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Abstract  
This paper presents a formalized mathematical model for managing the life cycle of cloud infrastructure. 
The proposed model incorporates a multi-layered architecture that includes the infrastructure, cloud 
services management, and IT governance levels, capturing both automated and human-centric control 
processes. Using finite automata and process algebra, the model supports a structured representation of 
service states, control actions, and transition dynamics. It enables real-time lifecycle automation, SLA 
compliance enforcement, and adaptive response to dynamic workloads. The effectiveness of the model is 
validated through a series of experiments simulating real-world scenarios, demonstrating high service 
availability, resource optimization, and system scalability. This work contributes to the formalization and 
automation of cloud infrastructure lifecycle management, providing a foundation for further tool 
development and integration into cloud orchestration platforms. 
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1. Introduction

The rapid development of digital technologies and the increasing demand for scalable computing 
resources have led to the widespread adoption of cloud computing as a fundamental paradigm for 
delivering IT services [1-3]. Cloud infrastructure has become an integral component of modern 
information systems, providing on-demand access to computational power, storage, and networking 
capabilities [4-6]. However, the management of cloud infrastructure throughout its entire life cycle 
from design and deployment to scaling, maintenance, and decommissioning presents a complex 
challenge that requires systematic and formalized approaches [7-9]. 

Despite significant progress in cloud infrastructure automation and orchestration, there is still a 
lack of comprehensive mathematical models that accurately describe the dynamics of its life cycle. 
Such models are essential for predicting system behavior, optimizing resource allocation, ensuring 
reliability, and supporting decision-making in cloud infrastructure management [10-12]. Existing 
approaches often rely on empirical or heuristic methods, which may not fully capture the underlying 
processes or support rigorous analysis and verification [13-15]. 

This paper proposes a formal mathematical model of the cloud infrastructure life cycle, based on 
discrete-state representations and process algebra principles. The model reflects the sequential and 
parallel transitions between different infrastructure states, taking into account provisioning 
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constraints, resource dependencies, and performance metrics. The proposed approach enables the 
analysis of system evolution over time and supports the development of tools for automated lifecycle 
management in cloud environments [16-18]. 

The remainder of this paper is structured as follows: Section II reviews related work in cloud 
infrastructure modeling. Section III presents the formal definition of the proposed model. Section IV 
provides case studies and evaluation results. Finally, Section V concludes the paper and outlines 
directions for future research. 

2. Related works 

Resource management is a core aspect of cloud computing and virtualization. It involves the 
allocation, coordination, release, and monitoring of cloud resources to ensure efficient and effective 
system performance. Due to the virtualized, heterogeneous, and multi-tenant nature of cloud 
environments, managing such resources is inherently complex. Challenges arise from uncertainty, 
diversity, large-scale infrastructure, and unpredictable workloads generated by numerous users. 
These factors hinder accurate global state estimation and workload forecasting, making resource 
management highly demanding. To address these issues, cloud resource management requires 
autonomous and adaptive strategies to optimize resource utilization while avoiding over- and under-
provisioning.  

Numerous centralized resource management approaches have been proposed in the literature, 
primarily adopting centralized architectures to support cloud applications. 

The article [19] proposes a Petri net-based model for resource scheduling and auto-scaling in 
elastic cloud computing environments. The goal is to improve the allocation of virtual resources 
dynamically based on the workload demands. By modeling the system behavior using Colored Timed 
Petri Nets (CTPNs), the authors enable precise representation and simulation of complex cloud 
operations, including task arrival, resource provisioning, and scaling decisions. The model helps 
ensure optimal use of resources while maintaining service level agreements (SLAs). Performance 
evaluation shows that the proposed model supports efficient auto-scaling and task scheduling, 
enhancing system responsiveness and resource utilization. 

Article [20] reviews and analyzes various policies and mechanisms aimed at improving resource 
management in cloud computing from a performance perspective. It highlights key challenges such 
as efficient resource allocation, load balancing, scalability, and energy efficiency. The authors explore 
existing strategies, including virtual machine (VM) migration, resource scheduling, and energy-
aware management, and discuss their impact on system performance. The paper also identifies gaps 
in current research and suggests directions for developing more intelligent and adaptive resource 
management solutions to optimize cloud infrastructure performance. 

The article [21] presents a proactive, self-managing framework for resource allocation in cloud 
computing environments. The framework uses autonomic computing principles to monitor, analyze, 
and manage cloud resources dynamically, aiming to improve performance, scalability, and resource 
utilization for service-based applications. By predicting workloads and adjusting resources in 
advance, the approach minimizes latency and service disruptions, contributing to more efficient and 
intelligent cloud infrastructure management. 

Article [22] presents a cost-aware, elastic caching strategy for cloud environments using a Time-
To-Live (TTL) based approach. The authors develop a mathematical model to dynamically adjust the 
cache size in response to workload changes, aiming to balance performance (hit rate) and operational 
cost. Their TTL-based mechanism is lightweight and adaptable, allowing cloud providers to 
provision cache resources elastically while keeping expenses under control. Through theoretical 
analysis and simulations, the proposed method demonstrates improved cost-efficiency and cache 
performance compared to traditional static or heuristic-based approaches. 

