
Using artificial intelligence in the context of buffer

overflow vulnerabilities⋆

Oleg Savenko1, , Yevhenii Sierhieiev1,∗,†, Piotr Gaj2, and Jiri Balej

1 Khmelnytskyi National University, Instytuts'ka St, 11, Khmelnytskyi, 29000, Ukraine
2 Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland3
3

Abstract
The article investigates a method for detecting Buffer Overflow vulnerabilities based on the YOLO neural
network. Buffer Overflow vulnerabilities remain a fundamental security concern for modern software
systems due to their potential for catastrophic exploitation and persistent presence in both legacy and
actively maintained codebases. Traditional detection methods such as static application security testing
(SAST) and dynamic analysis offer partial coverage and often struggle with high false positive rates, poor
scalability, or limited adaptability to novel vulnerability patterns. This paper presents a novel approach to
the automated detection of Buffer Overflow vulnerabilities by leveraging graph-based code representations
and the YOLO (You Only Look Once) neural network architecture, originally designed for object detection
in computer vision.
The study comprehensively reviews current state-of-the-art AI/ML-driven vulnerability detection methods,
highlighting their advantages and limitations. The proposed method systematically transforms program
code into graph structures and applies YOLO to efficiently localize high-risk code regions. We detail the
mathematical risk modeling underpinning the detection process and the workflow for integrating this
approach into CI/CD pipelines. A full-scale experiment, using real-world data from CVE and NVD
repositories, demonstrates significant improvements in detection accuracy and efficiency compared to
leading static analysis tools. The approach achieved 94.3% precision and an F1-score of 93.0% on benchmark
datasets, confirming its practical utility for software security assurance. Finally, we discuss challenges,
observed limitations, and perspectives for extending the model to additional vulnerability classes and
industrial settings.

Keywords
cybersecurity, Buffer overflow, Machine Learning, Graphs, YOLO 1

1. Introduction

Modern software is a critical element of many information systems and infrastructure, which makes
it an important target for cybercriminals to attack. Among the various types of vulnerabilities, a
special place is occupied by the Buffer Overflow vulnerability, which occurs due to errors in memory
management and allows attackers to execute arbitrary code, access confidential data, or disrupt the
stability of systems [1]. Despite many methods for detecting such vulnerabilities, the effectiveness
of many of them is limited, especially when analyzing large code bases and complex relationships in
the code.

Traditional methods such as static security analysis (SAST), although widely used, often suffer
from high false positive rates and are unable to detect new or atypical vulnerability patterns

1 Corresponding author.
These authors contributed equally.
 savenko_oleg_st@ukr.net (O. Savenko); ysierhieiev@gmail.com (Ye. Sierhieiev); piotr.gaj@polsl.pl (P. Gaj),

jiri.balej@mendelu.cz (J. Balej)
 0000-0002-4104-745X (O. Savenko); 0009-0008-9877-9863 (Ye. Sierhieiev); 0000-0002-2291-7341 (P. Gaj); 0000-0002-

6054-8700 (J. Balej)
© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:savenko_oleg_st@ukr.net
mailto:ysierhieiev@gmail.com
mailto:jiri.balej@mendelu.cz
https://orcid.org/0000-0002-4104-745X
https://orcid.org/0009-0008-9877-9863
https://orcid.org/0000-0002-6054-8700
https://orcid.org/0000-0002-6054-8700

effectively [2]. That is why the development of new, more effective approaches that would allow for
quick and accurate identification of critical risk areas in software systems [3, 4].

Recently, artificial intelligence-based methods, particularly neural networks, have attracted
attention for their high potential in solving problems related to automatic vulnerability detection
and classification [5]. Neural network architectures such as convolutional neural networks (CNN),
recurrent neural networks (RNN), and transformers have proven effective in analysing complex
relationships in code, accounting for both local and global patterns [6]. Graph neural networks
(GNN) are especially popular as they consider the structural features of software code, enabling
effective vulnerability detection in large codebases [7].

