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Abstract 
The article presents a model of probabilistic monitoring and proactive restart of real-time operating systems 
(RTOS) in conditions of intensive changes in the states of cyber-physical systems. The proposed model uses 
a probabilistic approach to assess the risk of failures, which allows for timely prediction of potential 
problems and prevention of their critical impact on the functioning of the system. It provides proactive 
local recovery of problematic components using a dual watchdog mechanism, which includes both 
hardware and software control levels. This approach allows not only to detect failures at an early stage, but 
also to promptly respond to deviations from the normal operating mode of the system. A key aspect of the 
developed model is the ability to locally restart individual tasks before the hardware watchdog timer is 
triggered. This significantly reduces the overall computational load on the microcontroller, preventing 
excessive use of resources and reducing the likelihood of a complete emergency restart of the system. 
Integration of the proposed approach with real-time operating systems, such as FreeRTOS, provides ease 
of implementation and increases the efficiency of resource management in systems with limited 
capabilities. In addition, the model allows you to adapt to changing operating conditions and provides 
flexible tuning of monitoring parameters in accordance with the specifics of the operation of cyber-physical 
systems. Experimental studies have demonstrated the high effectiveness of the proposed method in 
reducing downtime and increasing the overall reliability of real-time operating systems. The proposed 
approach allows you to minimize the consequences of unexpected failures, increase the system's resistance 
to changes in the external environment and ensure the stability of its operation even in critical operating 
conditions. 
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1. Introduction

Modern real-time operating systems (RTOSs) are characterized by a large number of concurrent tasks 
and a deep integration of hardware and software components. This complexity poses significant 
challenges for maintaining continuous system operation while satisfying stringent timing 
constraints (deadlines). Such requirements are especially critical in cyber-physical systems, where 
even minor errors or delays in managing physical processes can lead to severe consequences  
system failures, equipment damage, or the compromise of safety-critical functions [1,2]. Given the 
potentially high cost of these failures, ensuring system reliability and fault tolerance remains a 
primary research focus in embedded and real-time computing. 

A primary mechanism for mitigating failure risks and enhancing reliability is the watchdog timer, 
which may be implemented at both hardware and software levels. The conventional approach relies 
on rebooting the microcontroller when a crash or core failure is detected. However, this reactive 
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strategy addresses issues only after they occur, incurring significant computational and temporal 
overhead. As system complexity and reliability demands grow, hybrid methods that combine 
hardware and software monitoring have become increasingly relevant. In particular, a dual-
watchdog architecture can enable proactive, localized restarts of individual software components via 
a probabilistic risk-assessment model, facilitating early failure detection, avoiding full-system 
reboots, and substantially reducing overall downtime. 

Embedded systems often operate under severe constraints  limited processing power, tight real-
time deadlines, and restricted memory availability [3]. Under these conditions, computationally 
intensive analytical techniques, such as machine learning algorithms or comprehensive formal 
models, may be impractical. Simplified probabilistic approaches, in contrast, allow real-time 
estimation of failure risk based on a small set of key system parameters. This capability supports a 
software-based predictive control layer that identifies early warning trends before system freezes or 
critical failures occur. Consequently, targeted local restarts of malfunctioning tasks, drivers, or 
modules can be executed to prevent complete system failures. 

The main scientific contributions of this study include the development of a lightweight 
stochastic monitoring model that can run inside an RTOS task; the proposal of a two-level fault-
tolerance architecture combining a Predictive Watchdog Task (PredictiveWDT) with a hardware 
watchdog timer (HW WDT); the implementation of a prototype on an STM32F407 microcontroller 
that detects task hangs in 0.11 0.13 s and finishes a local soft reset in 0.35 s whereas a full recovery 
via the HW WDT takes almost 3 s thereby cutting total system downtime from 4.5 % to 1.88 % (-42 
%); and the demonstration that the approach markedly reduces global restarts while introducing only 
negligible computational overhead, together with a clear statement of its practical limitations. 

