
Mathematical model of the cloud infrastructure life

cycle⋆

Sergii Lysenko1, , , Oleh Bondaruk1 , Oleksii Bondar1, , Liudmyla Koretska1, , and Tomas
Sochor2,

1 Khmelnitsky National University, Khmelnitsky, Instytutska street 11, 29016, Ukraine
2 European Research University, Ostrava, Czech Republic

Abstract
This paper presents a formalized mathematical model for managing the life cycle of cloud infrastructure.
The proposed model incorporates a multi-layered architecture that includes the infrastructure, cloud
services management, and IT governance levels, capturing both automated and human-centric control
processes. Using finite automata and process algebra, the model supports a structured representation of
service states, control actions, and transition dynamics. It enables real-time lifecycle automation, SLA
compliance enforcement, and adaptive response to dynamic workloads. The effectiveness of the model is
validated through a series of experiments simulating real-world scenarios, demonstrating high service
availability, resource optimization, and system scalability. This work contributes to the formalization and
automation of cloud infrastructure lifecycle management, providing a foundation for further tool
development and integration into cloud orchestration platforms.

Keywords
Cloud infrastructure lifecycle, mathematical modeling, finite automata, lifecycle automation, resource

management, service level agreement, cloud service orchestration 1

1. Introduction

The rapid development of digital technologies and the increasing demand for scalable computing
resources have led to the widespread adoption of cloud computing as a fundamental paradigm for
delivering IT services [1-3]. Cloud infrastructure has become an integral component of modern
information systems, providing on-demand access to computational power, storage, and networking
capabilities [4-6]. However, the management of cloud infrastructure throughout its entire life cycle
from design and deployment to scaling, maintenance, and decommissioning presents a complex
challenge that requires systematic and formalized approaches [7-9].

Despite significant progress in cloud infrastructure automation and orchestration, there is still a
lack of comprehensive mathematical models that accurately describe the dynamics of its life cycle.
Such models are essential for predicting system behavior, optimizing resource allocation, ensuring
reliability, and supporting decision-making in cloud infrastructure management [10-12]. Existing
approaches often rely on empirical or heuristic methods, which may not fully capture the underlying
processes or support rigorous analysis and verification [13-15].

This paper proposes a formal mathematical model of the cloud infrastructure life cycle, based on
discrete-state representations and process algebra principles. The model reflects the sequential and
parallel transitions between different infrastructure states, taking into account provisioning

ICyberPhyS 5: 2nd International Workshop on Intelligent & CyberPhysical Systems, July 04, 2025, Khmelnytskyi, Ukraine⋆
1 Corresponding author.

These authors contributed equally.
 sirogyk@ukr.net (S. Lysenko); oleg6467@ukr.net (O. Bondaruk); tineyalex@gmail.com (O. Bondar);

koretskal@khmnu.edu.ua (L. Koretska); tomas.sochor@eruni.org (T. Sochor)
 0000-0001-7243-8747 (S. Lysenko); 0009-0000-8663-4124 (O. Bondaruk); 0009-0003-6707-2981 (O. Bondar); 0000-0002-

4284-4936 (L. Koretska); 0000-0002-1704-1883 (T. Sochor)
© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:sirogyk@ukr.net
mailto:oleg6467@ukr.net
mailto:tineyalex@gmail.com
mailto:koretskal@khmnu.edu.ua
mailto:tomas.sochor@eruni.org
https://orcid.org/0000-0001-7243-8747
https://orcid.org/0009-0000-8663-4124
https://orcid.org/0009-0003-6707-2981
https://orcid.org/0000-0002-4284-4936
https://orcid.org/0000-0002-4284-4936
https://orcid.org/0000-0002-1704-1883

constraints, resource dependencies, and performance metrics. The proposed approach enables the
analysis of system evolution over time and supports the development of tools for automated lifecycle
management in cloud environments [16-18].

The remainder of this paper is structured as follows: Section II reviews related work in cloud
infrastructure modeling. Section III presents the formal definition of the proposed model. Section IV
provides case studies and evaluation results. Finally, Section V concludes the paper and outlines
directions for future research.

2. Related works

Resource management is a core aspect of cloud computing and virtualization. It involves the
allocation, coordination, release, and monitoring of cloud resources to ensure efficient and effective
system performance. Due to the virtualized, heterogeneous, and multi-tenant nature of cloud
environments, managing such resources is inherently complex. Challenges arise from uncertainty,
diversity, large-scale infrastructure, and unpredictable workloads generated by numerous users.
These factors hinder accurate global state estimation and workload forecasting, making resource
management highly demanding. To address these issues, cloud resource management requires
autonomous and adaptive strategies to optimize resource utilization while avoiding over- and under-
provisioning.

Numerous centralized resource management approaches have been proposed in the literature,
primarily adopting centralized architectures to support cloud applications.

The article [19] proposes a Petri net-based model for resource scheduling and auto-scaling in
elastic cloud computing environments. The goal is to improve the allocation of virtual resources
dynamically based on the workload demands. By modeling the system behavior using Colored Timed
Petri Nets (CTPNs), the authors enable precise representation and simulation of complex cloud
operations, including task arrival, resource provisioning, and scaling decisions. The model helps
ensure optimal use of resources while maintaining service level agreements (SLAs). Performance
evaluation shows that the proposed model supports efficient auto-scaling and task scheduling,
enhancing system responsiveness and resource utilization.

Article [20] reviews and analyzes various policies and mechanisms aimed at improving resource
management in cloud computing from a performance perspective. It highlights key challenges such
as efficient resource allocation, load balancing, scalability, and energy efficiency. The authors explore
existing strategies, including virtual machine (VM) migration, resource scheduling, and energy-
aware management, and discuss their impact on system performance. The paper also identifies gaps
in current research and suggests directions for developing more intelligent and adaptive resource
management solutions to optimize cloud infrastructure performance.