Despite significant achievements, existing artificial intelligence methods have their limitations.
Thus, the older generation is significantly dependent on the quality of training datasets and can
demonstrate low accuracy when working with insufficiently representative examples. [8].
Therefore, the task is to improve these methods by developing new models that provide not only
high detection accuracy but also efficiency in working with heterogeneous code bases.

This work aims to develop and evaluate a method for detecting Buffer Overflow vulnerabilities
based on the YOLO neural network. The article also analyses existing approaches to using artificial
intelligence for this task and compares the effectiveness of the proposed method with traditional
solutions. Our contributions include:

1. A comparative analysis of recent AI-driven vulnerability detection techniques.
2. A formal risk assessment model for code blocks and graph nodes.
3. An end-to-end methodology for training, validating, and integrating YOLO into software

development processes.
4. Experimental validation on industry-standard datasets, with benchmarking against

established SAST tools.

2. Background

Detecting software vulnerabilities is a critical task in cybersecurity, as such vulnerabilities can lead
to significant consequences, including financial losses, privacy breaches, and disruptions to critical
systems [9; 10]. Therefore, the effectiveness of early detection of these threats is becoming a key
factor in ensuring information security [11]. Thus, one promising modern research direction is the
use of artificial intelligence (AI) methods to automate the analysis and detection of various software
vulnerabilities, particularly Buffer Overflow vulnerabilities, which significantly reduces the time and
resource costs for analyzing large code bases.

A recent study by Zilong et al. proposed a multi-input vulnerability detection learning framework
(MIVDL) that effectively combines structured and unstructured code features, enabling accurate
identification of vulnerabilities even in complex and large-scale projects. This architecture addresses
the challenges of heterogeneity in software repositories and demonstrates the benefits of using
ensemble representations in deep learning for software security tasks. The results show competitive
precision and robustness when evaluated against traditional static analysis approaches[12].

A significant contribution to the development of this field was made by Zhou et al., who presented
a method based on graph neural networks (GNN) using the Devign model. The authors noted the
semantics and relationships in the program code through graph representation, which significantly
increased the accuracy of detecting complex vulnerabilities compared to traditional static analysis
methods. Thus, the proposed method allows for avoiding not only local features of the code but also
global structures and patterns often missed by standard approaches. [13]. Similar approaches were
considered in the study of Li et al., who proposed the SySeVR system, which also uses graph
representations and deep neural networks but with a greater focus on automating the analysis
processes. In addition, the SySeVR system provides fast and efficient detection of critical
vulnerabilities even in complex, large-scale software projects. [14].

Another interesting area of research is the combined approach presented by Harer and colleagues
[15]. The authors employed a combination of classical static analysis methods and machine learning,
specifically convolutional neural networks (CNNS). This enabled a significant expansion of the range
of detected vulnerability types and enhanced the efficiency of their identification, particularly for
common and dangerous types such as buffer overflows [16].

Recent studies also indicate the significant potential of using transformer models for analysing
software code. In particular, Cai et al. proposed using transformers in combination with complex
network analysis methods and graph approaches. Such a combined approach allows for the detection
and classification of vulnerabilities, even in cases of their complex, hidden, or atypical
manifestations, demonstrating high flexibility and accuracy when working with large and complex
code bases characterised by numerous intermodular relationships. [17].

Notably, the approach [18] employs graph neural networks to provide counterfactual
explanations for vulnerability analysis results. This method not only automatically detects potential
issues but also offers clear explanations for their causes. This feature is crucial for applications in
critical domains such as financial, medical, or military systems, where understanding the causes and
nature of identified problems is essential for effective resolution.

However, despite notable achievements, the application of artificial intelligence methods in
vulnerability detection is not without certain limitations. In particular, the study by Chakraborty et
al. indicates the dependence of deep models on the quality and completeness of training datasets. In
situations of incomplete or heterogeneous datasets, the accuracy and reliability of such models can
significantly decrease, raising questions about the practical applicability of these methods in real-
world scenarios [19]. Below is a table that summarizes the currently existing models for our study.