2. Analysis of known solutions 

Existing fault-tolerance strategies for embedded real-time operating systems (RTOS) can be classified 
into hardware-based, software-based, and hybrid models, each with its own characteristics in terms 
of performance, resource usage, and implementation complexity. The main classes of fault-tolerance 
models are illustrated in Figure 1: hardware watchdog timers, redundancy-based architectures, 
formal verification methods, machine-learning models. 

A HW WDT is typically implemented either as an integrated peripheral module within the 
microcontroller or as an external supervisory device with its own clock generator. In such a scheme, 
the application is required to periodically refresh the timer counter or send a signal indicating normal 
system operation. If this refresh does not occur within a specified interval, the watchdog interprets 
it as a system fault and initiates a complete system reset. Due to its independence from the real-time 
operating system (RTOS) kernel, the timer is capable of restoring operation even in cases of total 
system hang or deadlock. However, this approach is purely reactive, since the reset is triggered only 
after a failure has already occurred, resulting in the loss of execution context and system downtime. 
In safety-critical domains such as automotive electronics, industrial automation, or medical devices, 
even short interruptions lasting several seconds may be unacceptable. The redundancy-based model 
entails duplicating critical system components to enhance overall fault tolerance. Common 
implementations include N-modular redundancy with majority-voting logic or hot/cold-standby 
configurations, in which a backup module immediately (or near-instantaneously) takes over when 
the primary fails [20,21]. Such schemes are essential in applications where even a momentary 
interruption is unacceptable, for example, in avionics systems [16] or continuous industrial conveyor 
operations. However, redundancy requires substantial additional hardware, sophisticated state-
synchronization mechanisms, and incurs considerable financial cost [12,17], rendering it impractical 
for many resource-constrained embedded platforms [5]. 



   

Figure 1: Taxonomy of existing fault-tolerance models for RTOS. 

Formal methods and verification techniques  
checking  -178C, ISO 26262) to 
demonstrate the absence of specific error classes and deadlocks during the design phase [4]. These 
techniques enable rigorous analysis of system dynamics and formal proof of specification 
conformance. However, their application to operational (online) failure detection is frequently 
constrained [10] by high computational deman
space explosion problem encountered in realistic systems [6,7]. 

Machine-learning (ML) techniques have been widely adopted in large-scale cloud infrastructures 
and high-performance computing (HPC) clusters for tasks such as load forecasting, anomaly 
detection and predictive task migration [14]. Despite their potential for real-time data analysis, the 
performance of ML models critically depends on the chosen evaluation metrics [26], while also 
imposing substantial demands on system resources  namely, memory capacity, processing power, 
and high-quality training datasets. Deploying even relatively lightweight ML algorithms on 
resource-constrained microcontrollers (e.g., STM32, AVR, ESP32) can therefore be prohibitive in 
terms of computational overhead and energy consumption, as illustrated by the challenges of 
achieving Byz -
driven methods under rare or corner-case scenarios is difficult, which conflicts with the stringent 
verification requirements of safety-critical domains such as avionics and medical devices. 

In summary, while hardware watchdog timers ensure reactive recovery from global hangs and 
software monitors enable more granular, rapid local response, each approach has drawbacks: 
redundancy schemes incur heavy hardware overhead, and formal or ML-based models are often too 
resource-intensive for simple embedded platforms. 

A hybrid strategy that combines these paradigms offers the most promise. In this model, a 
hardware watchdog acts as the ultimate safeguard against catastrophic system freezes, while a 
lightweight software layer proactively detects emerging fault trends and performs localized restarts 
of only the affected components. Implementations of this predictive layer range from simple 
threshold-based heuristics to analytical probabilistic risk-assessment models [11]. Given the 
constraints of embedded environments and the requirement for low-latency execution, simplified 
probabilistic models with a limited number of discrete states represent a practical compromise. Such 
approaches have been successfully applied in domains like automated guided vehicle (AGV) systems 
and predictive maintenance of industrial equipment [13], where analysis of historical state 
transitions enables early risk estimation and thus reduces reliance on full-system resets  
minimizing downtime and enhancing operational continuity. 