The article [21] presents a proactive, self-managing framework for resource allocation in cloud
computing environments. The framework uses autonomic computing principles to monitor, analyze,
and manage cloud resources dynamically, aiming to improve performance, scalability, and resource
utilization for service-based applications. By predicting workloads and adjusting resources in
advance, the approach minimizes latency and service disruptions, contributing to more efficient and
intelligent cloud infrastructure management.

Article [22] presents a cost-aware, elastic caching strategy for cloud environments using a Time-
To-Live (TTL) based approach. The authors develop a mathematical model to dynamically adjust the
cache size in response to workload changes, aiming to balance performance (hit rate) and operational
cost. Their TTL-based mechanism is lightweight and adaptable, allowing cloud providers to
provision cache resources elastically while keeping expenses under control. Through theoretical
analysis and simulations, the proposed method demonstrates improved cost-efficiency and cache
performance compared to traditional static or heuristic-based approaches.

The article [23] proposes a self-adaptive resource allocation approach for cloud-based software
services using an iterative Quality of Service (QoS) prediction model. The method continuously
monitors service performance and predicts future QoS values to dynamically adjust resource

allocation. It combines machine learning techniques with feedback control to respond to changing
workloads and maintain SLA compliance. The proposed approach enhances resource efficiency and
service reliability, as shown through experimental validation on real-world cloud service scenarios.

Article [24] provides a comprehensive review of cloud resource management techniques within
the context of Industry 4.0, focusing on the integration of cloud computing with smart manufacturing
and industrial automation. The authors categorize and evaluate various resource provisioning,
scheduling, and optimization strategies, highlighting their relevance to real-time and data-intensive
industrial applications. The paper also discusses key challenges, such as latency, scalability, energy
efficiency, and security, that arise when deploying cloud solutions in Industry 4.0 environments. The
review identifies gaps in current research and suggests future directions for intelligent, adaptive, and
decentralized resource management systems.

The article [25] presents a hybrid resource allocation algorithm for cloud computing that
combines the Shuffled Frog Leaping Algorithm (SFLA) and the Cuckoo Search (CS) algorithm. The
proposed hybrid approach aims to enhance resource utilization, minimize execution time, and reduce
energy consumption in cloud environments. By integrating the exploration capability of Cuckoo
Search with the local search efficiency of SFLA, the algorithm achieves better optimization results
than using either technique alone. Simulation results demonstrate that the hybrid method
outperforms traditional approaches in terms of task completion time and resource efficiency.

Article [26] introduces an autonomic task scheduling algorithm designed to handle dynamic
workloads in cloud computing environments using an effective load balancing technique. The
proposed method enables the cloud system to automatically adapt to workload changes by
distributing tasks efficiently across virtual machines (VMs), ensuring improved resource utilization,
reduced response time, and enhanced system performance. The algorithm incorporates self-
management features inspired by autonomic computing principles, allowing it to operate with
minimal human intervention. Experimental results show that the approach significantly improves
load distribution and task execution efficiency compared to traditional scheduling methods.

Article [27] presents a distributed edge computing framework enhanced with artificial
intelligence (AI) to support Internet of Things (IoT) applications. The proposed solution focuses on
decentralized decision-making and resource management at the edge of the network, aiming to
reduce latency, improve scalability, and ensure efficient service delivery. AI techniques are
integrated to enable smart task offloading, real-time adaptation, and intelligent data processing. The
framework supports dynamic environments typical of IoT scenarios and demonstrates improved
performance in terms of latency, energy efficiency, and computational load distribution.

Paper [28] presents a method for efficient resource provisioning in cloud systems by leveraging
workload prediction techniques. The approach forecasts future resource demands using historical
workload data, enabling proactive allocation of computing resources. By accurately predicting
workload fluctuations, the system reduces resource wastage and improves overall cloud performance
and cost efficiency. Experimental results validate the model's ability to enhance scalability and
responsiveness compared to reactive provisioning methods.

Article [28] proposes a resource provisioning mechanism for cloud systems that leverages
workload clustering combined with the Biogeography-Based Optimization (BBO) technique. The
approach clusters workloads with similar resource demands to optimize resource allocation more
effectively. BBO is employed to find optimal provisioning solutions, improving resource utilization
and reducing operational costs. The method aims to enhance scalability and efficiency in dynamic
cloud environments by adapting resource allocation based on workload patterns. Experimental
results demonstrate improved performance over traditional provisioning strategies.

Analysis has shown that there is a strong need in construction of a formal model to represent the
entire lifecycle of cloud infrastructure, encompassing the provisioning, operation, scaling,
monitoring, and decommissioning phases of cloud services. The model has to address the key
challenges in cloud lifecycle management, including dynamic scaling, SLA policy enforcement, and
adaptive control in response to variable workloads and system events.

3. Cloud service lifecycle models

To solve the problem of increasing the efficiency of curation by the life cycle of cloud infrastructure,
we will describe its mathematical model. It is obvious that it has a multi-level hierarchical
organization of management and includes:

• Infrastructure layer (servers, networks, storage).
• Cloud Services Lifecycle Management Layer.
• IT management level (according to ITIL, with human intervention).

Let us consider a formalized mathematical model that takes into account these levels:

𝑀𝑐𝑙𝑜𝑢𝑑 =< 𝑅, 𝑆, 𝑀, 𝐻 >, (1)

where R is a set of resources (physical or virtual): servers, storages, network devices; 𝑅 =

{𝑟1, 𝑟2, … , 𝑟𝑛};
𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑚}, is a set of cloud services, each of which is an aggregated set of resources;
𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑘} a set of control processes of the life cycle (monitoring, scaling, recovery,

billing, etc.);
𝐻 = {ℎ1, ℎ2, … , ℎ𝑝} a set of IT management processes (according to ITIL: change, release,

incident management).
The description of the functioning of the life cycle of a cloud service 𝑠𝑖 ∈ 𝑆 will look like an

automaton described as a finite automaton:

𝐴𝑖 = (𝑄, 𝛴, 𝛿, 𝑞0, 𝐹), (2)

where:
𝑄 = {𝑞𝑖𝑛𝑖𝑡, 𝑞𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑 , 𝑞𝑟𝑢𝑛𝑛𝑖𝑛𝑔, 𝑞𝑝𝑎𝑢𝑠𝑒𝑑 , 𝑞𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑞𝑓𝑎𝑖𝑙𝑒𝑑 , 𝑞𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑} set of service states;
𝛴 set of events/triggers (deploy, scale, pause, resume, fail, recover, terminate);
𝛿: 𝑄 × 𝛴 → 𝑄 transition function;
𝑞0 = 𝑞𝑖𝑛𝑖𝑡 initial state;
𝐹 = {𝑞𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑} final state.
Let us define a formal model that describes the behavior of the control system in the form of an

automaton (state machine or other type), which defines the rules for controlling processes𝑚𝑗 ∈ 𝑀,
objects, where each process is defined as a control mechanism superimposed on 𝐴𝑖 .

