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Abstract 
The article investigates a method for detecting Buffer Overflow vulnerabilities based on the YOLO neural 
network. Buffer Overflow vulnerabilities remain a fundamental security concern for modern software 
systems due to their potential for catastrophic exploitation and persistent presence in both legacy and 
actively maintained codebases. Traditional detection methods such as static application security testing 
(SAST) and dynamic analysis offer partial coverage and often struggle with high false positive rates, poor 
scalability, or limited adaptability to novel vulnerability patterns. This paper presents a novel approach to 
the automated detection of Buffer Overflow vulnerabilities by leveraging graph-based code representations 
and the YOLO (You Only Look Once) neural network architecture, originally designed for object detection 
in computer vision. 
The study comprehensively reviews current state-of-the-art AI/ML-driven vulnerability detection methods, 
highlighting their advantages and limitations. The proposed method systematically transforms program 
code into graph structures and applies YOLO to efficiently localize high-risk code regions. We detail the 
mathematical risk modeling underpinning the detection process and the workflow for integrating this 
approach into CI/CD pipelines. A full-scale experiment, using real-world data from CVE and NVD 
repositories, demonstrates significant improvements in detection accuracy and efficiency compared to 
leading static analysis tools. The approach achieved 94.3% precision and an F1-score of 93.0% on benchmark 
datasets, confirming its practical utility for software security assurance. Finally, we discuss challenges, 
observed limitations, and perspectives for extending the model to additional vulnerability classes and 
industrial settings. 
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1. Introduction

Modern software is a critical element of many information systems and infrastructure, which makes 
it an important target for cybercriminals to attack. Among the various types of vulnerabilities, a 
special place is occupied by the Buffer Overflow vulnerability, which occurs due to errors in memory 
management and allows attackers to execute arbitrary code, access confidential data, or disrupt the 
stability of systems [1]. Despite many methods for detecting such vulnerabilities, the effectiveness 
of many of them is limited, especially when analyzing large code bases and complex relationships in 
the code. 

Traditional methods such as static security analysis (SAST), although widely used, often suffer 
from high false positive rates and are unable to detect new or atypical vulnerability patterns 
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effectively [2]. That is why the development of new, more effective approaches that would allow for 
quick and accurate identification of critical risk areas in software systems [3, 4]. 

Recently, artificial intelligence-based methods, particularly neural networks, have attracted 
attention for their high potential in solving problems related to automatic vulnerability detection 
and classification [5]. Neural network architectures such as convolutional neural networks (CNN), 
recurrent neural networks (RNN), and transformers have proven effective in analysing complex 
relationships in code, accounting for both local and global patterns [6]. Graph neural networks 
(GNN) are especially popular as they consider the structural features of software code, enabling 
effective vulnerability detection in large codebases [7]. 

Despite significant achievements, existing artificial intelligence methods have their limitations. 
Thus, the older generation is significantly dependent on the quality of training datasets and can 
demonstrate low accuracy when working with insufficiently representative examples. [8].  
Therefore, the task is to improve these methods by developing new models that provide not only 
high detection accuracy but also efficiency in working with heterogeneous code bases. 

This work aims to develop and evaluate a method for detecting Buffer Overflow vulnerabilities 
based on the YOLO neural network. The article also analyses existing approaches to using artificial 
intelligence for this task and compares the effectiveness of the proposed method with traditional 
solutions. Our contributions include: 

1. A comparative analysis of recent AI-driven vulnerability detection techniques. 
2. A formal risk assessment model for code blocks and graph nodes. 
3. An end-to-end methodology for training, validating, and integrating YOLO into software 

development processes. 
4. Experimental validation on industry-standard datasets, with benchmarking against 

established SAST tools. 