Table 1
Research results

Thus, a review of existing approaches to the use of artificial intelligence for vulnerability
detection indicates a need for further research in this area, particularly to enhance the adaptability,
accuracy, and reliability of current models [20]. In our opinion, developing hybrid methods that
integrate various neural network architectures, classical statistical methods, and modern static
analysis techniques is especially promising. Also worthy of attention is the application of artificial
intelligence (XAI) approaches to enhance the interpretability of results and facilitate more effective
management of identified risks [21].

3. Research threat: buffer overflow

Buffer overflows are among the most serious security issues in modern software systems, as they
serve as a common attack vector that enables attackers to manipulate program memory. [22]. These
vulnerabilities arise from improper memory management when input data exceeds the size of the
allocated buffer, resulting in the overwriting of adjacent memory areas that may contain critical
structures for program execution, such as return addresses, pointer tables, or memory manager
service data. Such overflows create opportunities for attackers to execute arbitrary code, gain
unauthorized access to sensitive data, escalate privileges, and compromise the integrity or stability
of the system as a whole.

Model Method Dataset Year Precision Recall
VulDeePecker CNN Juliet, NVD 2018 86.5% 84.1%

Devign GNN Devign 2019 92.3% 88.5%
SySeVR Hybrid Juliet 2022 89.2% 86.7%
TACSan GNN NVD 2024 93.1% 90.8%
YOLO CNN/YOLO CVE/NVD 2025 94.3% 91.8%

Formalizing the conditions for the occurrence of such vulnerabilities is a key stage in their
systematic analysis and subsequent prevention. This formalization enables the creation of theoretical
models that describe the mechanisms of exploitation and the development of practical tools for
detection and elimination. Overall, the primary condition for the occurrence of a buffer overflow can
be summarized by a simple inequality:

𝐷𝑖𝑛 > 𝐵𝑠𝑖𝑧𝑒
where 𝐷𝑖𝑛 represents the amount of input data entering the buffer, and 𝐵𝑠𝑖𝑧𝑒 size denotes the size

of the allocated buffer. This indicates that if the input data exceeds the buffer capacity, it will
overflow, leading to potential threats.

In the context of dynamic memory management, typical of many modern software systems,
where memory can be allocated or changed during program execution, the formalization of this
condition is refined to consider the execution time of the operation:

𝐷𝑖𝑛(𝑡) > 𝐵𝑠𝑖𝑧𝑒(𝑡)
where t represents the time of operation execution, which accounts for changes in buffer sizes

and their interaction with other program components during execution.
For in-depth analysis and modelling of Buffer Overflow vulnerabilities, graph models are often used
to consider the relationships between different components of a software system - functions,
variables, and buffers. A graph model is described as a directed graph:

𝐺 = (𝑉, 𝐸)
where V denotes the set of vertices representing program elements, such as functions, variables,

or buffers; E denotes the set of directed edges that represent data flows between these components.
The edge weight 𝑊𝑖𝑗 characterizes the amount of data transmitted between components i and j. A
potential vulnerability arises if the total data flow on the input edge exceeds the buffer capacity at
the receiving node.

∑ 𝑊𝑖𝑗
𝑖→𝑗

> 𝐵𝑗 , (1)

where 𝐵𝑗 is the buffer size at node j.
Modern research in the field of vulnerability detection demonstrates that the use of artificial

intelligence methods, particularly neural networks, significantly increases the efficiency of program
code analysis. Machine learning models enable automation of the process for detecting not only
known buffer overflow patterns but also anomalies that may indicate atypical or previously
unknown vulnerabilities. Vulnerability databases such as CVE, NVD, and OWASP are actively
utilised to train these models, which contain descriptions of typical vulnerabilities, their occurrence
conditions, and possible consequences. [23].
These databases form the basis for creating code analysis templates used to classify program
fragments.