The objective of this study is to develop and validate a proactive component-restart model for 
embedded real-time systems, grounded in probabilistic failure-risk monitoring and integrated with 
conventional hardware watchdog mechanisms. This approach aims to reduce the frequency of 
system-wide reboots, thereby minimizing the time and computational costs associated with recovery. 
Moreover, integrating the proposed model with hardware-level controls is expected to enhance the 
fault tolerance of resource-constrained cyber-physical systems subject to rapid state changes. By 
providing a computationally efficient solution, the model offers practical value to embedded-system 
designers, ensuring high availability of critical applications while mitigating the impact of potential 
failures. It should be noted that optimizing task allocation in multiprocessor embedded systems 
remains an important research direction, as confirmed, in particular, by the findings of study [27]. 

3. Formulation of the problem 

An evaluation of existing fault-tolerance mechanisms for embedded real-time systems reveals 
inherent trade-offs. Hardware watchdog timers guarantee a full system reboot following a critical 
failure; however, they activate only after system operability has been lost, resulting in total context 
loss and necessitating complete reinitialization. Software watchdogs, by contrast, can detect failures 
at the task level at an earlier stage, yet their efficacy depends on the underlying RTOS kernel 
remaining operational. Although redundancy-based schemes achieve high reliability, they impose 
significant overhead in terms of hardware replication and complex synchronization algorithms. 
Similarly, formal verification methods and machine-learning-based approaches often require 
substantial computational resources or incur prohibitive verification costs, making their deployment 
on resource-constrained microcontrollers impractical. 

To address these limitations in resource-limited devices, a hybrid fault-tolerance architecture is 
proposed. In this design, the HW WDT serves as a last-resort mechanism for recovering from global 
system freezes, while an intelligent software layer continuously monitors system metrics, detects 
emerging fault conditions, and executes localized recovery procedures  thereby reducing the 
frequency of full system resets. 

The principal challenge in realizing this hybrid model lies in devising a lightweight yet effective 
state-assessment mechanism capable of estimating the likelihood of critical events  such as system 
freeze, task-deadline violations, or queue overflows  in real time. Employing oversimplified triggers 
(e.g., fixed thresholds on queue occupancy) risks generating false alarms, whereas sophisticated 
predictors based on machine learning or formal methods exceed the computational budgets of typical 
embedded processors. 

Accordingly, this work aims to develop a resource-efficient crash-prediction model that enables 
rapid estimation of the probability of transition to a critical system state, while integrating seamlessly 
with a software watchdog timer to initiate soft resets of individual components. The model is 
designed to preserve normal operation in the presence of non-fatal anomalies and to delegate full 
recovery to the HW WDT in cases of unrecoverable system freezes. 

Given these requirements, hybrid models that combine implementation simplicity with adequate 
prediction accuracy present a promising solution [18]. In particular, lightweight probabilistic 
frameworks  requiring only minimal computational resources  offer an effective balance between 

. 

4. The main part 

4.1. Basic architecture of the RTOS and its modification taking into account 
probabilistic monitoring. 

Effective resource management and maintaining stable operation of real-time operating systems 
(RTOS) are key tasks for their reliable operation, especially in the case of use in cyber-physical 
systems (CPS) and the Internet of Things (IoT). The expansion of RTOS application areas is 



accompanied by the need for fast processing of large amounts of data in real time, which requires 
effective mechanisms for ensuring fault tolerance. 

The standard RTOS architecture includes several key components. The scheduler determines the 
execution order of tasks using algorithms such as priority-based scheduling or Earliest Deadline First 
(EDF). Tasks are independent processes responsible for various functions, including data collection 
from sensors, information exchange, and control of actuators. Task execution can be either periodic 
or event-driven. System services such as timers, queues, and semaphores facilitate inter-task 
communication, synchronization, and data transfer. They may also include logging and 
configuration utilities. Device drivers provide interfaces for interacting with hardware modules such 
as UART, SPI, 𝐼²𝐶, and ADC, offering the necessary APIs for software components. The HW WDT 
functions as an autonomous microcontroller module that monitors system stability and triggers a 
forced restart in case of a loss of functionality. 

