.1.13.

[20] M. A. Shajahan, Fault Tolerance and Reliability in AUTOSAR Stack Development: Redundancy
and Error Handling Strategies, Technology & Management Review 3(1) (2018) 27 45. URL:
https://hal.science/hal-04561763v1/file/2018_4.pdf.

[21] N. K. Al-Salihi, Improvement of the Fault Tolerance in IoT Based Positioning Systems by
Applying Redundancy in the Controller Layer. Department of Computer Science and
Engineering, College of Engineering, University of Kurdistan Hewlêr (UKH), Erbil, Iraq, 2021.
DOI:10.21123/bsj.2021.18.4.1303.

[22] O. Savenko, A. Sachenko, S. Lysenko, G. Markowsky, N. Vasylkiv, Botnet detection approach
based on the distributed systems. International Journal of Computing 19(2) (2020) 190 198.
DOI:10.47839/ijc.19.2.1761.

[23] A. Kashtalian, S. Lysenko, A. Sachenko, B. Savenko, O. Savenko, A. Nicheporuk. Evaluation
criteria of centralization options in the architecture of multicomputer systems with traps and
baits. Radioelectronic and Computer Systems, 1 (2025), 264-297. DOI:10.32620/reks.2025.1.18

[24] A. Kashtalian, S. Lysenko, T. Kysil, A. Sachenko, O. Savenko, B. Savenko, Method and Rules for
Determining the Next Centralization Option in Multicomputer System Architecture,
International Journal of Computing 24(1) (2025) 35-51. DOI:10.47839/ijc.24.1.3875

[25] K. Bobrovnikova, M. Kapustian, D. Denysiuk, Research of machine learning based methods for
cyberattacks detection in the internet of things infrastructure, Computer Systems and
Information Technologies 3 (2022) 110 115. DOI:10.31891/CSIT-2021-5-15

[26] D. Chicco, G. Jurman, The Matthews correlation coefficient (MCC) should replace the ROC AUC
as the standard metric for assessing binary classification, BioData Mining 16 (1) (2023) 1-23.
DOI:10.1186/s13040-023-00322-4

[27] D. Martiniuk, O. Lyhun, A. Drozd, O. Besedovskyi, Task optimisation in multiprocessor
embedded systems. Computer Systems and Information Technologies 1 (2025) 124 135. DOI:
10.31891/csit-2025-1-14

https://hal.science/hal-04561763v1/file/2018_4.pdf