The article [23] proposes a self-adaptive resource allocation approach for cloud-based software 
services using an iterative Quality of Service (QoS) prediction model. The method continuously 
monitors service performance and predicts future QoS values to dynamically adjust resource 



allocation. It combines machine learning techniques with feedback control to respond to changing 
workloads and maintain SLA compliance. The proposed approach enhances resource efficiency and 
service reliability, as shown through experimental validation on real-world cloud service scenarios. 

Article [24] provides a comprehensive review of cloud resource management techniques within 
the context of Industry 4.0, focusing on the integration of cloud computing with smart manufacturing 
and industrial automation. The authors categorize and evaluate various resource provisioning, 
scheduling, and optimization strategies, highlighting their relevance to real-time and data-intensive 
industrial applications. The paper also discusses key challenges, such as latency, scalability, energy 
efficiency, and security, that arise when deploying cloud solutions in Industry 4.0 environments. The 
review identifies gaps in current research and suggests future directions for intelligent, adaptive, and 
decentralized resource management systems. 

The article [25] presents a hybrid resource allocation algorithm for cloud computing that 
combines the Shuffled Frog Leaping Algorithm (SFLA) and the Cuckoo Search (CS) algorithm. The 
proposed hybrid approach aims to enhance resource utilization, minimize execution time, and reduce 
energy consumption in cloud environments. By integrating the exploration capability of Cuckoo 
Search with the local search efficiency of SFLA, the algorithm achieves better optimization results 
than using either technique alone. Simulation results demonstrate that the hybrid method 
outperforms traditional approaches in terms of task completion time and resource efficiency. 

Article [26] introduces an autonomic task scheduling algorithm designed to handle dynamic 
workloads in cloud computing environments using an effective load balancing technique. The 
proposed method enables the cloud system to automatically adapt to workload changes by 
distributing tasks efficiently across virtual machines (VMs), ensuring improved resource utilization, 
reduced response time, and enhanced system performance. The algorithm incorporates self-
management features inspired by autonomic computing principles, allowing it to operate with 
minimal human intervention. Experimental results show that the approach significantly improves 
load distribution and task execution efficiency compared to traditional scheduling methods. 

Article [27] presents a distributed edge computing framework enhanced with artificial 
intelligence (AI) to support Internet of Things (IoT) applications. The proposed solution focuses on 
decentralized decision-making and resource management at the edge of the network, aiming to 
reduce latency, improve scalability, and ensure efficient service delivery. AI techniques are 
integrated to enable smart task offloading, real-time adaptation, and intelligent data processing. The 
framework supports dynamic environments typical of IoT scenarios and demonstrates improved 
performance in terms of latency, energy efficiency, and computational load distribution. 

Paper [28] presents a method for efficient resource provisioning in cloud systems by leveraging 
workload prediction techniques. The approach forecasts future resource demands using historical 
workload data, enabling proactive allocation of computing resources. By accurately predicting 
workload fluctuations, the system reduces resource wastage and improves overall cloud performance 
and cost efficiency. Experimental results validate the model's ability to enhance scalability and 
responsiveness compared to reactive provisioning methods. 

Article [28] proposes a resource provisioning mechanism for cloud systems that leverages 
workload clustering combined with the Biogeography-Based Optimization (BBO) technique. The 
approach clusters workloads with similar resource demands to optimize resource allocation more 
effectively. BBO is employed to find optimal provisioning solutions, improving resource utilization 
and reducing operational costs. The method aims to enhance scalability and efficiency in dynamic 
cloud environments by adapting resource allocation based on workload patterns. Experimental 
results demonstrate improved performance over traditional provisioning strategies. 

Analysis has shown that there is a strong need in construction of a formal model to represent the 
entire lifecycle of cloud infrastructure, encompassing the provisioning, operation, scaling, 
monitoring, and decommissioning phases of cloud services. The model has to address the key 
challenges in cloud lifecycle management, including dynamic scaling, SLA policy enforcement, and 
adaptive control in response to variable workloads and system events. 



3. Cloud service lifecycle models 

To solve the problem of increasing the efficiency of curation by the life cycle of cloud infrastructure, 
we will describe its mathematical model. It is obvious that it has a multi-level hierarchical 
organization of management and includes: 

• Infrastructure layer (servers, networks, storage). 
• Cloud Services Lifecycle Management Layer. 
• IT management level (according to ITIL, with human intervention). 