For example, Zeng et al. [24] proposed using graph neural networks to analyze the semantic
structure of software code. This approach allows for the precise identification of critical areas of code
that may be susceptible to buffer overflows. Similarly, Jin et al. proposed a model that integrates
graph representations with multimodal features to achieve greater accuracy in vulnerability
detection. [25]

To illustrate the issue of buffer overflow, here is an example of a simple vulnerable C++ code
fragment:
#include <iostream>
#include <cstring>
void vulnerableFunction(const char* input)
{
 char buffer[10];
 strcpy(buffer, input); // There is no check on the length of the input data.
 std::cout << "Data: " << buffer << std::endl;

}
int main()
{
 const char* largeInput = "This input string is too long for the buffer";
 vulnerableFunction(largeInput);
 return 0;
}

This example uses the strcpy function, which copies the contents of the string input into a fixed-
size buffer. Since there is no check for the length of the input, if the length of the input string exceeds
the buffer size, the buffer overflows. This can result in overwriting adjacent memory areas that may
contain service information or structures crucial to the normal operation of the program.
To quantify the risk of vulnerability in software code, a generalized formula is employed that
considers key risk factors:

𝑅(𝑥) = (
𝐷𝑖𝑛(𝑥)

𝐵𝑠𝑖𝑧𝑒(𝑥)
) × (1 − 𝐶ℎ𝑒𝑐𝑘(𝑥)) × 𝑃(𝐴𝑛𝑜𝑚𝑎𝑙𝑦(𝑥))

where:
𝐷𝑖𝑛(𝑥) the amount of input data for a specific code block;
𝐵𝑠𝑖𝑧𝑒(𝑥) the size of the buffer in this block;
𝐶ℎ𝑒𝑐𝑘(𝑥) the input verification function (1 verification is performed, 0 absent);
𝑃(𝐴𝑛𝑜𝑚𝑎𝑙𝑦(𝑥)) the probability of anomalous behaviour of a given code fragment.

This formula enables a comprehensive risk assessment by integrating buffer technical parameters
and the behavioral characteristics of the software environment. It provides the basis for automated
tools that analyze codebases for Buffer Overflow vulnerabilities.

Thus, formalizing the conditions for buffer overflow occurrences, presenting their mechanisms
through graph models, demonstrating practical examples of implementing such vulnerabilities, and
mathematically modeling risks create a foundation for developing effective methods to detect and
prevent the threats in modern software systems, ensuring their stability, reliability, and security.

4. Proposed method for detecting buffer overflow vulnerabilities

Analysis of current vulnerability detection methods indicates their limitations in accuracy, speed,
and capacity to manage large code bases. [26; 27]. Considering these shortcomings, this study
proposes an innovative approach to detecting Buffer Overflow vulnerabilities through a combination
of graph models and a YOLO (You Only Look Once) neural network. The main goal is to automate
the code analysis process with high accuracy, reduce human intervention, and optimize integration
into modern CI/CD processes.

In recent years, ML/AI-based methods have been widely adopted for vulnerability detection
[Harzevili et al. 2025]. CNNs (VulCNN [W. Yueming et al. 2022]), hybrid models (SySeVR [Li et al.
2022]), and GNNs (Devign [Zhou et al. 2019], TACSan [Zeng et al. 2024]) demonstrate superior ability
to learn code semantics, but still depend heavily on data quality [Chakraborty et al. 2020].
Transformer-based approaches (Cai et al. 2023) enable the modeling of global code dependencies.
The proposed model includes several key stages:

1. Input preparation. The program's source code is converted into a structured graph
representation. The graph's vertices represent functions, variables, buffers, while the edges
illustrate the data flows between them and function calls. This approach enables modelling
of both local and global dependencies in the codebase.

2. Risk analysis based on mathematical models. At this stage, the risk is quantified for each code
block using the following formula:

𝑅(𝑥) = (
𝐷𝑖𝑛(𝑥)

𝐵𝑠𝑖𝑧𝑒(𝑥)
) × (1 − 𝐶ℎ𝑒𝑐𝑘(𝑥)) × 𝑃(𝐴𝑛𝑜𝑚𝑎𝑙𝑦(𝑥))

This assessment helps you identify areas of code with higher risk.

3. Formation of graph models and determination of critical paths. Data flow graphs (DFG) and
function call graphs (CFG) are generated automatically [28]. To identify the most vulnerable
areas, an algorithm is employed to find critical paths with the maximum total risk. Risk zones
are clustered for further analysis, enabling the visualization of relationships between system
components.