2. Background 

Detecting software vulnerabilities is a critical task in cybersecurity, as such vulnerabilities can lead 
to significant consequences, including financial losses, privacy breaches, and disruptions to critical 
systems [9; 10]. Therefore, the effectiveness of early detection of these threats is becoming a key 
factor in ensuring information security [11]. Thus, one promising modern research direction is the 
use of artificial intelligence (AI) methods to automate the analysis and detection of various software 
vulnerabilities, particularly Buffer Overflow vulnerabilities, which significantly reduces the time and 
resource costs for analyzing large code bases. 

A recent study by Zilong et al. proposed a multi-input vulnerability detection learning framework 
(MIVDL) that effectively combines structured and unstructured code features, enabling accurate 
identification of vulnerabilities even in complex and large-scale projects. This architecture addresses 
the challenges of heterogeneity in software repositories and demonstrates the benefits of using 
ensemble representations in deep learning for software security tasks. The results show competitive 
precision and robustness when evaluated against traditional static analysis approaches[12]. 

A significant contribution to the development of this field was made by Zhou et al., who presented 
a method based on graph neural networks (GNN) using the Devign model. The authors noted the 
semantics and relationships in the program code through graph representation, which significantly 
increased the accuracy of detecting complex vulnerabilities compared to traditional static analysis 
methods. Thus, the proposed method allows for avoiding not only local features of the code but also 
global structures and patterns often missed by standard approaches. [13].  Similar approaches were 
considered in the study of Li et al., who proposed the SySeVR system, which also uses graph 
representations and deep neural networks but with a greater focus on automating the analysis 
processes. In addition, the SySeVR system provides fast and efficient detection of critical 
vulnerabilities even in complex, large-scale software projects. [14]. 



Another interesting area of research is the combined approach presented by Harer and colleagues 
[15]. The authors employed a combination of classical static analysis methods and machine learning, 
specifically convolutional neural networks (CNNS). This enabled a significant expansion of the range 
of detected vulnerability types and enhanced the efficiency of their identification, particularly for 
common and dangerous types such as buffer overflows [16]. 

Recent studies also indicate the significant potential of using transformer models for analysing 
software code. In particular, Cai et al. proposed using transformers in combination with complex 
network analysis methods and graph approaches. Such a combined approach allows for the detection 
and classification of vulnerabilities, even in cases of their complex, hidden, or atypical 
manifestations, demonstrating high flexibility and accuracy when working with large and complex 
code bases characterised by numerous intermodular relationships. [17]. 

Notably, the approach [18] employs graph neural networks to provide counterfactual 
explanations for vulnerability analysis results. This method not only automatically detects potential 
issues but also offers clear explanations for their causes. This feature is crucial for applications in 
critical domains such as financial, medical, or military systems, where understanding the causes and 
nature of identified problems is essential for effective resolution. 

However, despite notable achievements, the application of artificial intelligence methods in 
vulnerability detection is not without certain limitations. In particular, the study by Chakraborty et 
al. indicates the dependence of deep models on the quality and completeness of training datasets. In 
situations of incomplete or heterogeneous datasets, the accuracy and reliability of such models can 
significantly decrease, raising questions about the practical applicability of these methods in real-
world scenarios [19]. Below is a table that summarizes the currently existing models for our study. 

Table 1 
Research results 

Thus, a review of existing approaches to the use of artificial intelligence for vulnerability 
detection indicates a need for further research in this area, particularly to enhance the adaptability, 
accuracy, and reliability of current models [20]. In our opinion, developing hybrid methods that 
integrate various neural network architectures, classical statistical methods, and modern static 
analysis techniques is especially promising. Also worthy of attention is the application of artificial 
intelligence (XAI) approaches to enhance the interpretability of results and facilitate more effective 
management of identified risks [21]. 

3. Research threat: buffer overflow 

Buffer overflows are among the most serious security issues in modern software systems, as they 
serve as a common attack vector that enables attackers to manipulate program memory. [22].  These 
vulnerabilities arise from improper memory management when input data exceeds the size of the 
allocated buffer, resulting in the overwriting of adjacent memory areas that may contain critical 
structures for program execution, such as return addresses, pointer tables, or memory manager 
service data. Such overflows create opportunities for attackers to execute arbitrary code, gain 
unauthorized access to sensitive data, escalate privileges, and compromise the integrity or stability 
of the system as a whole. 