Let us consider a formalized mathematical model that takes into account these levels: 

𝑀𝑐𝑙𝑜𝑢𝑑 =< 𝑅, 𝑆, 𝑀, 𝐻 >,     (1) 

where R is a set of resources (physical or virtual): servers, storages, network devices; 𝑅 =

{𝑟1, 𝑟2, … , 𝑟𝑛}; 
𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑚}, is a set of cloud services, each of which is an aggregated set of resources; 
𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑘}  a set of control processes of the life cycle (monitoring, scaling, recovery, 

billing, etc.); 
𝐻 = {ℎ1, ℎ2, … , ℎ𝑝}  a set of IT management processes (according to ITIL: change, release, 

incident management). 
The description of the functioning of the life cycle of a cloud service 𝑠𝑖 ∈  𝑆 will look like an 

automaton described as a finite automaton: 

𝐴𝑖 = (𝑄, 𝛴, 𝛿, 𝑞0, 𝐹),     (2) 

where:  
𝑄 = {𝑞𝑖𝑛𝑖𝑡, 𝑞𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑 , 𝑞𝑟𝑢𝑛𝑛𝑖𝑛𝑔, 𝑞𝑝𝑎𝑢𝑠𝑒𝑑 , 𝑞𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑞𝑓𝑎𝑖𝑙𝑒𝑑 , 𝑞𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑}  set of service states; 
𝛴  set of events/triggers (deploy, scale, pause, resume, fail, recover, terminate); 
𝛿: 𝑄 × 𝛴 → 𝑄  transition function; 
𝑞0 = 𝑞𝑖𝑛𝑖𝑡  initial state; 
𝐹 = {𝑞𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑}  final state. 
Let us define a formal model that describes the behavior of the control system in the form of an 

automaton (state machine or other type), which defines the rules for controlling processes𝑚𝑗 ∈ 𝑀, 
objects, where each process is defined as a control mechanism superimposed on 𝐴𝑖 . 

Specifically, the system monitoring function, which returns the metric vector (load, response 
time, power consumption, etc.), will look like this: 

monitor: 𝑆 × 𝑇 → 𝑅𝑑.     (3) 

The scaling function is described by a rule of type: 
𝑖𝑓 𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑠𝑖 , 𝑡) ≥ 𝜃 ⇒ 𝛴 ∋ 𝑠𝑐𝑎𝑙𝑒𝑢𝑝 ⇒ 𝛿(𝑞𝑟𝑢𝑛𝑛𝑖𝑛𝑔, 𝑠𝑐𝑎𝑙𝑒_𝑢𝑝) = 𝑞𝑠𝑐𝑎𝑙𝑒𝑑. 
Let us consider the level of IT management, namely the process of human-centric control. 

Processes ℎ ∈ 𝐻 affect the transitions of automata 𝐴𝑖 , but indirectly through approval, approval or 
interaction with people. Let's formalize this through the function:  

𝛾: 𝛴 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} , 
where 𝛾(𝜎)=true means that the event is allowed according to ITIL/organizational process 

policies. 
For example, the deploy(𝑠𝑖) event  is only possible when: 
𝛾(𝑑𝑒𝑝𝑙𝑜𝑦) = 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙(ℎ𝑘 , 𝑠𝑖) = 𝑡𝑟𝑢𝑒. 
Let us consider the infrastructure layer, which operates with a set of resources R, organized in 

ensembles  managed resource pools.  
Let's assume 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑙} ⊆ 𝑃(𝑅) as a set of ensembles, where each 𝑒𝑖 ⊆ 𝑅 is a pool of 

homogeneous resources. 



Then we will describe each ensemble by capacity 𝐶(𝑒𝑖) = {𝑐1, 𝑐2, … , 𝑐𝑑} (CPU, memory, 
network); with a distribution strategy 𝜙: 𝑆 → 𝐸 that assigns services to ensembles; as well as rules 
of self-organization (autonomous management). 

Let us describe the general compositional model by combining all levels. 
Each service is linked to resources through 𝑠𝑖 ∈ 𝑆

which is influenced 𝐴𝑖 by M automated control services and H manual (ITIL) processes. 
The conditions for the correct functioning of the service will be set by the rule: 

∀𝑠𝑖: ∃𝑒𝑗: 𝜙(𝑠𝑖) = 𝑒𝑗 ∧ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(𝑒𝑗) ≥ 𝑑𝑒𝑚𝑎𝑛𝑑(𝑠𝑖) .   (4) 

Then the integral function of the state of the system will look like: 

𝑆(𝑡) = ( ⋃ 𝐴𝑖(𝑡)𝑚
𝑖=1 , ⋃ 𝑚𝑗(𝑡)𝑘

𝑗=1 , ⋃ ℎ𝑗(𝑡)𝑝
ℎ=1 , ⋃ 𝑟𝑖(𝑡) 𝑛

𝑙=1 ).     (5) 

3.1. Cloud service model 

Let's describe a mathematical model of a cloud service that takes into account the aggregation of 
resources into higher-level services, the life cycle states of a cloud service, the hierarchy of service 
types (IaaS, PaaS, SaaS), as well as management automation based on virtualization and resource 
pools. 