4. Using the YOLO neural network. Graph representations of the code are converted into
images or dependency matrices, which are fed as input to YOLO. The architecture of YOLO
is adapted for code analysis, enabling it to localize areas with a high risk of buffer overflow.
YOLO simultaneously identifies the class of potential vulnerabilities and the coordinates of
the corresponding areas in the graph.

The YOLO architecture is based on a single loss function:

𝐿𝑜𝑠𝑠 = 𝜆𝑐𝑜𝑜𝑟𝑑 ∑(𝑐𝑜𝑜𝑟𝑑 𝑒𝑟𝑟𝑜𝑟𝑠) + 𝜆𝑐𝑜𝑛𝑓 ∑(𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑒𝑟𝑟𝑜𝑟𝑠)

+ 𝜆𝑐𝑙𝑎𝑠𝑠 ∑(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟𝑠)

classification, respectively.

5. Comparison of YOLO with other architectures. YOLO delivers high performance due to
single-pass processing, making it suitable for CI/CD. CNN has higher accuracy for local
patterns but operates more slowly. RNN performs well with sequences but encounters
performance issues when handling large amounts of data. Transformer architectures
consider global dependencies but require significant resources.

6. Integration into CI/CD. YOLO integrates as a separate service or Docker container into
popular CI/CD systems (Jenkins, GitLab CI, GitHub Actions). During the commit and pre-
release stages, analysis is run automatically, and the results are sent to developers with
prioritisation of identified risks. If critical vulnerabilities are detected, the deployment
process is blocked.

7. Adaptation of the model for specific projects. The model supports retraining on internal
company data to reflect the specifics of the code. It employs methods of graph augmentation,
data balancing, and regular updates of vulnerability templates.

Figure 1: Architecture of the proposed Buffer Overflow vulnerability detection system.

Thus, the proposed approach integrates graph models, mathematical risk analysis, and the YOLO
neural network, ensuring high efficiency in the automatic detection of Buffer Overflow

vulnerabilities. This establishes a foundation for further integration into CI/CD processes, enhancing
the security of software systems.

5. Experiment

To evaluate the effectiveness of the proposed method for detecting buffer overflow vulnerabilities,
an experimental study was conducted based on open data from the CVE and NVD repositories [29].
The sample included real-world examples of vulnerable code, such as stack overflows, heap-based
overflows, and off-by-one errors. The main goal of the experiment is to determine how effective the
proposed model is in practice compared to traditional static analysis tools.

5.1 Data preparation

Training, validation, and test sets were generated from code fragments sourced from open sources.
Positive examples (with confirmed vulnerabilities) and negative examples (code without
vulnerabilities) were utilised for training. The ratio of the sets was 70%:15%:15%. All data underwent
pre-processing: normalisation, balancing, and graph conversion of the code representation were
executed for subsequent submission to the YOLO model.

5.2 Experimental methodology

The experimental settings and parameters used for evaluating the proposed approach's effectiveness
in detecting vulnerabilities with YOLO adapted for graph-image inputs with key details about the
training model, optimization strategy, evaluation metrics, and utilized tools are outlined below.

• Model: YOLOv5, adapted for input as graph images.
• Optimisation: Adam, with an initial learning rate of 0.001.
• Epochs: 85, batch size of 32.
• Framework: PyTorch, graphic translation using Graphviz.
• To evaluate the results, we used metrics of accuracy (Precision), completeness (Recall), F1-

measures, and false positive analysis.

5.3 Comparison with existing approaches

A comparison was conducted with classic SAST tools, particularly Cppcheck and Flawfinder [30, 31].
The goal was to evaluate the accuracy, completeness, and speed of buffer overflow detection using
the same data set.

Table 2
Tools compare

As shown in the table, the YOLO model demonstrated consistent performance across all metrics. Of
particular importance is the high completeness score, which reflects the model's ability to detect the
maximum number of actual vulnerabilities.