Model Method Dataset Year Precision Recall 
VulDeePecker CNN Juliet, NVD 2018 86.5% 84.1% 

Devign GNN Devign 2019 92.3% 88.5% 
SySeVR Hybrid Juliet 2022 89.2% 86.7% 
TACSan GNN NVD 2024 93.1% 90.8% 
YOLO CNN/YOLO CVE/NVD 2025 94.3% 91.8% 



Formalizing the conditions for the occurrence of such vulnerabilities is a key stage in their 
systematic analysis and subsequent prevention. This formalization enables the creation of theoretical 
models that describe the mechanisms of exploitation and the development of practical tools for 
detection and elimination. Overall, the primary condition for the occurrence of a buffer overflow can 
be summarized by a simple inequality: 

𝐷𝑖𝑛 > 𝐵𝑠𝑖𝑧𝑒 
where 𝐷𝑖𝑛 represents the amount of input data entering the buffer, and 𝐵𝑠𝑖𝑧𝑒 size denotes the size 

of the allocated buffer. This indicates that if the input data exceeds the buffer capacity, it will 
overflow, leading to potential threats. 

In the context of dynamic memory management, typical of many modern software systems, 
where memory can be allocated or changed during program execution, the formalization of this 
condition is refined to consider the execution time of the operation: 

𝐷𝑖𝑛(𝑡) > 𝐵𝑠𝑖𝑧𝑒(𝑡) 
where t represents the time of operation execution, which accounts for changes in buffer sizes 

and their interaction with other program components during execution. 
For in-depth analysis and modelling of Buffer Overflow vulnerabilities, graph models are often used 
to consider the relationships between different components of a software system - functions, 
variables, and buffers. A graph model is described as a directed graph: 

𝐺 = (𝑉, 𝐸) 
where V denotes the set of vertices representing program elements, such as functions, variables, 

or buffers; E denotes the set of directed edges that represent data flows between these components. 
The edge weight 𝑊𝑖𝑗 characterizes the amount of data transmitted between components i and j. A 
potential vulnerability arises if the total data flow on the input edge exceeds the buffer capacity at 
the receiving node. 

∑ 𝑊𝑖𝑗
𝑖→𝑗

>  𝐵𝑗 , (1) 

where 𝐵𝑗 is the buffer size at node j. 
Modern research in the field of vulnerability detection demonstrates that the use of artificial 

intelligence methods, particularly neural networks, significantly increases the efficiency of program 
code analysis. Machine learning models enable automation of the process for detecting not only 
known buffer overflow patterns but also anomalies that may indicate atypical or previously 
unknown vulnerabilities. Vulnerability databases such as CVE, NVD, and OWASP are actively 
utilised to train these models, which contain descriptions of typical vulnerabilities, their occurrence 
conditions, and possible consequences. [23]. 
These databases form the basis for creating code analysis templates used to classify program 
fragments. 

For example, Zeng et al. [24] proposed using graph neural networks to analyze the semantic 
structure of software code. This approach allows for the precise identification of critical areas of code 
that may be susceptible to buffer overflows. Similarly, Jin et al. proposed a model that integrates 
graph representations with multimodal features to achieve greater accuracy in vulnerability 
detection. [25] 

To illustrate the issue of buffer overflow, here is an example of a simple vulnerable C++ code 
fragment: 
#include <iostream> 
#include <cstring> 
void vulnerableFunction(const char* input)  
{ 
    char buffer[10]; 
    strcpy(buffer, input); // There is no check on the length of the input data. 
    std::cout << "Data: " << buffer << std::endl; 



} 
int main()  
{ 
    const char* largeInput = "This input string is too long for the buffer"; 
    vulnerableFunction(largeInput); 
    return 0; 
} 