In a standard RTOS, the watchdog timer is configured to have its counter periodically refreshed 
by calling feed_watchdog(), which prevents it from expiring during normal operation. If this refresh 
does not occur in time  for example, because a critical component has frozen  the watchdog timer 
triggers a full microcontroller reset. 

Although this mechanism reliably restores system functionality, it suffers from a fundamental 
limitation: it is purely reactive, invoking a reset only after a failure has already occurred. 

  a behavior that can be 
unacceptable in stringent real-time environments such as industrial process control or embedded 
medical devices. 

In practice, developers attempt to mitigate unnecessary resets by instrumenting key execution 
points with calls to feed_watchdog(). While this approach can reduce avoidable restarts, it provides 
no proactive assessment of system health and offers no means to confine faults locally. Under severe 
conditions  such as a scheduler deadlock or data-bus blockade  the system still must perform a 
full restart, leading to service interruption and the loss of all volatile state. 

An interaction model of a conventional RTOS setup utilizing a hardware watchdog for basic fault 
recovery is shown in Figure 2 (left). 

 

Figure 2: Graph-based models of typical RTOS with HW WDT and an enhanced probabilistic 
monitoring system. 

Figure 2 (right) illustrates an enhanced RTOS supervision model that complements the classical 
scheme with a predictive and locally recoverable layer. This additional layer enables the system to 
intercept and mitigate emerging faults before they escalate into critical failures. The full system 
architecture, including all interacting components, is depicted in Figure 3 and is designed in such a 

, 25]. 
The enhanced architecture comprises the following primary components: 



• Scheduler continues to execute standard task scheduling algorithms without changes. 
• Tasks executes the function similarly to the traditional RTOS architecture. 
• System services and device drivers: retain their existing interfaces to the kernel  timers, 

queues, semaphores, and peripheral abstractions (e.g., UART, SPI)  unchanged. 
• HW WDT serves as a secondary safeguard, triggering a full microcontroller reset if the 

system experiences an unrecoverable freeze. 
• PredictiveWDT has been added  

monitoring and proactive recovery. Although referred to as the Predictive Watchdog Timer 
in the architectural diagram (see Figure 3), this component operates as a full-fledged RTOS 
task rather than a conventional timing mechanism. Its main functions are as follows: system 
activity analysis gathers operational metrics (e.g., queue lengths, task execution times, 
heartbeat signals) via message queues or global variables to assess system stability; failure 
prediction employs a lightweight probabilistic model to estimate the likelihood of a transition 
into a critical state; preventive error correction initiates a localized restart of a failing task 
(via vTaskDelete and xTaskCreate) or reinitializes a faulty driver (ReInitDriver) whenever 
the predicted risk exceeds a predefined threshold; HW WDT supervision refreshes the 
hardware watchdog during normal operation. If local recovery fails, withholding the refresh 
prompts the HW WDT to execute a full system reset. 

 

Figure 3: General architecture of the proposed RTOS for cyber-physical systems with intensive state 
changes, with the Predictive Watchdog Timer module highlighted in green. 

Algorithm for interaction of the PredictiveWDT with system components: 

1. Each critical task periodically transmits an activity signal  for example, by updating 
lastSeenTime[taskID] or sending a heartbeat message to the PredictiveWDT queue. 

2. The PredictiveWDT runs at high priority at regular intervals (e.g., every 150 250 ms), 
processes the gathered signals, and assesses the current system state. 

3. If the analysis indicates a high probability of a hang or critical state, a soft reset of the 
problematic module is performed. If after several attempts at local recovery the system 



remains in a critical state, the PredictiveWDT stops updating the watchdog timer, which 
leads to a global reset. 

4. Under normal conditions, the PredictiveWDT transmits a control signal to the HW WDT, 
which confirms stable system operation. 

Thus, the proposed architectural model with PredictiveWDT provides an optimal combination of 
preventive analysis, local fault elimination and the classic emergency restart mechanism. This allows 
to increase the RTOS resistance to failures, reduce downtime and improve the system adaptability to 
changing operating conditions. 