Let's take as a set 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑛}of physical or virtual resources (CPU, RAM, storage, network 
adapters, etc.), but as a set 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑚}of virtualized resources derived from R using 

 𝜈: 𝑃(𝑅) → 𝑃(𝑉) is a virtualization function. 
This means that real resources are aggregated into pools of virtualized resources, which later 

become elements of cloud services. 
Next, let's define a CS cloud service  defined as a tuple: 

𝐶𝑆𝑖 = ⟨𝐼𝐷𝑖, 𝑇𝑖, 𝑉𝑖, 𝐿𝑖, 𝑆𝐿𝐴𝑖, 𝑆𝑖(𝑡)⟩ ,     (6) 

where: 
IDi  unique identifier of the service; 
𝑇𝑖 ∈ {𝐼𝑎𝑎𝑆, 𝑃𝑎𝑎𝑆, 𝑆𝑎𝑎𝑆}  type of service (infrastructure, platform, software); 
𝑉𝑖 ⊆ 𝑉   a set of virtualized resources that make up the service; 
𝐿𝑖    service life period; 
𝑆𝐿𝐴𝑖   a set of requirements for service (Service Level Agreement); 
𝑆𝑖(𝑡)   the state of the service in time (determined by the life cycle). 
The life cycle of a cloud service is presented in the form of a finite automaton: 

𝐴𝑖 = (𝑄, 𝛴, 𝛿, 𝑞0, 𝐹),     (7) 

where: 
𝑄 = {𝑞𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 , 𝑞𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑 , 𝑞𝑟𝑢𝑛𝑛𝑖𝑛𝑔, 𝑞𝑝𝑎𝑢𝑠𝑒𝑑 , 𝑞𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑞𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑}  life cycle states, 
𝛴   events (for example: request, provision, start, pause, scale, terminate), 
𝛿: 𝑄 × 𝛴 → 𝑄  is the function of transition between states, 
𝑞0 = 𝑞𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑   initial state, 
𝐹 = {𝑞𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑}   final state. 
Let's define the transitions as follows: 

𝛿(𝑞𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑, 𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛) = 𝑞𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑 
𝛿(𝑞𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑 , 𝑠𝑡𝑎𝑟𝑡) = 𝑞𝑟𝑢𝑛𝑛𝑖𝑛𝑔 

𝛿(𝑞𝑟𝑢𝑛𝑛𝑖𝑛𝑔, 𝑝𝑎𝑢𝑠𝑒) = 𝑞𝑝𝑎𝑢𝑠𝑒𝑑 

𝛿(𝑞𝑟𝑢𝑛𝑛𝑖𝑛𝑔, 𝑠𝑐𝑎𝑙𝑒) = 𝑞𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑   

𝛿(⋅, 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒) = 𝑞𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 

To reduce the complexity of administration, resources are aggregated into autonomous pools: 



𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑘}, 𝑝𝑗 ⊆ 𝑅  

Each pool hides the hardware implementation and is managed using 𝑝𝑗self-organization policies. 
Then let's define the aggregation function as 𝛼: 𝑃(𝑅) → 𝑃 , and the assignment function 𝜙: 𝐶𝑆 → 𝑃 , 
which determines which resource pool supports a particular service. 

The function of the composition of services is as follows: 

𝜓: 𝑃(𝐶𝑆𝐼) → 𝐶𝑆𝑃 , 𝜓′: 𝑃(𝐶𝑆𝑃) → 𝐶𝑆𝑆 .    (8) 

Let's consider the process of automating event processing by a cloud service. Automation is 
implemented through event functions, where the query function will look like: 

𝑟𝑒𝑞 −  𝑢𝑒𝑠𝑡: 𝑈 × 𝑇 × 𝑝𝑎𝑟𝑎𝑚𝑠 → 𝛴 ,    (9) 

where U user, params  service parameters (CPU, RAM, lifetime, etc.). 
Then we will present the function of reaction to events as follows: 

𝜌: 𝛴 × 𝐶𝑆 → 𝐴𝑖  ,     (10) 

Description of the model of functioning of a cloud service includes determining the time limit of 
its existence. Let's assume 𝑡𝑠𝑡𝑎𝑟𝑡  the time of activation of the service, . Then for the time 𝑡𝑒𝑛𝑑 =

𝑡𝑠𝑡𝑎𝑟𝑡 + 𝛥𝑡, де 𝛥𝑡 ∈ 𝐿𝑖t  the service is active if: 
𝑡 ∈ [𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑] ⇒ 𝑆𝑖(𝑡) ≠ 𝑞𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑.     (11) 

After the time has elapsed, the service is automatically destroyed, and the resources are returned 
to the pool: 

𝑆𝑖(𝑡 > 𝑡𝑒𝑛𝑑) = 𝑞𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 , 𝑉𝑖 → 𝑃.     (12) 

3.2. Cloud service lifecycle model 

Based on the above description of the life cycle of a cloud service, it is possible to build a formalized 
mathematical model that describes the stages, parameters, actions and states of the service during its 
existence. This model is based on the concept of a finite automaton with state preservation, a 
parameterized transition graph and a controlled set of control operations. 