Specifically, the system monitoring function, which returns the metric vector (load, response
time, power consumption, etc.), will look like this:

monitor: 𝑆 × 𝑇 → 𝑅𝑑. (3)

The scaling function is described by a rule of type:
𝑖𝑓 𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑠𝑖 , 𝑡) ≥ 𝜃 ⇒ 𝛴 ∋ 𝑠𝑐𝑎𝑙𝑒𝑢𝑝 ⇒ 𝛿(𝑞𝑟𝑢𝑛𝑛𝑖𝑛𝑔, 𝑠𝑐𝑎𝑙𝑒_𝑢𝑝) = 𝑞𝑠𝑐𝑎𝑙𝑒𝑑.
Let us consider the level of IT management, namely the process of human-centric control.

Processes ℎ ∈ 𝐻 affect the transitions of automata 𝐴𝑖 , but indirectly through approval, approval or
interaction with people. Let's formalize this through the function:

𝛾: 𝛴 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} ,
where 𝛾(𝜎)=true means that the event is allowed according to ITIL/organizational process

policies.
For example, the deploy(𝑠𝑖) event is only possible when:
𝛾(𝑑𝑒𝑝𝑙𝑜𝑦) = 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙(ℎ𝑘 , 𝑠𝑖) = 𝑡𝑟𝑢𝑒.
Let us consider the infrastructure layer, which operates with a set of resources R, organized in

ensembles managed resource pools.
Let's assume 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑙} ⊆ 𝑃(𝑅) as a set of ensembles, where each 𝑒𝑖 ⊆ 𝑅 is a pool of

homogeneous resources.

Then we will describe each ensemble by capacity 𝐶(𝑒𝑖) = {𝑐1, 𝑐2, … , 𝑐𝑑} (CPU, memory,
network); with a distribution strategy 𝜙: 𝑆 → 𝐸 that assigns services to ensembles; as well as rules
of self-organization (autonomous management).

Let us describe the general compositional model by combining all levels.
Each service is linked to resources through 𝑠𝑖 ∈ 𝑆

which is influenced 𝐴𝑖 by M automated control services and H manual (ITIL) processes.
The conditions for the correct functioning of the service will be set by the rule:

∀𝑠𝑖: ∃𝑒𝑗: 𝜙(𝑠𝑖) = 𝑒𝑗 ∧ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(𝑒𝑗) ≥ 𝑑𝑒𝑚𝑎𝑛𝑑(𝑠𝑖) . (4)

Then the integral function of the state of the system will look like:

𝑆(𝑡) = (⋃ 𝐴𝑖(𝑡)𝑚
𝑖=1 , ⋃ 𝑚𝑗(𝑡)𝑘

𝑗=1 , ⋃ ℎ𝑗(𝑡)𝑝
ℎ=1 , ⋃ 𝑟𝑖(𝑡) 𝑛

𝑙=1). (5)

3.1. Cloud service model

Let's describe a mathematical model of a cloud service that takes into account the aggregation of
resources into higher-level services, the life cycle states of a cloud service, the hierarchy of service
types (IaaS, PaaS, SaaS), as well as management automation based on virtualization and resource
pools.

Let's take as a set 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑛}of physical or virtual resources (CPU, RAM, storage, network
adapters, etc.), but as a set 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑚}of virtualized resources derived from R using

 𝜈: 𝑃(𝑅) → 𝑃(𝑉) is a virtualization function.
This means that real resources are aggregated into pools of virtualized resources, which later

become elements of cloud services.
Next, let's define a CS cloud service defined as a tuple:

𝐶𝑆𝑖 = ⟨𝐼𝐷𝑖, 𝑇𝑖, 𝑉𝑖, 𝐿𝑖, 𝑆𝐿𝐴𝑖, 𝑆𝑖(𝑡)⟩ , (6)

where:
IDi unique identifier of the service;
𝑇𝑖 ∈ {𝐼𝑎𝑎𝑆, 𝑃𝑎𝑎𝑆, 𝑆𝑎𝑎𝑆} type of service (infrastructure, platform, software);
𝑉𝑖 ⊆ 𝑉 a set of virtualized resources that make up the service;
𝐿𝑖 service life period;
𝑆𝐿𝐴𝑖 a set of requirements for service (Service Level Agreement);
𝑆𝑖(𝑡) the state of the service in time (determined by the life cycle).
The life cycle of a cloud service is presented in the form of a finite automaton:

𝐴𝑖 = (𝑄, 𝛴, 𝛿, 𝑞0, 𝐹), (7)

where:
𝑄 = {𝑞𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 , 𝑞𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑 , 𝑞𝑟𝑢𝑛𝑛𝑖𝑛𝑔, 𝑞𝑝𝑎𝑢𝑠𝑒𝑑 , 𝑞𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑞𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑} life cycle states,
𝛴 events (for example: request, provision, start, pause, scale, terminate),
𝛿: 𝑄 × 𝛴 → 𝑄 is the function of transition between states,
𝑞0 = 𝑞𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 initial state,
𝐹 = {𝑞𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑} final state.
Let's define the transitions as follows:

𝛿(𝑞𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑, 𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛) = 𝑞𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑
𝛿(𝑞𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑 , 𝑠𝑡𝑎𝑟𝑡) = 𝑞𝑟𝑢𝑛𝑛𝑖𝑛𝑔

𝛿(𝑞𝑟𝑢𝑛𝑛𝑖𝑛𝑔, 𝑝𝑎𝑢𝑠𝑒) = 𝑞𝑝𝑎𝑢𝑠𝑒𝑑

𝛿(𝑞𝑟𝑢𝑛𝑛𝑖𝑛𝑔, 𝑠𝑐𝑎𝑙𝑒) = 𝑞𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑

𝛿(⋅, 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒) = 𝑞𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑

To reduce the complexity of administration, resources are aggregated into autonomous pools:

𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑘}, 𝑝𝑗 ⊆ 𝑅

Each pool hides the hardware implementation and is managed using 𝑝𝑗self-organization policies.
Then let's define the aggregation function as 𝛼: 𝑃(𝑅) → 𝑃 , and the assignment function 𝜙: 𝐶𝑆 → 𝑃 ,
which determines which resource pool supports a particular service.

The function of the composition of services is as follows:

𝜓: 𝑃(𝐶𝑆𝐼) → 𝐶𝑆𝑃 , 𝜓′: 𝑃(𝐶𝑆𝑃) → 𝐶𝑆𝑆 . (8)

Let's consider the process of automating event processing by a cloud service. Automation is
implemented through event functions, where the query function will look like:

𝑟𝑒𝑞 − 𝑢𝑒𝑠𝑡: 𝑈 × 𝑇 × 𝑝𝑎𝑟𝑎𝑚𝑠 → 𝛴 , (9)

where U user, params service parameters (CPU, RAM, lifetime, etc.).
Then we will present the function of reaction to events as follows:

𝜌: 𝛴 × 𝐶𝑆 → 𝐴𝑖 , (10)

Description of the model of functioning of a cloud service includes determining the time limit of
its existence. Let's assume 𝑡𝑠𝑡𝑎𝑟𝑡 the time of activation of the service, . Then for the time 𝑡𝑒𝑛𝑑 =

𝑡𝑠𝑡𝑎𝑟𝑡 + 𝛥𝑡, де 𝛥𝑡 ∈ 𝐿𝑖t the service is active if:
𝑡 ∈ [𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑] ⇒ 𝑆𝑖(𝑡) ≠ 𝑞𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑. (11)

After the time has elapsed, the service is automatically destroyed, and the resources are returned
to the pool:

𝑆𝑖(𝑡 > 𝑡𝑒𝑛𝑑) = 𝑞𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 , 𝑉𝑖 → 𝑃. (12)

3.2. Cloud service lifecycle model

Based on the above description of the life cycle of a cloud service, it is possible to build a formalized
mathematical model that describes the stages, parameters, actions and states of the service during its
existence. This model is based on the concept of a finite automaton with state preservation, a
parameterized transition graph and a controlled set of control operations.

Let's denote a cloud service as an object S, which is defined by:

𝑆 = ⟨𝑇, 𝑂, 𝐼, 𝑀, 𝛴, 𝛿, 𝑠0, 𝑠𝑓⟩, (13)

where:
T is the set of service templates;
O is the set of specific service offers;
I is the set of service instances
M is the set of control operations;

𝛿: 𝑆 × 𝛴 → 𝑆 the function of transitions between states;
𝑠0 initial state (pattern definition);
𝑠𝑓 final state (termination of the service).
Then the life cycle of a cloud service can be described as a set of states:

𝐿 = {𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠𝑓} (14)
where:
𝑠0 creating a T service template,
𝑠1 creating a T-based sentence O,
𝑠2 creating an instance of service I,
𝑠3 active use of I,
𝑠4 performing operations M,

𝑠𝑓 completion, return of resources.
Each instance is determined by the following parameters:𝑖 ∈ 𝐼:

𝑖 = ⟨𝐶, 𝐴, 𝑃, 𝐷, 𝑆𝐿𝐴⟩, (15)

where:
C computing capacity (CPU, RAM);
A availability requirements;
P performance;
D is the duration of the lease;
SLAs Service Level Agreements.
The transition function that displays the reaction to events will look like:

𝛿(𝑠, 𝜎) = 𝑠′ . (16)

For the main events 𝜎 ∈ 𝛴 , we determine the set of events that are given in Table 1.

Table 1
Set of cloud service events

Let's specify a set of control operations:
𝑀 = {𝑠𝑐𝑎𝑙𝑒, 𝑏𝑎𝑐𝑘𝑢𝑝, 𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑜𝑝, 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝑚𝑜𝑛𝑖𝑡𝑜𝑟} ,
where each operation is a function:

𝑚: 𝐼 × 𝑃 → 𝐼′ , (17)

instance.
Let's describe the process of autonomous driving. Let's take 𝜇: 𝐼 × 𝑆𝐿𝐴 → 𝑀 × 𝑃 as a function a

recommendation or automatic execution, where 𝜇(𝑖, 𝑆𝐿𝐴𝑖) returns which control operation should
be performed and with what parameters if a deviation from the SLA is detected.

The service template is described by a tuple of the form:
𝑇 = ⟨𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦, 𝐵𝑢𝑖𝑙𝑑𝑃𝑙𝑎𝑛, {𝑚𝑖}𝑖=1

𝑛 ⟩ ,
𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦 - a graph of components and relationships between them,
𝐵𝑢𝑖𝑙𝑑𝑃𝑙𝑎𝑛 a sequence of steps to create an instance,
𝑚𝑖 ∈ 𝑀 management operations.
Let be the resources allocated to instance 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑘}.
In case of completion 𝑖 → 𝑠𝑓 , the following rule is used:

∀𝑟𝑗 ∈ 𝑅𝑖, 𝑟𝑗 → 𝑃𝑜𝑜𝑙, (18)

Final state graph can be presented as:

 Initial state New state
create_template - 𝑠0
publish_offering 𝑠0 𝑠1

subscribe_request 𝑠1 𝑠2
instantiate_success 𝑠2 𝑠3

manual_or_autonomic_management 𝑠3 𝑠4

terminate_request or timeout 𝑠3, 𝑠4 𝑠𝑓

3.3 Formalization of requirements for automation of lifecycle management of
cloud environments

Automation of the management of the life cycle of a cloud environment is a key factor in ensuring
its efficiency, reliability, scalability, and continuity. Unlike traditional IT systems, cloud services
operate in a dynamic, multi-user environment with a high degree of virtualization and variability of
configurations, which necessitates a clear formalized approach to defining automation requirements.