4.2. Failure prediction and preventive component restart model in RTOS 

The proposed model involves the integration of a hardware watchdog as a mechanism of the final 
level of protection and intelligent software control (Software Watchdog), which predicts possible 
failures and locally restores components to their critical state. 

The functional scheme provides a two-stage mechanism: 

1. Software level of preventive control  analyzes the system state and performs local soft reset 
of individual tasks or drivers in case of detection of anomalous deviations in operation. This 
can be both a simple failure and anomalous actions for example from the point of view of 
malicious software [19,22]. 

2. Hardware level of protection  in case of ineffective software recovery or general system 
freeze, the HW Watchdog Timer is activated, which initiates a full restart. 

Such a two-level strategy significantly reduces the number of full reboots (resets), reduces 
downtime and ensures stable operation of embedded and cyber-physical systems with limited 
resources and strict time requirements. The proposed model assumes that the system state is 
evaluated discretely, at time points 𝑡 =  𝑘 ⋅ 𝛥𝑡, where 𝛥𝑡 is the execution period of the 
PredictiveWDT in the real-time operating system. At each step, the system is in one of the defined 
states (for example, {𝑁, 𝐶, 𝐹}: "Normal," "Critical," or "Fail"). The transition between states is based 
on the analysis of current performance indicators, in particular, task processing time, queue load or 
activity signal update frequency. The model uses a probabilistic approach, which allows predicting 
possible failures and initiating preventive recovery before the transition to a critical state. 

Let 𝑆 = {𝑁, 𝐶, 𝐹} be a finite set of states. At each time step 𝑡𝑘 = 𝑘𝛥𝑡, the system (or 
PredictiveWDT, reflecting system health monitoring) is in one of the states 𝑥(𝑘) ∈ 𝑆.  

For simplicity, let us assume that: 

1. N (Normal)  the system is in the normal range (queues are not crowded, signals about the 
activity of all tasks arrive on time). 

2. C (Critical)  the risk of a quick failure is high (significant delays, frequent missed deadlines, 
the task stops sending activity signals). 

3. F (Fail)  actual hang/failure (in the model, this is an absorbing state or an indicator that a 
global reset has occurred). 

Transitions between states are governed by a probability matrix 𝑃 ∈ 𝑅3×3: 

𝑃 = [
𝑃𝑁𝑁 𝑃𝑁𝐶 𝑃𝑁𝐹

𝑃𝐶𝑁 𝑃𝐶𝐶 𝑃𝐶𝐹

0 0 1
], 

(1) 

where 𝑝𝑖𝑗 = 𝑃(𝑥 + 1) = 𝑗|𝑥(𝑘) = 𝑖), and  𝑥(𝑘)  denotes the system state at time step 𝑘. The 
state 𝐹 is absorbing, implying that once reached, the system initiates a full hardware reset. At each 
time step 𝑘, the predictive monitoring component estimates the probability of failure at the next 
step: 



𝑃𝐹(𝑘) = 𝑃(𝑥(𝑘 + 1)) = 𝐹|𝑥(𝑘)), (2) 

this can be computed as: 

𝑃𝐹(𝑘) = 𝑃𝐶𝐹 ⋅ 𝐼𝑥(𝑘)=𝐶 + 𝑃𝑁𝐹 ⋅ 𝐼𝑥(𝑘)=𝑁 = 𝑁, (3) 

where 𝐼 is the indicator function. Let 𝜃 ∈ [0,1] denote the failure risk threshold. If the condition 

𝑃𝐹(𝑘) ≥ θ (4) 

is satisfied, a software restart of the task considered the cause of the critical state is performed. 
Let 𝑅(𝑇𝑖) denote the restart or reinitialization operation: 

𝑅(𝑇𝑖): = 𝐷(𝑇𝑖) ∘ 𝐶(𝑇𝑖), (5) 

where 𝑇𝑖  is the identifier of the task to be restarted, 𝐷(𝑇𝑖) denotes the deletion of the task from 
the RTOS scheduler, 𝐶(𝑇𝑖) represents the recreation of the task with its initial configuration, ∘ is the 
composition operator (sequential execution of actions). 