This example uses the strcpy function, which copies the contents of the string input into a fixed-
size buffer. Since there is no check for the length of the input, if the length of the input string exceeds 
the buffer size, the buffer overflows. This can result in overwriting adjacent memory areas that may 
contain service information or structures crucial to the normal operation of the program. 
To quantify the risk of vulnerability in software code, a generalized formula is employed that 
considers key risk factors: 

𝑅(𝑥) = (
𝐷𝑖𝑛(𝑥)

𝐵𝑠𝑖𝑧𝑒(𝑥)
) × (1 − 𝐶ℎ𝑒𝑐𝑘(𝑥)) × 𝑃(𝐴𝑛𝑜𝑚𝑎𝑙𝑦(𝑥)) 

where: 
𝐷𝑖𝑛(𝑥)  the amount of input data for a specific code block; 
𝐵𝑠𝑖𝑧𝑒(𝑥)  the size of the buffer in this block; 
𝐶ℎ𝑒𝑐𝑘(𝑥)  the input verification function (1  verification is performed, 0  absent); 
𝑃(𝐴𝑛𝑜𝑚𝑎𝑙𝑦(𝑥))  the probability of anomalous behaviour of a given code fragment. 

This formula enables a comprehensive risk assessment by integrating buffer technical parameters 
and the behavioral characteristics of the software environment. It provides the basis for automated 
tools that analyze codebases for Buffer Overflow vulnerabilities.  

Thus, formalizing the conditions for buffer overflow occurrences, presenting their mechanisms 
through graph models, demonstrating practical examples of implementing such vulnerabilities, and 
mathematically modeling risks create a foundation for developing effective methods to detect and 
prevent the threats in modern software systems, ensuring their stability, reliability, and security. 

4. Proposed method for detecting buffer overflow vulnerabilities 

Analysis of current vulnerability detection methods indicates their limitations in accuracy, speed, 
and capacity to manage large code bases. [26; 27]. Considering these shortcomings, this study 
proposes an innovative approach to detecting Buffer Overflow vulnerabilities through a combination 
of graph models and a YOLO (You Only Look Once) neural network. The main goal is to automate 
the code analysis process with high accuracy, reduce human intervention, and optimize integration 
into modern CI/CD processes. 

In recent years, ML/AI-based methods have been widely adopted for vulnerability detection 
[Harzevili et al. 2025]. CNNs (VulCNN [W. Yueming et al. 2022]), hybrid models (SySeVR [Li et al. 
2022]), and GNNs (Devign [Zhou et al. 2019], TACSan [Zeng et al. 2024]) demonstrate superior ability 
to learn code semantics, but still depend heavily on data quality [Chakraborty et al. 2020]. 
Transformer-based approaches (Cai et al. 2023) enable the modeling of global code dependencies. 
The proposed model includes several key stages: 

1. Input preparation. The program's source code is converted into a structured graph 
representation. The graph's vertices represent functions, variables, buffers, while the edges 
illustrate the data flows between them and function calls. This approach enables modelling 
of both local and global dependencies in the codebase. 

2. Risk analysis based on mathematical models. At this stage, the risk is quantified for each code 
block using the following formula: 



𝑅(𝑥) = (
𝐷𝑖𝑛(𝑥)

𝐵𝑠𝑖𝑧𝑒(𝑥)
) × (1 − 𝐶ℎ𝑒𝑐𝑘(𝑥)) × 𝑃(𝐴𝑛𝑜𝑚𝑎𝑙𝑦(𝑥)) 

This assessment helps you identify areas of code with higher risk. 

3. Formation of graph models and determination of critical paths. Data flow graphs (DFG) and 
function call graphs (CFG) are generated automatically [28]. To identify the most vulnerable 
areas, an algorithm is employed to find critical paths with the maximum total risk. Risk zones 
are clustered for further analysis, enabling the visualization of relationships between system 
components. 