Let's denote a cloud service as an object S, which is defined by: 

𝑆 = ⟨𝑇, 𝑂, 𝐼, 𝑀, 𝛴, 𝛿, 𝑠0, 𝑠𝑓⟩,    (13) 

where: 
T is the set of service templates; 
O is the set of specific service offers; 
I is the set of  service instances 
M is the set of control operations; 

 
𝛿: 𝑆 × 𝛴 → 𝑆  the function of transitions between states; 
𝑠0  initial state (pattern definition); 
𝑠𝑓  final state (termination of the service). 
Then the life cycle of a cloud service can be described as a set of states: 

𝐿 = {𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠𝑓}    (14) 
where: 
𝑠0  creating a T service template, 
𝑠1  creating a T-based sentence O, 
𝑠2  creating an instance of service I, 
𝑠3  active use of I, 
𝑠4  performing operations M, 



𝑠𝑓  completion, return of resources. 
Each instance is determined by the following parameters:𝑖 ∈ 𝐼: 

𝑖 = ⟨𝐶, 𝐴, 𝑃, 𝐷, 𝑆𝐿𝐴⟩,     (15) 

where: 
C  computing capacity (CPU, RAM); 
A  availability requirements; 
P  performance; 
D is the duration of the lease; 
SLAs  Service Level Agreements. 
The transition function that displays the reaction to events will look like: 

𝛿(𝑠, 𝜎) = 𝑠′ .    (16) 

For the main events 𝜎 ∈ 𝛴 , we determine the set of events that are given in Table 1. 

Table 1 
Set of cloud service events 

 
 

Let's specify a set of control operations: 
𝑀 = {𝑠𝑐𝑎𝑙𝑒, 𝑏𝑎𝑐𝑘𝑢𝑝, 𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑜𝑝, 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝑚𝑜𝑛𝑖𝑡𝑜𝑟} , 
where each operation is a function: 

𝑚: 𝐼 × 𝑃 → 𝐼′ ,     (17) 

instance. 
Let's describe the process of autonomous driving. Let's take 𝜇: 𝐼 × 𝑆𝐿𝐴 → 𝑀 × 𝑃 as a function a 

recommendation or automatic execution, where 𝜇(𝑖, 𝑆𝐿𝐴𝑖) returns which control operation should 
be performed and with what parameters if a deviation from the SLA is detected. 

The service template is described by a tuple of the form: 
𝑇 = ⟨𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦, 𝐵𝑢𝑖𝑙𝑑𝑃𝑙𝑎𝑛, {𝑚𝑖}𝑖=1

𝑛 ⟩ , 
𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦 - a graph of components and relationships between them, 
𝐵𝑢𝑖𝑙𝑑𝑃𝑙𝑎𝑛  a sequence of steps to create an instance, 
𝑚𝑖 ∈ 𝑀  management operations. 
Let be the resources allocated to instance 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑘}. 
In case of completion 𝑖 → 𝑠𝑓 , the following rule is used:  

∀𝑟𝑗 ∈ 𝑅𝑖, 𝑟𝑗 → 𝑃𝑜𝑜𝑙,     (18) 

Final state graph can be presented as: 
 
 

 
 

 Initial state New state 
create_template - 𝑠0 
publish_offering 𝑠0 𝑠1 

subscribe_request 𝑠1 𝑠2 
instantiate_success 𝑠2 𝑠3 

manual_or_autonomic_management 𝑠3 𝑠4 

terminate_request or timeout 𝑠3, 𝑠4 𝑠𝑓 



 
 

 

3.3 Formalization of requirements for automation of lifecycle management of 
cloud environments 

Automation of the management of the life cycle of a cloud environment is a key factor in ensuring 
its efficiency, reliability, scalability, and continuity. Unlike traditional IT systems, cloud services 
operate in a dynamic, multi-user environment with a high degree of virtualization and variability of 
configurations, which necessitates a clear formalized approach to defining automation requirements. 

The purpose of requirements formalization is to provide a unified model for managing cloud 
resources and services, the ability to machine interpret component life cycles, support adaptive 
management and autonomous response to events, and ensure consistency between SLA policy 
parameters, instance configurations, and management plans. 

Automation should provide a response to internal and external events in real time: 

• start/stop the service; 
• load change; 
• violation of the service level management policy; 
• depletion of resources; 
• changes in security policies [30, 31]. 

Let's formalize the process of automating the management of the life cycle of the cloud 
environment: 

∀𝜎 ∈ 𝛴, ∃𝑚 ∈ 𝑀: 𝜇(𝜎) = 𝑚(𝑃),    (19) 

of events to actions, P is the execution parameters. 
The configuration of the cloud environment is defined in the form of formalized templates or 

specifications: 
𝑇 = ⟨𝐶, 𝐷, 𝑅⟩ ,    (20) 

where: 
C  a set of components (servers, storages, networks), 
D is the dependencies between them (graph or tree), 
R  restrictions and rules (security, availability, scaling policies) [32, 33]. 
We will understand that templates support machine interpretation and automatic deployment. 
Then management must take into account the state of the service 𝑠𝑖є 𝑆, where 𝑆 = {𝑠0, 𝑠1, … , 𝑠𝑓} 

is the set of states (definition, publishing, instantiating, operating, termination); 𝛿: 𝑆 × 𝛴 → 𝑆 is an 
event-based state transition function. 