The purpose of requirements formalization is to provide a unified model for managing cloud
resources and services, the ability to machine interpret component life cycles, support adaptive
management and autonomous response to events, and ensure consistency between SLA policy
parameters, instance configurations, and management plans.

Automation should provide a response to internal and external events in real time:

• start/stop the service;
• load change;
• violation of the service level management policy;
• depletion of resources;
• changes in security policies [30, 31].

Let's formalize the process of automating the management of the life cycle of the cloud
environment:

∀𝜎 ∈ 𝛴, ∃𝑚 ∈ 𝑀: 𝜇(𝜎) = 𝑚(𝑃), (19)

of events to actions, P is the execution parameters.
The configuration of the cloud environment is defined in the form of formalized templates or

specifications:
𝑇 = ⟨𝐶, 𝐷, 𝑅⟩ , (20)

where:
C a set of components (servers, storages, networks),
D is the dependencies between them (graph or tree),
R restrictions and rules (security, availability, scaling policies) [32, 33].
We will understand that templates support machine interpretation and automatic deployment.
Then management must take into account the state of the service 𝑠𝑖є 𝑆, where 𝑆 = {𝑠0, 𝑠1, … , 𝑠𝑓}

is the set of states (definition, publishing, instantiating, operating, termination); 𝛿: 𝑆 × 𝛴 → 𝑆 is an
event-based state transition function.

Thus, such formalization allows you to automate:
activation/deactivation of services;
change of management plans depending on the state;
control of the end of the life cycle.
The system has the ability to automatically scale based on monitoring data:

𝑚𝑠𝑐𝑎𝑙𝑒: 𝐼 × {𝐶𝑃𝑈, 𝑅𝐴𝑀, 𝑛𝑒𝑡, … } → 𝐼′ . (21)

The execution condition will look like this:

∃𝜃: 𝑖𝑓 𝑀(𝑥) > 𝜃 ⇒ 𝑚𝑠𝑐𝑎𝑙𝑒, (22)

Let us consider the process of ensuring the policy of service level management. Support and
automatic control of the implementation of service level agreements (SLAs) consist in monitoring
critical parameters, automatic notification of violations, and applying corrective actions.

Formally, the process of ensuring the service level management policy will be described as:

𝑆𝐿𝐴 = {(𝑚𝑖, ω𝑖, τi)}𝑖=1
𝑛 , (23)

where:
𝑚𝑖 is the metric;
𝜔𝑖 is the allowable range;
𝜏𝑖 is the time interval of te check.
Let's consider the process of automated logging and auditing. Each action should generate a log

entry: who initiated the action; when; to which resource it is applied; The result of the action.
Formally, the process of automated logging and auditing will be presented as follows:

𝐿 = {(ti, ui, ai, ri, si)}𝑖=1
𝑛 , (24)

where time, user or service, action, resource, execution status.𝑡𝑖𝑢𝑖𝑎𝑖𝑟𝑖𝑠𝑖
Let's present a functional model of automated control.
Formalized as a system is described by a tuple:

𝐴 = ⟨𝐼, 𝑀, 𝛴, 𝛿, 𝜇, 𝑆𝐿𝐴, 𝑇⟩ , (25)
where:
I is the set of service instances;
M controlled actions;

 events;

 strategy for responding to events;
SLAs Service Level Policies;
T configuration templates.

4. Experiments

System stability in this context can be interpreted as the ability of a cloud service to operate for a
long time without noticeable failures or drops in performance, even under variable loads or
unforeseen circumstances. Stability can be assessed by several main criteria:

To assess the stability of each stage of the cloud service lifecycle, it is important to analyze the
transitions between different states (for example, from the " Active " state to the " Error " or "Scaling"
state). Key factors that can affect stability:

• Load.
• Hardware problems.
• Interference between services.
• Monitoring and error handling.

Peak load analysis (for example, autoscaling can cause overload during the scaling process).
Detecting errors or malfunctions in hardware components.
Multiple services can interact with each other through shared resources (e.g., network, storage).
The system must be able to detect errors at each stage and transition to recovery mode without

major delays or performance degradation.
An important part of stability is the ability to perform operations autonomously at each stage.

For example, autoscaling should work without human intervention, ensuring that a stable state is
maintained under changing conditions. Statistical analysis of automatic actions (for example, how

long it takes to scale or restore) helps to verify whether the system can automatically adapt to new
conditions.

Detecting and analyzing responses to critical events, such as errors (the " Error " state) or high
loads, can provide insight into the system's ability to recover or restore service stability.

4.1. Analysis of the effectiveness of the model

System effectiveness is determined by the ability of a cloud service to meet user requirements and
adhere to service level management policies, ensuring high availability and performance with
minimal resource consumption.

To assess the effectiveness of the model, you can measure:

• Service response time under different loads.
• System performance at different stages of its lifecycle, such as activation, scaling, or recovery.
• Resource usage (CPU, memory, network resources) at each stage.

• Time taken to perform operations: How quickly the system transitions between states (e.g.,
time from startup to activation or scaling time).

4.2. Resource optimization

Resource allocation analysis is an important step in performance analysis. The assessment of
indicators such as:

• assessing the effective use of memory, processor time, disk space, and network.
• checking how effectively resources are scaled when the load changes.
• assessment of energy consumption during the implementation of various stages of the life

cycle, especially during the scaling and recovery stages.