Tool Precision Recall F1-measure

YOLO (ours) 94.3% 91.8% 93.0%

Cppcheck 76.2% 70.4% 73.2%

Flawfinder 72.5% 68.9% 70.6%

5.4 Performance analysis

The average analysis time per file was 9.4 seconds. This allows the model to be integrated into a
CI/CD environment without noticeable delay. Compared to other tools, the processing time was
similar or even lower due to the model's scalability for large projects.

5.5 Discussion of the results

The results of the experiment demonstrate that the proposed YOLO-based detection model
constantly performs greater than traditional SAST tools in terms of recall and accuracy. The two
primary reasons for this enhancement in performance are YOLO's architectural advantage as a
single-stage detector that effectively handles graph-based code representations, and the
incorporation of risk modeling, which gives semantically dense code regions priority during training.

As noted, the high recall rate (91.8%) means that the model accommodates most of the Buffer
Overflow patterns, not excluding the rare and hidden ones. In contrast to signature-based scanners
or heuristic analyzers
model generalizes to new instances by learning from data flow features and structural relations
within the graph representation of the model. This confirms prior work stating that deep learning
models, when used with graph embeddings, capture semantic invariance across different
programming contexts and styles.

Additionally, having an average analysis time of 9.4 seconds per file validates the feasibility of
incorporating the model into contemporary CI/CD pipelines without substantial overhead. This
adaptability is crucial for operational use within development cycles characterized by agile sprints,
rapid iteration and continuous delivery. Unlike manual SAST tools like Flawfinder and Cppcheck
which are easier to isolate, these tools, in contrary to being slower, are often faster as they tend to
produce triage results that need manual refinement due to numerous false positives. This

Another advantage of the proposed approach is its customizability. Organizations can adjust the

detection methodology by retraining the model with project specific data and feedback from security
engineers, ensuring alignment with internal coding standards and internal threat models. This
tailoring improves precision and increases the amount of results that can be acted upon by specific
personnel, particularly in exhaustive databases that have intricate control and data flows.

Thus, the experimental results confirm the effectiveness of the proposed model and its feasibility
for implementation in industrial processes aimed at ensuring software security.

6. Conclusions

In this study, we examined an approach to the automated detection of buffer overflow vulnerabilities
using code graph models and the YOLO neural network. A full-scale experiment was conducted,
demonstrating the high efficiency of the proposed model both in terms of accuracy and performance
in the context of integration into development environments.

The main conclusions of the study are as follows: the proposed model detects Buffer Overflow
type vulnerabilities with an accuracy of 94.3% and an F1-measure of 93.0%, which significantly
exceeds the performance of classical static security analysis tools such as Cppcheck and Flawfinder.
This indicates the high practical value of this approach for ensuring cybersecurity. Thanks to the
proposed mathematical model of risk assessment and the visualization of graph representations of
the code, it has become possible to prioritize areas with the highest probability of vulnerability. This
improves the efficiency of the code review process and allows developers to focus on the most critical
areas. The average time for analyzing one file was 9.4 seconds, which allows the proposed model to
be used within CI/CD processes without a noticeable impact on the overall development cycle. This
makes it suitable for widespread implementation in industrial environments.

The model allows adaptation to the specifics of software projects through retraining on internal
data. This opens up opportunities for its use in large-scale and mission-critical systems. The research
also outlined prospects for expanding the model's functionality, including application to other types
of vulnerabilities, implementation of explainable AI components, automatic correction of found
problems, and deep integration with other cybersecurity tools.

Therefore, the study results demonstrate the significant potential of the proposed system to
improve the detection quality of Buffer Overflow type vulnerabilities and to strengthen overall
software security. Future research will focus on enhancing the accuracy, interpretability, and
scalability of the proposed approach.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, Y. Zhong, VulDeePecker: A Deep Learning-
Based System for Vulnerability Detection, arXiv:1801.01681 (2018). DOI:
10.48550/arXiv.1801.01681.