Thus, such formalization allows you to automate: 
activation/deactivation of services; 
change of management plans depending on the state; 
control of the end of the life cycle. 
The system has the ability to automatically scale based on monitoring data: 

𝑚𝑠𝑐𝑎𝑙𝑒: 𝐼 × {𝐶𝑃𝑈, 𝑅𝐴𝑀, 𝑛𝑒𝑡, … } → 𝐼′ .     (21) 

The execution condition will look like this: 

∃𝜃: 𝑖𝑓 𝑀(𝑥) > 𝜃 ⇒ 𝑚𝑠𝑐𝑎𝑙𝑒,     (22) 

 



Let us consider the process of ensuring the policy of service level management. Support and 
automatic control of the implementation of service level agreements (SLAs) consist in monitoring 
critical parameters, automatic notification of violations, and applying corrective actions. 

Formally, the process of ensuring the service level management policy will be described as: 

𝑆𝐿𝐴 = {(𝑚𝑖, ω𝑖, τi)}𝑖=1
𝑛 ,     (23) 

where: 
𝑚𝑖 is the metric; 
𝜔𝑖 is the allowable range; 
𝜏𝑖 is the time interval of te check.  
Let's consider the process of automated logging and auditing. Each action should generate a log 

entry: who initiated the action; when; to which resource it is applied; The result of the action. 
Formally, the process of automated logging and auditing will be presented as follows: 

𝐿 = {(ti, ui, ai, ri, si)}𝑖=1
𝑛 ,     (24) 

where  time,  user or service,  action,  resource,  execution status.𝑡𝑖𝑢𝑖𝑎𝑖𝑟𝑖𝑠𝑖 
Let's present a functional model of automated control.  
Formalized as a system is described by a tuple: 

𝐴 = ⟨𝐼, 𝑀, 𝛴, 𝛿, 𝜇, 𝑆𝐿𝐴, 𝑇⟩ ,     (25) 
where:  
I is the set of service instances; 
M  controlled actions; 

 events; 
 

 strategy for responding to events; 
SLAs  Service Level Policies; 
T  configuration templates. 

4. Experiments 

System stability in this context can be interpreted as the ability of a cloud service to operate for a 
long time without noticeable failures or drops in performance, even under variable loads or 
unforeseen circumstances. Stability can be assessed by several main criteria: 

To assess the stability of each stage of the cloud service lifecycle, it is important to analyze the 
transitions between different states (for example, from the " Active " state to the " Error " or "Scaling" 
state). Key factors that can affect stability: 

• Load. 
• Hardware problems. 
• Interference between services. 
• Monitoring and error handling. 

Peak load analysis (for example, autoscaling can cause overload during the scaling process). 
Detecting errors or malfunctions in hardware components. 
Multiple services can interact with each other through shared resources (e.g., network, storage). 
The system must be able to detect errors at each stage and transition to recovery mode without 

major delays or performance degradation. 
An important part of stability is the ability to perform operations autonomously at each stage. 

For example, autoscaling should work without human intervention, ensuring that a stable state is 
maintained under changing conditions. Statistical analysis of automatic actions (for example, how 



long it takes to scale or restore) helps to verify whether the system can automatically adapt to new 
conditions. 

Detecting and analyzing responses to critical events, such as errors (the " Error " state) or high 
loads, can provide insight into the system's ability to recover or restore service stability. 

4.1. Analysis of the effectiveness of the model 

System effectiveness is determined by the ability of a cloud service to meet user requirements and 
adhere to service level management policies, ensuring high availability and performance with 
minimal resource consumption. 

To assess the effectiveness of the model, you can measure: 

• Service response time under different loads. 
• System performance at different stages of its lifecycle, such as activation, scaling, or recovery. 
• Resource usage (CPU, memory, network resources) at each stage. 

• Time taken to perform operations: How quickly the system transitions between states (e.g., 
time from startup to activation or scaling time). 

4.2. Resource optimization 

Resource allocation analysis is an important step in performance analysis. The assessment of 
indicators such as: 

• assessing the effective use of memory, processor time, disk space, and network. 
• checking how effectively resources are scaled when the load changes. 
• assessment of energy consumption during the implementation of various stages of the life 

cycle, especially during the scaling and recovery stages. 

The key point is compliance with the service level management policy. The effectiveness of the 
model is assessed through service availability (analysis of the compliance of the service uptime with 
the service level management policy requirements), response time performance (analysis of the 
compliance of the service response time with the requirements), latency and recovery time (analysis 
of the system recovery time after failures or malfunctions). 

Efficiency also includes optimizing resource costs, including infrastructure costs (analysis of the 
cost of deployment, scaling, support, and service closure), as well as resource utilization optimization 
(analysis of optimal resource utilization at each stage of the lifecycle). 

4.3. Analysis of the stability and efficiency of the functioning of the cloud service 
life cycle model. Experimental setup 

Analysis of the stability and efficiency of the cloud service lifecycle model is a comprehensive process 
that includes assessing performance, resource efficiency, compliance with service level management 
policies, and ensuring uninterrupted system operation. The use of mathematical modeling, 
monitoring, and optimization methods allows you to obtain accurate data to ensure high quality user 
service in the cloud environment. 