The key point is compliance with the service level management policy. The effectiveness of the
model is assessed through service availability (analysis of the compliance of the service uptime with
the service level management policy requirements), response time performance (analysis of the
compliance of the service response time with the requirements), latency and recovery time (analysis
of the system recovery time after failures or malfunctions).

Efficiency also includes optimizing resource costs, including infrastructure costs (analysis of the
cost of deployment, scaling, support, and service closure), as well as resource utilization optimization
(analysis of optimal resource utilization at each stage of the lifecycle).

4.3. Analysis of the stability and efficiency of the functioning of the cloud service
life cycle model. Experimental setup

Analysis of the stability and efficiency of the cloud service lifecycle model is a comprehensive process
that includes assessing performance, resource efficiency, compliance with service level management
policies, and ensuring uninterrupted system operation. The use of mathematical modeling,
monitoring, and optimization methods allows you to obtain accurate data to ensure high quality user
service in the cloud environment.

To analyze the stability and efficiency of the cloud service lifecycle model, a series of experiments
was performed, including various stages of the service lifecycle (definition , offering, subscription
and instantiation , production process, scaling, and termination).

The experiment was based on an analysis of the stability of the cloud service during the execution
of various stages of the life cycle, an assessment of the effectiveness of resource management, as well
as the implementation of service level management policies and compliance with parameters.

The list of hypotheses of the experiment is given in Table 2.

Table 2
List of experimental hypotheses

The purpose of the experiment is to test whether the stability and efficiency conditions of the
cloud service are met within the life cycle model. Particular attention is paid to stability during
scaling and under high loads, resource efficiency (CPU, memory, network usage), implementation of
service level management policies (response time, service availability), as well as the costs of
supporting and maintaining the service.

The experiment was conducted in a test cloud environment that matches the characteristics of a
real cloud provider. The environment included:

1. Virtual machines for running applications.
2. Virtual storage resources and network resources.
3. Automated systems for scaling and load management.
4. Monitoring tools to collect data on load, resource usage, and service level management policy

enforcement.

The experimental procedure included the following steps:

1. Initialization, which involved choosing a cloud service type (e.g., big data processing service,
web hosting).

2. Stability testing, in which different loads were imposed on the system (for example, different
numbers of simultaneous requests, resource loads), and an assessment of the system's time
response to the load was also carried out, which included an analysis of transient processes
(scaling, startup, shutdown).

3. Performance testing, which included estimating scaling time when the load changes,
estimating resource costs (CPU, memory, network) during the execution of various stages of
the lifecycle, and estimating recovery time after an error or overload.

4. Analysis of the implementation of service level management policies, which included an
assessment of service availability and response time to requests, as well as an analysis of the
implementation of service level management policies under high load conditions.

5. Scaling and adaptability, which included testing dynamic scaling under varying loads, as well
as evaluating performance during transitions between different stages (scaling, recovery).

4.4. Experimental results

Let us consider the results of the system stability.
Under load, we will have the number of simultaneous requests coming to the cloud service.
Response time refers to the average time a service takes to respond to a request.
Execution time refers to the time it takes to process a request and response.
CPU usage corresponds to the average percentage of CPU usage during the test.
Memory usage indicates the average memory usage of the service.

No. Description

Hypothesis 1
A cloud service with properly configured scaling and resource management
processes continues to function stably, even with changing load or minor
failures at the infrastructure level.

Hypothesis 2
Low resource loss during transitions between different system states (e.g.
from " Active " to " Scaling ") while adhering to service level management
policies

Hypothesis 3
System efficiency (compliance with service level management policies and
request processing speed) increases under conditions of dynamic scaling
and adaptive load management

Availability reflects the percentage of time during which the service was available and operating
without failures.

Recovery time refers to the time it takes for a system to recover from a failure or overload.
Lost Requests displays the percentage of requests that were not processed due to excessive load

or failures .
Scaling time refers to the time it takes to add or remove resources to support high-load operations.
Disaster recovery time refers to the time it takes for a system to recover from failures (such as a

virtual machine crash).
As a result of the experiments, it was recorded that the system response time remained within

acceptable values even under significant loads (within ±5% of the initial value).
The bandwidth was sufficient to handle 100% of requests without significant delays.
The scaling process was automatic and without significant delays, with a recovery time after

scaling within 1 3 minutes.
In the event of a minor failure (for example, a virtual machine crash), the system was successfully

restored within 5 minutes.
Resource usage during operations was within optimal values, without resource overload. CPU,

memory, and network resources were used within 80 90% of maximum values.
The execution time of requests to the service remained stable even under high loads, with an

average response time of 200-300 ms when processing 100 requests simultaneously.
The system efficiently handled high peak loads (up to 500 simultaneous requests), with only a

slight (5-10%) decrease in throughput.
The results of experiments on stability and performance when executing queries are presented in

Table 3.
The results of high load stability and recovery time are presented in Table 4.

Table 3
Stability and performance when executing queries

Table 4
High load stability and recovery time

Experiment
No.

Load (number of
simultaneous

requests)

Response
time
(ms)

Execution
time (ms)

CPU
usage (%)

Memory
usage

(%)

Availability
(%)

1 50 180 250 75 60 99.98
2 100 200 300 80 65 99.95
3 200 250 350 85 70 99.90
4 300 280 400 88 75 99.93
5 500 320 450 90 80 99.92

Test
number

Load (number of
simultaneous

requests)

Recovery
time (m)

Lost
requests

(%)

Scaling
time (ms)

Recovery time
after failure (ms)

1 50 3 0.1 120 300
2 100 4 0.3 150 350
3 200 5 0.5 180 400
4 300 6 0.8 210 450
5 500 7 1.0 250 500

Let's consider the results of experiments on the implementation of service level management
(SLA) policies.

Response time is the average time it takes for a service to respond to a request.
Availability reflects the percentage of time during which the service is available and operating

without interruption.
Service Level Management Policy Compliance reflects the percentage of service level agreement

fulfillment, where higher values indicate greater compliance with the terms of the service level
agreements.