4. Using the YOLO neural network. Graph representations of the code are converted into 
images or dependency matrices, which are fed as input to YOLO. The architecture of YOLO 
is adapted for code analysis, enabling it to localize areas with a high risk of buffer overflow. 
YOLO simultaneously identifies the class of potential vulnerabilities and the coordinates of 
the corresponding areas in the graph.  

The YOLO architecture is based on a single loss function: 

𝐿𝑜𝑠𝑠 = 𝜆𝑐𝑜𝑜𝑟𝑑 ∑(𝑐𝑜𝑜𝑟𝑑 𝑒𝑟𝑟𝑜𝑟𝑠) + 𝜆𝑐𝑜𝑛𝑓 ∑(𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑒𝑟𝑟𝑜𝑟𝑠)

+ 𝜆𝑐𝑙𝑎𝑠𝑠 ∑(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟𝑠) 

classification, respectively. 

5. Comparison of YOLO with other architectures. YOLO delivers high performance due to 
single-pass processing, making it suitable for CI/CD. CNN has higher accuracy for local 
patterns but operates more slowly. RNN performs well with sequences but encounters 
performance issues when handling large amounts of data. Transformer architectures 
consider global dependencies but require significant resources. 

6. Integration into CI/CD. YOLO integrates as a separate service or Docker container into 
popular CI/CD systems (Jenkins, GitLab CI, GitHub Actions). During the commit and pre-
release stages, analysis is run automatically, and the results are sent to developers with 
prioritisation of identified risks. If critical vulnerabilities are detected, the deployment 
process is blocked. 

7. Adaptation of the model for specific projects. The model supports retraining on internal 
company data to reflect the specifics of the code. It employs methods of graph augmentation, 
data balancing, and regular updates of vulnerability templates. 

 
Figure 1: Architecture of the proposed Buffer Overflow vulnerability detection system. 

Thus, the proposed approach integrates graph models, mathematical risk analysis, and the YOLO 
neural network, ensuring high efficiency in the automatic detection of Buffer Overflow 



vulnerabilities. This establishes a foundation for further integration into CI/CD processes, enhancing 
the security of software systems. 

5. Experiment 

To evaluate the effectiveness of the proposed method for detecting buffer overflow vulnerabilities, 
an experimental study was conducted based on open data from the CVE and NVD repositories [29].  
The sample included real-world examples of vulnerable code, such as stack overflows, heap-based 
overflows, and off-by-one errors. The main goal of the experiment is to determine how effective the 
proposed model is in practice compared to traditional static analysis tools. 

5.1 Data preparation 

Training, validation, and test sets were generated from code fragments sourced from open sources. 
Positive examples (with confirmed vulnerabilities) and negative examples (code without 
vulnerabilities) were utilised for training. The ratio of the sets was 70%:15%:15%. All data underwent 
pre-processing: normalisation, balancing, and graph conversion of the code representation were 
executed for subsequent submission to the YOLO model. 

5.2 Experimental methodology 

The experimental settings and parameters used for evaluating the proposed approach's effectiveness 
in detecting vulnerabilities with YOLO adapted for graph-image inputs with key details about the 
training model, optimization strategy, evaluation metrics, and utilized tools are outlined below. 

• Model: YOLOv5, adapted for input as graph images. 
• Optimisation: Adam, with an initial learning rate of 0.001. 
• Epochs: 85, batch size of 32. 
• Framework: PyTorch, graphic translation using Graphviz. 
• To evaluate the results, we used metrics of accuracy (Precision), completeness (Recall), F1-

measures, and false positive analysis. 

5.3 Comparison with existing approaches 

A comparison was conducted with classic SAST tools, particularly Cppcheck and Flawfinder [30, 31]. 
The goal was to evaluate the accuracy, completeness, and speed of buffer overflow detection using 
the same data set. 

Table 2 
Tools compare 

 
 
 
 
 
 
 
 
As shown in the table, the YOLO model demonstrated consistent performance across all metrics. Of 
particular importance is the high completeness score, which reflects the model's ability to detect the 
maximum number of actual vulnerabilities. 