[2] Ya. Zhou, Sh. Liu, J. Siow, X. Du, Ya. Liu, Devign: Effective Vulnerability Identification by
Learning Comprehensive Program Semantics via Graph Neural Networks, arXiv:1909.03496
(2019). URL: https://arxiv.org/abs/1909.03496.

[3] S. Lysenko, O. Savenko, K. Bobrovnikova, A. Kryshchuk. Self-adaptive system for the corporate
area network resilience in the presence of botnet cyberattacks.. Communications in Computer
and Information Science, 860 (2018) pp. 385-401. DOI: 10.1007/978-3-319-92459-5_31.

[4] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk, K. Bobrovnikova. Anti-evasion technique
for the botnets detection based on the passive DNS monitoring and active DNS probing. In
International Conference on Computer Networks. Cham: Springer International Publishing,
2016. p. 83-95. DOI: 10.1007/978-3-319-39207-3_8.

[5] I. Shah, N. Jhanjhi, S. Brohi, Machine Learning Models for Detecting Software Vulnerabilities,
2024. DOI: 10.4018/979-8-3693-3703-5.ch001.

[6] S. Hussain, M. Nadeem, J. Baber et al., Vulnerability detection in Java source code using a
quantum convolutional neural network with self-attentive pooling, deep sequence, and graph-
based hybrid feature extraction, Sci. Rep. 14 (2024) 7406. DOI: 10.1038/s41598-024-56871-z.

[7] Ch. Jinfu, Yi. Yemin, C. Saihua, W. Weijia, W. Shengran, Ch. Jiming, iGnnVD: A novel software
vulnerability detection model based on integrated graph neural networks, Sci. Comput.
Program. 238 (2024) 103156. DOI: 10.1016/j.scico.2024.103156.

[8] N. Harzevili, A. Belle, J. Wang, S. Wang, Z. M. Jiang, N. Nagappan, A Systematic Literature
Review on Automated Software Vulnerability Detection Using Machine Learning, ACM
Comput. Surv. 57, 3 (2025) Article 55. DOI: 10.1145/3699711.

[9] E. Iannone, R. Guadagni, F. Ferrucci, A. De Lucia, F. Palomba, The Secret Life of Software
Vulnerabilities: A Large-Scale Empirical Study, IEEE Trans. Softw. Eng. 49, 1 (2023) 44 63. DOI:
10.1109/TSE.2022.3140868.

[10] S. Lysenko, K. Bobrovnikova, O. Savenko. A Botnet Detection Approach Based on The Clonal
Selection Algorithm. In Proceedings of 2018 IEEE 9th International Conference on Dependable
Systems, Services and Technologies (DeSSerT-2018, Kyiv, Ukraine, May 24-27, 2018). Pp. 424-
428. DOI: 10.1109/DESSERT.2018.8409171.

[11] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk, K. Bobrovnikova A Technique for the
Botnet Detection Based on DNS-Traffic Analysis. In Proceedings of the 22-nd International
Conference Computer Networks, Brunów (Poland), June 16 19, 2018. Brunów, 2015. Vol. 522.
Pp. 127 138.

[12] R. Zilong, J. Xiaolin, C. Xiang, S. Zhou, Q. Yubin, Improving distributed learning-based
vulnerability detection via multi-modal prompt tuning, J. Syst. Softw. 226 (2025) 112442. DOI:
10.1016/j.jss.2025.112442.

[13] X. He, Asiya, D. Han, S. Zhou, X. Fu, H. Li, An Improved Software Source Code Vulnerability
Detection Method: Combination of Multi-Feature Screening and Integrated Sampling Model,
Sensors 25 (2025) 1816. DOI: 10.3390/s25061816.

[14] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, SySeVR: A Framework for Using Deep Learning to
Detect Software Vulnerabilities, IEEE Trans. Dependable Secure Comput. 19, 4 (2022) 2244 2258.

[15] J. Harer, L. Kim, R. Russell et al., Automated software vulnerability detection with machine
learning, arXiv:1803.04497 (2018). URL: https://arxiv.org/abs/1803.04497.