Disaster recovery time: Recovery time from system failures, availability disruptions, or poor
performance.

The service availability time was over 99.95%, which exceeds the standard service level
management policy requirements for cloud services.

Recovery time after failures did not exceed 3 minutes, which meets the requirements of the service
level management policy for critical services.

Response times were stable, ensuring that the service level management policy of 1 second for
90% of requests was met.

The results of high-load stability and recovery time are presented in Table 5.

Table 5
Results of experiments on the implementation of service level management policies

Let's consider the results of experiments on scaling and adaptability.
We will consider the change in load to be the percentage increase in the load on the system during

the test.
Scaling time refers to the time it takes for the system to scale when the load changes.
Responsiveness defines the improvement in throughput after autoscaling, expressed as a

percentage.
The load reduction time reflects the time it takes for the load to decrease after a peak in requests,

when the load returns to normal levels again.
When the load increased, the system automatically scaled within 1-3 minutes, depending on the

type of resource being scaled (for example, adding virtual machines or expanding memory).
Adaptive control was implemented in the system, which allowed the scaling strategy to be

dynamically changed depending on the actual load.
The results of the scaling and adaptability experiments are presented in Table 6.
The results of the experiments showed that the tested cloud service demonstrated high stability

during normal operation, and also effectively recovered after minor failures.
The system was able to efficiently use resources, ensuring stable service operation under high

loads.
All key aspects of the service level management policy, including availability, response time, and

recovery, were performed at or above standard requirements.
Automatic scaling and adaptive resource management provide high efficiency and reduced

infrastructure costs, which is important for cloud services with dynamic loads.
These results indicate a high level of stability and efficiency of the proposed cloud service lifecycle
model, making it suitable for use in real-world conditions.

Test number
Response
time (ms)

Availability (%) SLA Compliance (%)
Recovery time

after failures (ms)
1 180 99.98 100% 300
2 200 99.95 99.9% 350
3 250 99.90 99.8% 400

4 280 99.93 99.7% 450

5 320 99.92 99.5% 500

Table 6
Scalability and adaptability

Conclusion

In this work, we developed a comprehensive and formal mathematical model to represent the entire
lifecycle of cloud infrastructure, encompassing the provisioning, operation, scaling, monitoring, and
decommissioning phases of cloud services. The model integrates discrete-state automata,
virtualization abstractions, and hierarchical management levels, from infrastructure to ITIL-based
manual controls, thereby offering a unified framework for understanding and automating the
behavior of cloud systems.

Through the use of formal methods, the proposed model addresses key challenges in cloud
lifecycle management, including dynamic scaling, SLA policy enforcement, and adaptive control in
response to variable workloads and system events. The integration of monitoring functions, SLA
validation mechanisms, and automated decision-making capabilities ensures not only the operational
reliability of cloud services but also their compliance with business-level requirements.

The experimental evaluation confirms that the model supports high system stability and
efficiency under real-world conditions. Specifically, it demonstrated the capability to maintain over
99.9% availability, handle up to 500 concurrent requests with minimal latency variation, and perform
automated recovery and scaling within strict time constraints. These results underline the potential
of the model to reduce resource waste, enhance service responsiveness, and minimize manual
intervention, especially during peak load or failure events.

Additionally, the model facilitates fine-grained performance analysis, such as resource
consumption tracking, SLA compliance measurement, and reaction time monitoring for lifecycle
transitions. This enables cloud administrators to make data-driven decisions, optimize infrastructure
costs, and improve the quality of service provided to end users.

Future work may focus on integrating this model into active orchestration tools, extending it with
predictive analytics for preemptive scaling, and applying it to hybrid and edge-cloud environments.
Moreover, further refinement of the SLA-driven automation policies can lead to even more resilient
and self-adaptive cloud platforms.

In conclusion, the proposed formal model represents a significant step toward the systematic and
automated management of cloud infrastructure lifecycles, paving the way for smarter, more efficient,
and resilient cloud computing systems.

Declaration on Generative AI

During the preparation of this work, the authors used Grammarly in order to: grammar and spelling
check; DeepL Translate in order to: some phrases translation into English. After using these
tools/services, the authors reviewed and edited the content as needed and take full responsibility for

Test
number

Load change
(%)

Scaling
time (ms)

Adaptability
(throughput

improvement) (%)

Load reduction
time after peak

(ms)
1 50% 120 25% 150
2 100% 150 30% 180
3 200% 180 40% 210
4 300% 200 45% 240
5 500% 250 50% 300

References

[1] G. E. Goncalves, P. T. Endo, M. Rodrigues, D. H. Sadok, J. Kelner, C. Curescu, Resource allocation
based on redundancy models for high availability cloud, Computing 102 (2020) 43 63.

[2] A. Hajisami, T. X. Tran, A. Younis, D. Pompili, Elastic resource provisioning for increased
energy efficiency and resource utilization in cloud-RANs, Computer Networks 172 (2020)
107170.

[3] R. B. Halima, S. Kallel, W. Gaaloul, Z. Maamar, M. Jmaiel, Toward a correct and optimal time-
aware cloud resource allocation to business processes, Future Generation Computer Systems
112 (2020) 751 766.

[4] I. Hamzaoui, B. Duthil, V. Courboulay, H. Medromi, A survey on the current challenges of
energy-efficient cloud resources management, SN Computer Science 1 (2020) 1 28.

[5] H. O. Hassan, S. Azizi, M. Shojafar, Priority, network and energy-aware placement of IoT-based
application services in fog-cloud environments, IET Communications 14 (2020) 2117 2129.

[6] Y. Hu, H. Zhou, C. de Laat, Z. Zhao, Concurrent container scheduling on heterogeneous clusters
with multi-resource constraints, Future Generation Computer Systems 102 (2020) 562 573.

[7] J. Kumar, A. K. Singh, Decomposition based cloud resource demand prediction using extreme
learning machines, Journal of Network and Systems Management 28 (2020) 1775 1793.