Let 𝛥𝑡 be the monitoring interval, and 𝑇𝐻𝑊 the timeout of the HW WDT. Let f denote the 
hardware watchdog feed function (feed_HW_WDT). If the system remains in the critical state 𝐶 for 
𝑚, consecutive monitoring steps and the local recovery attempt fails, the Predictive Watchdog 
deliberately suppresses the hardware watchdog feed signal at time step 𝑘 + 𝑚: 

𝑓(𝑘 + 𝑚) = 0 (6) 

This action triggers a full system reset. To maintain adaptivity, the transition probabilities 𝑝𝑖𝑗 can 
be updated using an exponentially weighted moving average: 

𝑃𝑖𝑗
(𝑘)

= 𝛼 ⋅ 𝐼𝑥(𝑘−1)=𝑖∧𝑥(𝑘)=𝑗 + (1 − 𝑎) ⋅ 𝑃𝑖𝑗
(𝑘−1)

, (7) 

where 𝛼 ∈ (0,1) is the smoothing coefficient, 𝐼𝑥(𝑘−1)=𝑖∧𝑥(𝑘)=𝑗is the indicator function that equals 
1 if the system was in state 𝑖 at time 𝑘 − 1 and in state 𝑗 at time 𝑘 , and 0 otherwise. 

Thus, the definition of 𝑁, 𝐶, 𝐹 depends on the application scenario and the thresholds set. Such 
thresholds are determined empirically or based on the specifics of the application. 

The probabilities of transitions between states in Predictive Watchdog are dynamic and can be 
adjusted in real time depending on changes in key system metrics. The main influencing factors are 
queue fullness, system activity signal latency, memory usage, and other system performance 
parameters. 

The proposed model implements a two-stage approach to system recovery. If the analysis 
PredictiveWDT initiates a 

local recovery procedure by performing a soft reset of the problematic component. If the system fails 
to stabilize after the soft reset and remains in the Critical (C) state, the software layer deliberately 
refrains from updating the HW WDT (i.e., the feed() function is not called). As a result, after the 
expiration of the hardware watchdog timeout 𝑇𝐻𝑊, a full microcontroller reset is triggered, restoring 
the system to the Normal (N) state. 

Thus, when deviations remain within tolerable limits, a soft reset obviates the need for a global 
restart and thereby reduces system downtime. The HW WDT is retained as a final safeguard should 
the software layer lose control. Formally, if at step k the soft reset procedure is started, then at 
step 𝑘 + 1 we artificially set 𝑥(𝑘 + 1) = 𝑁 (if the restart was successful). 

Since we have 𝛥𝑡 ≪ 𝑇𝐻𝑊, then the software layer has several attempts (for example, 10–20 cycles 
with a step of 𝛥𝑡) to perform a soft reset before the HW WDT timeout expires. If the PredictiveWDT 
determines that the system state has returned to Normal (or remains in Warning without progressing 
to Critical), it calls HW_WDT_Feed(), continuing normal operation. Otherwise, it deliberately 
withholds the feed signal to the hardware watchdog, allowing the timer to expire and trigger a full 
system reset (see Figure 4, right). 



As a result, the mathematical scheme has the following steps: 

1. The state of the system is denoted as 𝑥(𝑘)  a discrete moment in time in a finite space 𝑆. 
2. The transition between states is determined by probabilities. 
3. The probability of failure in one step is defined as  𝑝𝑖𝐹 (from Critical to Fail). When the 

threshold 𝜃 is exceeded  we launch preventive actions (soft reset). 
4. If necessary, we consider the forecast for r steps through 𝑃𝑟. 
5. If local recovery is ineffective, the system goes into state C (Critical) and continues to operate 

until the HW WDT timeout. 

 

Figure 4: Schematic diagram of the standard watchdog timer workflow (left) and of the enhanced 
predictive software-layer watchdog timer (right). 

The proposed model is based on a discrete analysis of changes in the system state with the 
possibility of dynamically updating the probability matrix P in real time, which ensures effective 
detection of potential failures without significant computational costs. The basic concept of the 
model combines a probabilistic approach to failure risk assessment with a two-stage recovery 
strategy.  