To analyze the stability and efficiency of the cloud service lifecycle model, a series of experiments 
was performed, including various stages of the service lifecycle ( definition , offering, subscription 
and instantiation , production process, scaling, and termination). 

The experiment was based on an analysis of the stability of the cloud service during the execution 
of various stages of the life cycle, an assessment of the effectiveness of resource management, as well 
as the implementation of service level management policies and compliance with parameters. 

The list of hypotheses of the experiment is given in Table 2. 



Table 2 
List of experimental hypotheses 

The purpose of the experiment is to test whether the stability and efficiency conditions of the 
cloud service are met within the life cycle model. Particular attention is paid to stability during 
scaling and under high loads, resource efficiency (CPU, memory, network usage), implementation of 
service level management policies (response time, service availability), as well as the costs of 
supporting and maintaining the service. 

The experiment was conducted in a test cloud environment that matches the characteristics of a 
real cloud provider. The environment included: 

1. Virtual machines for running applications. 
2. Virtual storage resources and network resources. 
3. Automated systems for scaling and load management. 
4. Monitoring tools to collect data on load, resource usage, and service level management policy 

enforcement. 

The experimental procedure included the following steps: 

1. Initialization, which involved choosing a cloud service type (e.g., big data processing service, 
web hosting). 

2. Stability testing, in which different loads were imposed on the system (for example, different 
numbers of simultaneous requests, resource loads), and an assessment of the system's time 
response to the load was also carried out, which included an analysis of transient processes 
(scaling, startup, shutdown). 

3. Performance testing, which included estimating scaling time when the load changes, 
estimating resource costs (CPU, memory, network) during the execution of various stages of 
the lifecycle, and estimating recovery time after an error or overload. 

4. Analysis of the implementation of service level management policies, which included an 
assessment of service availability and response time to requests, as well as an analysis of the 
implementation of service level management policies under high load conditions. 

5. Scaling and adaptability, which included testing dynamic scaling under varying loads, as well 
as evaluating performance during transitions between different stages (scaling, recovery). 

4.4. Experimental results 

Let us consider the results of the system stability. 
Under load, we will have the number of simultaneous requests coming to the cloud service. 
Response time refers to the average time a service takes to respond to a request. 
Execution time refers to the time it takes to process a request and response. 
CPU usage corresponds to the average percentage of CPU usage during the test. 
Memory usage indicates the average memory usage of the service. 

No. Description 

Hypothesis 1 
A cloud service with properly configured scaling and resource management 
processes continues to function stably, even with changing load or minor 
failures at the infrastructure level. 

Hypothesis 2 
Low resource loss during transitions between different system states (e.g. 
from " Active " to " Scaling ") while adhering to service level management 
policies 

Hypothesis 3 
System efficiency (compliance with service level management policies and 
request processing speed) increases under conditions of dynamic scaling 
and adaptive load management 



Availability reflects the percentage of time during which the service was available and operating 
without failures. 

Recovery time refers to the time it takes for a system to recover from a failure or overload. 
Lost Requests displays the percentage of requests that were not processed due to excessive load 

or failures . 
Scaling time refers to the time it takes to add or remove resources to support high-load operations. 
Disaster recovery time refers to the time it takes for a system to recover from failures (such as a 

virtual machine crash). 
As a result of the experiments, it was recorded that the system response time remained within 

acceptable values even under significant loads (within ±5% of the initial value). 
The bandwidth was sufficient to handle 100% of requests without significant delays. 
The scaling process was automatic and without significant delays, with a recovery time after 

scaling within 1 3 minutes. 
In the event of a minor failure (for example, a virtual machine crash), the system was successfully 

restored within 5 minutes. 
Resource usage during operations was within optimal values, without resource overload. CPU, 

memory, and network resources were used within 80 90% of maximum values. 
The execution time of requests to the service remained stable even under high loads, with an 

average response time of 200-300 ms when processing 100 requests simultaneously. 
The system efficiently handled high peak loads (up to 500 simultaneous requests), with only a 

slight (5-10%) decrease in throughput. 
The results of experiments on stability and performance when executing queries are presented in 

Table 3. 
The results of high load stability and recovery time are presented in Table 4. 

Table 3 
Stability and performance when executing queries 

Table 4 
High load stability and recovery time 

 
  

Experiment 
No. 

Load (number of 
simultaneous 

requests) 

Response 
time 
(ms) 

Execution 
time (ms) 

CPU 
usage (%) 

Memory 
usage 

(%) 

Availability 
(%) 

1 50 180 250 75 60 99.98 
2 100 200 300 80 65 99.95 
3 200 250 350 85 70 99.90 
4 300 280 400 88 75 99.93 
5 500 320 450 90 80 99.92 

Test 
number 

Load (number of 
simultaneous 

requests) 

Recovery 
time (m) 

Lost 
requests 

(%) 

Scaling 
time (ms) 

Recovery time 
after failure (ms) 

1 50 3 0.1 120 300 
2 100 4 0.3 150 350 
3 200 5 0.5 180 400 
4 300 6 0.8 210 450 
5 500 7 1.0 250 500 



Let's consider the results of experiments on the implementation of service level management 
(SLA) policies. 