[8] H. Li, Y. Zhao, S. Fang, CSL-driven and energy-efficient resource scheduling in cloud data center,
The Journal of Supercomputing 76 (2020) 481 498.

[9] M. Liaqat, V. Chang, A. Gani, S. H. Ab Hamid, M. Toseef, U. Shoaib, R. L. Ali, Federated cloud
resource management: Review and discussion, Journal of Network and Computer Applications 77
(2017) 87 105.

[10] P. Abrol, S. Gupta, Social spider foraging-based optimal resource management approach for
future cloud, The Journal of Supercomputing 76 (2020) 1880 1902.

[11] N. Gholipour, E. Arianyan, R. Buyya, A novel energy-aware resource management technique
using joint VM and container consolidation approach for green computing in cloud data centers,
Simulation Modelling Practice and Theory 104 (2020) 102127.

[12] S. S. Gill, S. Tuli, A. N. Toosi, F. Cuadrado, P. Garraghan, R. Bahsoon, H. Lutfiyya, R. Sakellariou,
O. Rana, S. Dustdar, R. Buyya, ThermoSim: Deep learning-based framework for modeling and
simulation of thermal-aware resource management for cloud computing environments, Journal
of Systems and Software 166 (2020) 110596.

[13] P. Abrol, S. Guupta, S. Singh, Nature-inspired metaheuristics in cloud: A review, in: ICT Systems
and Sustainability, Springer, Singapore, 2020, pp. 13 34.

[14] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, G. Fortino, Task offloading and resource
allocation for mobile edge computing by deep reinforcement learning based on SARSA, IEEE
Access 8 (2020) 54074 54084.

[15] P. A. Apostolopoulos, E. E. Tsiropoulou, S. Papavassiliou, Risk-aware data offloading in multi-
server multi-access edge computing environment, IEEE/ACM Transactions on Networking 28
(2020) 1405 1418.

[16] P. A. Apostolopoulos, E. E. Tsiropoulou, S. Papavassiliou, Cognitive data offloading in mobile
edge computing for internet of things, IEEE Access 8 (2020) 55736 55749.

[17] O. Ascigil, A. Tasiopoulos, T. K. Phan, V. Sourlas, I. Psaras, G. Pavlou, Resource provisioning
and allocation in function-as-a-service edge-clouds, IEEE Transactions on Services Computing
1374 (2021) 1 14.

[18] A. Asghari, M. K. Sohrabi, F. Yaghmaee, A cloud resource management framework for multiple
online scientific workflows using cooperative reinforcement learning agents, Computer
Networks 179 (2020) 107340.

[19] K. R. Babu, P. Samuel, Petri net model for resource scheduling with auto scaling in elastic cloud,
International Journal of Networking and Virtual Organisations 22 (2020) 462 477.

[20] M. Bansal, S. K. Malik, S. K. Dhurandher, I. Woungang, Policies and mechanisms for enhancing
the resource management in cloud computing: A performance perspective, International Journal
of Grid and Utility Computing 11 (2020) 345 366.

[21] T. Bhardwaj, H. Upadhyay, S. C. Sharma, An autonomic resource allocation framework for
service-based cloud applications: A proactive approach, in: M. Pant, T. K. Sharma, R. Arya, B. C.
Sahana, H. Zolfagharinia (Eds.), Soft Computing: Theories and Applications, vol. 1154, Springer,
2020, pp. 1045 1058.

[22] D. Carra, G. Neglia, P. Michiardi, Elastic provisioning of cloud caches: A cost-aware TTL
approach, IEEE/ACM Transactions on Networking 28 (2020) 1283 1296.

[23] X. Chen, H. Wang, Y. Ma, X. Zheng, L. Guo, Self-adaptive resource allocation for cloud-based
software services based on iterative QoS prediction model, Future Generation Computer
Systems 105 (2020) 287 296.

[24] B. K. Dewangan, A. Agarwal, T. Choudhury, A. Pasricha, S. Chandra Satapathy, Extensive
review of cloud resource management techniques in industry 4.0: Issue and challenges,
Software: Practice and Experience (2020) 1 20.

[25] P. Durgadevi, S. Srinivasan, Resource allocation in cloud computing using SFLA and Cuckoo
search hybridization, International Journal of Parallel Programming 48 (2020) 549 565.

[26] F. Ebadifard, S. M. Babamir, Autonomic task scheduling algorithm for dynamic workloads
through a load balancing technique for the cloud-computing environment, Cluster Computing
(2020) 1 27.

[27] G. Fragkos, E. E. Tsiropoulou, S. Papavassiliou, Artificial intelligence enabled distributed edge
computing for Internet of Things applications, in: Proceedings of the 2020 16th International
Conference on Distributed Computing in Sensor Systems (DCOSS), IEEE, 2020, pp. 450 457.

[28] L. J. Gadhavi, M. D. Bhavsar, Efficient resource provisioning through workload prediction in the
cloud system, in: Smart Trends in Computing and Communications, Springer, Singapore, 2020,
pp. 317 325.

[29] M. Ghobaei-Arani, A workload clustering based resource provisioning mechanism using
biogeography based optimization technique in the cloud based systems, Soft Computing 25
(2020) 3813 3830.

[30] S. Lysenko, O. Savenko, K. Bobrovnikova, A. Kryshchuk, B. Savenko, Information technology
for botnets detection based on their behaviour in the corporate area network, Communications
in Computer and Information Science 718 (2017) 166 181.

[31] G. Markowsky, O. Savenko, S. Lysenko, A. Nicheporuk, The technique for metamorphic viruses'
detection based on its obfuscation features analysis, CEUR Workshop Proceedings 2104 (2018)
680 687.

[32] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk, K. Bobrovnikova, A technique for the
botnet detection based on DNS-traffic analysis, Communications in Computer and Information
Science 522 (2015) 127 138.

[33] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk, K. Bobrovnikova, Anti-evasion technique
for the botnets detection based on the passive DNS monitoring and active DNS probing,
Communications in Computer and Information Science 608 (2016) 83 95.