The first stage involves local preventive recovery through a soft reset, which is triggered when 
an increased risk of failure is detected; this allows for restoring the operability of individual tasks or 
drivers without requiring a full system reboot. If the software-based recovery proves ineffective, the 
second stage is activated resulting in a global restart initiated by the HW WDT, which ensures 
restoration of system functionality in critical scenarios. 

Thus, the model allows to effectively avoid minor failures, reducing the need for a full reset, while 
ensuring resistance to critical failures when software methods do not work. 

5. Experimental research 

5.1. Prototype preparation 

To assess the effectiveness of the two-stage fault tolerance mechanism (combination of hardware 
watchdog timer and software layer with adaptive analysis), a series of experiments were conducted 



on the basis of the STM32F407 microcontroller platform (Cortex-M4 core, clock frequency 168 MHz). 
The test environment used the FreeRTOS real-time operating system with five application tasks: 

1. TaskA  the main task that works with the periphery (SPI/UART) and periodically creates 
high loads on the system. 

2. TaskB, TaskC  auxiliary tasks for signal processing and interaction with sensors. 
3. Logger  a service for recording diagnostic messages and event timestamps. 
4. PredictiveWDT  a separate task that implements intelligent watchdog control with a 

frequency of 100 ms. 

The HW WDT had a timeout of 2 seconds. PredictiveWDT checked activity signals from other 
tasks on each cycle and analyzed the level of queue filling. A dynamic probabilistic model was used 
to assess the system state, taking into account the history of transitions over the last 50 observations. 

The system estimated the probability of transition to the Fail state (F). If this indicator exceeded 
the set threshold, PredictiveWDT performed a selective soft reset of the problematic module 
(deletion and re-creation of the task or driver restart). In the case when local measures had no effect, 
the control signal to the watchdog timer was deliberately not transmitted, which caused a global 
system restart after 2.7 seconds. 

To unify the experiments, special failure scenarios were defined when TaskA was artificially 
blocked (frozen) or generated excessive amounts of data, which caused queues to grow by more than 
80%, or delayed activity signals. We checked how quickly the software Watchdog Timer would detect 
a critical state, whether it would have time to perform a soft reset, and whether a hardware reset 
would be required at all. Timestamps were recorded via Logger, as well as via the event tracking 
mechanisms in FreeRTOS+Trace. For each scenario, a series of runs (at least 10) were repeated and 
the average values of the main indicators were calculated. 

The key parameter for assessing the system's effectiveness was the failure detection time (Mean 
Time to Detect, MTTD), which determined how much time passed from the moment anomalous 
behavior appeared (for example, the absence of an activity signal from TaskA) before the 
PredictiveWDT transitioned to the Critical (C) state and increased the probability of failure, 
initiating a soft reset. In parallel, the system recovery time (Mean Time to Repair, MTTR) was 
measured, which determined how much time it took to return to Normal (N) after a local or global 
restart. The time required for a soft reset (recovery of a specific task) was compared with the time 
required for a full restart via the HW WDT. 

The Global Reset Rate (GRR) was also analyzed, which reflects the percentage of cases when a 
local recovery was not successful and a full system reset occurred. It was important to assess how 
effectively the PredictiveWDT prevents fatal failures, whether it is too optimistic in its predictions 
and misses critical situations, or, conversely, whether it generates an excessive number of false soft 
resets when the system could recover on its own. 

Additionally, FreeRTOS was profiled using integrated trace tools to analyze the average additional 
CPU load caused by calculating the parameters of the predictive model. This made it possible to 
verify that the PredictiveWDT does not create an excessive load on the system and does not 
negatively affect the performance of other critical tasks. 