Response time is the average time it takes for a service to respond to a request. 
Availability reflects the percentage of time during which the service is available and operating 

without interruption. 
Service Level Management Policy Compliance reflects the percentage of service level agreement 

fulfillment, where higher values indicate greater compliance with the terms of the service level 
agreements. 

Disaster recovery time: Recovery time from system failures, availability disruptions, or poor 
performance. 

The service availability time was over 99.95%, which exceeds the standard service level 
management policy requirements for cloud services. 

Recovery time after failures did not exceed 3 minutes, which meets the requirements of the service 
level management policy for critical services. 

Response times were stable, ensuring that the service level management policy of 1 second for 
90% of requests was met. 

The results of high-load stability and recovery time are presented in Table 5. 

Table 5 
Results of experiments on the implementation of service level management policies 

Let's consider the results of experiments on scaling and adaptability. 
We will consider the change in load to be the percentage increase in the load on the system during 

the test. 
Scaling time refers to the time it takes for the system to scale when the load changes. 
Responsiveness defines the improvement in throughput after autoscaling, expressed as a 

percentage. 
The load reduction time reflects the time it takes for the load to decrease after a peak in requests, 

when the load returns to normal levels again. 
When the load increased, the system automatically scaled within 1-3 minutes, depending on the 

type of resource being scaled (for example, adding virtual machines or expanding memory). 
Adaptive control was implemented in the system, which allowed the scaling strategy to be 

dynamically changed depending on the actual load. 
The results of the scaling and adaptability experiments are presented in Table 6. 
The results of the experiments showed that the tested cloud service demonstrated high stability 

during normal operation, and also effectively recovered after minor failures. 
The system was able to efficiently use resources, ensuring stable service operation under high 

loads. 
All key aspects of the service level management policy, including availability, response time, and 

recovery, were performed at or above standard requirements. 
Automatic scaling and adaptive resource management provide high efficiency and reduced 

infrastructure costs, which is important for cloud services with dynamic loads. 
These results indicate a high level of stability and efficiency of the proposed cloud service lifecycle 
model, making it suitable for use in real-world conditions. 

Test number 
Response 
time (ms) 

Availability (%) SLA Compliance (%) 
Recovery time 

after failures (ms) 
1 180 99.98 100% 300 
2 200 99.95 99.9% 350 
3 250 99.90 99.8% 400 

4 280 99.93 99.7% 450 

5 320 99.92 99.5% 500 



Table 6 
Scalability and adaptability 

 

 

 

 

 

 

Conclusion 

In this work, we developed a comprehensive and formal mathematical model to represent the entire 
lifecycle of cloud infrastructure, encompassing the provisioning, operation, scaling, monitoring, and 
decommissioning phases of cloud services. The model integrates discrete-state automata, 
virtualization abstractions, and hierarchical management levels, from infrastructure to ITIL-based 
manual controls, thereby offering a unified framework for understanding and automating the 
behavior of cloud systems.  

Through the use of formal methods, the proposed model addresses key challenges in cloud 
lifecycle management, including dynamic scaling, SLA policy enforcement, and adaptive control in 
response to variable workloads and system events. The integration of monitoring functions, SLA 
validation mechanisms, and automated decision-making capabilities ensures not only the operational 
reliability of cloud services but also their compliance with business-level requirements. 

The experimental evaluation confirms that the model supports high system stability and 
efficiency under real-world conditions. Specifically, it demonstrated the capability to maintain over 
99.9% availability, handle up to 500 concurrent requests with minimal latency variation, and perform 
automated recovery and scaling within strict time constraints. These results underline the potential 
of the model to reduce resource waste, enhance service responsiveness, and minimize manual 
intervention, especially during peak load or failure events. 

Additionally, the model facilitates fine-grained performance analysis, such as resource 
consumption tracking, SLA compliance measurement, and reaction time monitoring for lifecycle 
transitions. This enables cloud administrators to make data-driven decisions, optimize infrastructure 
costs, and improve the quality of service provided to end users. 

Future work may focus on integrating this model into active orchestration tools, extending it with 
predictive analytics for preemptive scaling, and applying it to hybrid and edge-cloud environments. 
Moreover, further refinement of the SLA-driven automation policies can lead to even more resilient 
and self-adaptive cloud platforms. 

In conclusion, the proposed formal model represents a significant step toward the systematic and 
automated management of cloud infrastructure lifecycles, paving the way for smarter, more efficient, 
and resilient cloud computing systems. 
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Test 
number 

Load change 
(%) 

Scaling 
time (ms) 

Adaptability 
(throughput 

improvement) (%) 

Load reduction 
time after peak 

(ms) 
1 50% 120 25% 150 
2 100% 150 30% 180 
3 200% 180 40% 210 
4 300% 200 45% 240 
5 500% 250 50% 300 
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