Tool Precision Recall F1-measure 

YOLO (ours) 94.3% 91.8% 93.0% 

Cppcheck 76.2% 70.4% 73.2% 

Flawfinder 72.5% 68.9% 70.6% 



5.4 Performance analysis 

The average analysis time per file was 9.4 seconds. This allows the model to be integrated into a 
CI/CD environment without noticeable delay. Compared to other tools, the processing time was 
similar or even lower due to the model's scalability for large projects. 

5.5 Discussion of the results 

The results of the experiment demonstrate that the proposed YOLO-based detection model 
constantly performs greater than traditional SAST tools in terms of recall and accuracy. The two 
primary reasons for this enhancement in performance are YOLO's architectural advantage as a 
single-stage detector that effectively handles graph-based code representations, and the 
incorporation of risk modeling, which gives semantically dense code regions priority during training. 

As noted, the high recall rate (91.8%) means that the model accommodates most of the Buffer 
Overflow patterns, not excluding the rare and hidden ones. In contrast to signature-based scanners 
or heuristic analyzers 
model generalizes to new instances by learning from data flow features and structural relations 
within the graph representation of the model. This confirms prior work stating that deep learning 
models, when used with graph embeddings, capture semantic invariance across different 
programming contexts and styles. 

Additionally, having an average analysis time of 9.4 seconds per file validates the feasibility of 
incorporating the model into contemporary CI/CD pipelines without substantial overhead. This 
adaptability is crucial for operational use within development cycles characterized by agile sprints, 
rapid iteration and continuous delivery. Unlike manual SAST tools like Flawfinder and Cppcheck 
which are easier to isolate, these tools, in contrary to being slower, are often faster as they tend to 
produce triage results that need manual refinement due to numerous false positives. This 

 
Another advantage of the proposed approach is its customizability. Organizations can adjust the 

detection methodology by retraining the model with project specific data and feedback from security 
engineers, ensuring alignment with internal coding standards and internal threat models. This 
tailoring improves precision and increases the amount of results that can be acted upon by specific 
personnel, particularly in exhaustive databases that have intricate control and data flows. 

Thus, the experimental results confirm the effectiveness of the proposed model and its feasibility 
for implementation in industrial processes aimed at ensuring software security. 

6. Conclusions 

In this study, we examined an approach to the automated detection of buffer overflow vulnerabilities 
using code graph models and the YOLO neural network. A full-scale experiment was conducted, 
demonstrating the high efficiency of the proposed model both in terms of accuracy and performance 
in the context of integration into development environments. 

The main conclusions of the study are as follows: the proposed model detects Buffer Overflow 
type vulnerabilities with an accuracy of 94.3% and an F1-measure of 93.0%, which significantly 
exceeds the performance of classical static security analysis tools such as Cppcheck and Flawfinder. 
This indicates the high practical value of this approach for ensuring cybersecurity. Thanks to the 
proposed mathematical model of risk assessment and the visualization of graph representations of 
the code, it has become possible to prioritize areas with the highest probability of vulnerability. This 
improves the efficiency of the code review process and allows developers to focus on the most critical 
areas. The average time for analyzing one file was 9.4 seconds, which allows the proposed model to 
be used within CI/CD processes without a noticeable impact on the overall development cycle. This 
makes it suitable for widespread implementation in industrial environments.  



The model allows adaptation to the specifics of software projects through retraining on internal 
data. This opens up opportunities for its use in large-scale and mission-critical systems. The research 
also outlined prospects for expanding the model's functionality, including application to other types 
of vulnerabilities, implementation of explainable AI components, automatic correction of found 
problems, and deep integration with other cybersecurity tools. 

Therefore, the study results demonstrate the significant potential of the proposed system to 
improve the detection quality of Buffer Overflow type vulnerabilities and to strengthen overall 
software security. Future research will focus on enhancing the accuracy, interpretability, and 
scalability of the proposed approach. 

Declaration on Generative AI 

The authors have not employed any Generative AI tools. 
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