5.2. Conducting experiments and comparing efficiency 

During testing, PredictiveWDT detected TaskA hangs due to SPI overload in an average of 0.11 0.13 
s, since the check period was 100 ms. In the case of a critical condition, it performed a restart of 
TaskA, which took up to 0.35 s. In comparison, the HW WDT required almost 3 s to fully recover 
the system, which resulted in a 4.5% downtime in 3 minutes (Figure 5). In tests with TaskA deadlock, 
PredictiveWDT solved the problem locally in 100% of cases, and in 0% of cases the system restarted 
via the HW WDT. The total downtime in this case decreased to 1.88%, which is 42% less than in the 
first test. Experimental results confirm that the proposed model, which implements regular soft 



restart of problematic components, allows to significantly reduce the average downtime compared 
to a full system restart. At the same time, the system maintains a strict level of protection in cases 
where software recovery is ineffective. The execution time of the algorithm remains practically 
unchanged, since the state estimation process uses a lightweight stochastic model with minimal 
computational costs. 

 

Figure 5: Comparison of the system with and without a software watchdog timer (3 minutes) with 
random failures. 

In Figure 5, two system configurations are compared: the combined PredictiveWDT + HW WDT 
scheme (purple line) and the traditional HW WDT-only scheme (turquoise line). In the 
PredictiveWDT configuration, two proactive software resets were initiated upon detecting elevated 
failure risk, and one hardware reset occurred as a result of a complete system freeze and the 
subsequent withholding of the HW WDT feed. By contrast, the HW WDT-only configuration 
experienced three hardware resets. The relative thickness of the bars illustrates that the duration of 
each software reset is substantially shorter than that of a hardware reset, which collectively leads to 
a marked reduction in overall system downtime. 

The results obtained indicate the feasibility of using a two-stage (software-hardware) mechanism 
to increase the reliability of embedded and cyber-physical systems. The proposed approach is 
especially important in areas where simple systems can have critical consequences  industrial 
automation, robotics, transportation, medical devices  but there are strict limitations on hardware 
resources, which makes it impossible to use complex ML models or redundant hardware circuits. 

Thus, the proposed model provides a compromise between adaptive response to failures and 
guaranteed system stability, minimizing the number of global restarts, reducing downtime, and not 
creating excessive load on computing resources. 

6. Conclusions 

The paper presents a two-stage model for increasing fault tolerance for embedded and cyber-physical 
systems, which combines a hardware watchdog as the last level of protection against critical failures 
and an intelligent software layer (Software Watchdog), which proactively detects the probability of 
failure and performs local recovery of individual components. The main idea of the approach is not 
to wait for the actual system hang, but to use dynamic analysis of the current state to assess the risk 
of transition to a critical mode and initiate preventive actions in advance. If local recovery is 
ineffective, the system intentionally allows the hardware watchdog to operate, which provides a full 
restart in the event of a deep freeze.  

The proposed model demonstrates practical effectiveness for real-time embedded and cyber-
physical systems, where it is necessary to ensure reliable recovery of operability under strict time 
constraints. The use of a lightweight probabilistic model allows for quick analysis of the system state 
without complex formal or ML methods, and the two-level mechanism minimizes the number of 



hardware resets, leaving HW WDT only as a backup protection. The combination of software 
preventive recovery with a hardware protection mechanism creates an effective balance between 
reactive and proactive strategies for increasing fault tolerance. The results obtained confirm the 
feasibility of applying the approach in various industries - from industrial automation and robotics 
to automotive and medical systems, where it is critically important to reduce downtime and ensure 
stable continuous operation, and also open up opportunities for improving the model and building 
new methods. It is worth noting, however, that the current model requires manual tuning of the 
failure risk threshold (𝜃), which may limit its generalizability across diverse hardware platforms and 
workloads. Addressing this challenge through adaptive or self-learning threshold mechanisms 
remains a promising direction for future research. 

The experimental results show that the average fault detection time is only 0.11 0.13 s, and a 
local soft reset finishes in approximately 0.35 s about 8  
Among the main limitations of the method are its sensitivity to probability-threshold selection, the 
need for fine-grained tuning on each hardware platform, and a potential increase in power 
consumption at high checking frequencies. Future research will focus on adaptive auto-tuning of 
thresholds, integrating lightweight ML models into the PredictiveWDT, and extending the approach 
to distributed RTOS clusters and digital twins. 

Declaration on Generative AI 

AI tools were used exclusively for translation and proofreading purposes. All content was originally 
written by the author. 
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