[16] W. Yueming, Z. Deqing, D. Shihan, Y. Wei, X. Duo, J. Hai, VulCNN: An Image-inspired Scalable
Vulnerability Detection System, in: Proc. 44th Int. Conf. Software Engineering (ICSE), ACM,
New York, 2022. DOI: 10.1145/3510003.3510229.

[17] W. Cai, J. Chen, J. Yu, L. Gao, A Software Vulnerability Detection Method Based on Deep
Learning with Complex Network Analysis and Subgraph Partition, SSRN, 2023. DOI:
10.2139/ssrn.4422123.

[18] Ch. Zhaoyang, W. Yao, Li. Qian et al., Graph Neural Networks for Vulnerability Detection: A
Counterfactual Explanation, in: Proc. 33rd ACM SIGSOFT Int. Symp. Software Testing and
Analysis, ACM, New York, 2024, pp. 389 401. DOI: 10.1145/3650212.3652136.

[19] S. Chakraborty, R. Krishna, Y. Ding, B. Ray, Deep Learning-based Vulnerability Detection: Are
We There Yet?, arXiv:2009.07235 (2020). DOI: 10.48550/arXiv.2009.07235.

[20] F. Subhan, X. Wu, L. Bo, X. Sun, M. Rahman, A deep learning-based approach for software
vulnerability detection using code metrics, IET Softw. 16 (2022). DOI: 10.1049/sfw2.12066.

[21] I. Al-Mandhari, A. AlKalbani, A. Al-Abri, Association Rules for Buffer Overflow Vulnerability
Detection Using Machine Learning, in: Proc. Eighth Int. Congress on Information and
Communication Technology (ICICT), Lecture Notes in Networks and Systems, vol. 696,
Springer, Singapore, 2024. DOI: 10.1007/978-981-99-3236-8_48.

[22] A. Keromytis, Buffer Overflow Attacks, in: Encyclopedia of Cryptography, Security and Privacy,
Springer, Berlin, Heidelberg, 2023. DOI: 10.1007/978-3-642-27739-9_502-2.

[23] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, Y. Zhong, VulDeePecker: A Deep Learning-
Based System for Vulnerability Detection, in: Proc. NDSS Symposium, 2018. DOI:
10.14722/ndss.2018.23158.

[24] Q. Zeng, D. Xiong, Z. Wu, K. Qian, Y. Wang, Y. Su, TACSan: Enhancing Vulnerability Detection
with Graph Neural Network, Electronics 13 (2024) 3813. DOI: 10.3390/electronics13193813.

[25] D. Jin, C. He, Q. Zou, Y. Qin, B. Wang, Source Code Vulnerability Detection Based on Joint
Graph and Multimodal Feature Fusion, Electronics 14 (2025) 975. DOI:
10.3390/electronics14050975.

[26] L. Nguyen Quang Do, E. Bodden, Explaining Static Analysis With Rule Graphs, IEEE Trans.
Softw. Eng. (2020) 1 1. DOI: 10.1109/TSE.2020.2999534.

[27] S. Mehrpour, T. LaToza, Can static analysis tools find more defects?, Empir. Softw. Eng. 28
(2022). DOI: 10.1007/s10664-022-10232-4.

[28] Y.F. Ma, M. Li, The flowing nature matters: feature learning from the control flow graph of
source code for bug localization, Mach. Learn. 111 (2022) 853 870. DOI: 10.1007/s10994-021-
06078-4.

[29] J. Metzman, L. Szekeres, L. Simon, R. Sprabery, A. Arya, FuzzBench: an open fuzzer
benchmarking platform and service, 2021, pp. 1393 1403. DOI: 10.1145/3468264.3473932.

[30] M. Nachtigall, M. Schlichtig, E. Bodden, A large-scale study of usability criteria addressed by
static analysis tools, 2022, pp. 532 543. DOI: 10.1145/3533767.3534374.

[31] K. Bobrovnikova, M. Kapustian, D. Denysiuk, Research of machine learning based methods for
cyberattacks detection in the internet of things infrastructure, Computer Systems and
Information Technologies 3 (2022) 110 115. DOI:10.31891/CSIT-2021-5-15

