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Abstract 
The presence of foreign inclusions in physical objects may affect their physical properties. Existing research 
employs different techniques, but all of them rely on data that can be obtained either by conducting a real-
world experiment or employing numerical methods. Both options are quite time-consuming and resource-
consuming. This study aims to propose a more optimal way to approach estimating both geometric and 
conductivity parameters using a more resource-efficient numerical method called the indirect near 
boundary method (INBEM). Using INBEM to generate the dataset makes it possible to consider a wider 
variety of objects and inclusion parameters. As more data is available, deeper research into preprocessing 
techniques and neural network models is becoming feasible. Thus, several CNN architectures and 
preprocessing methods were evaluated. The proposed preprocessing method improved geometric 
parameters prediction by up to 4 times compared to just normalization. The best-performing model (CNN3-
FD 2nd-order) achieved a mean absolute error close to 0.01. Thus, combining INBEM with CNNs and 
proposed preprocessing techniques proves to be an efficient method of inclusion localization. It established 
ground for future research aimed at detecting several inclusions at once and fine-tuning INBEM to increase 
accuracy in real-world experiments. 
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1. Introduction

The presence of inclusions in physical objects has an impact on their properties and behavior. Thus, 
detection and identification of them is an essential task to be researched. From a mathematical 
perspective, such problems belong to the class of inverse problems, particularly in the modeling of 
stationary processes, and are part of potential theory in inhomogeneous objects.  

Most studies focus on detecting defects in objects of clearly defined size [1, 2]. Developing models 
capable of recognizing inclusions in objects of varying sizes or even different shapes is much less 
common. Most of the recent studies focus on defects localization in an object [1, 3, 4], rarely on 
defects or media characterization [6]. T  conductivity parameter estimation is not as well 
researched as geometric parameters estimation.  

To detect and localize defects, architectures like CNN or its descendants are often employed. 
Despite following quite similar ideas, the researchers employ different combinations of feature 
extraction methods or modifications of state-of-the-art models [6, 7]. A combination of GAN 
methods [3, 8] with deep neural networks is enabled as an alternative way to improve performance. 

Despite having all the powerful tools employed, there is a persistent problem of building quite a 
large dataset with a wide variety of features. Data obtained during real-world experiments is highly 
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valuable, but it is costly in terms of money and time to obtain. Using numerical methods, such as 
FEM [1], partially resolves the issue. However, such techniques require quite a lot of computational 
resources.  

This paper proposes employing an indirect near-boundary element method [9] (INBEM) to 
generate the dataset. A model to estimate both geometric and conductivity parameters is proposed. 
A combination of feature extraction methods is proposed and tested out as well. As described in 
advance, conductivity estimation highly relies on accurate geometric parameters estimation. This 
paper mainly focuses on estimating geometric parameters as a key to approach accurate conductivity 
estimation.  

The object of the research is the recognition of the physical and geometric characteristics of a 
foreign inclusion.   

The subject of the research is neural network methods and tools for recognizing the 
characteristics of an inclusion.   

The purpose of the research is to analyze methods and tools for recognizing the physical and 
geometric characteristics of a foreign inclusion. 

The research novelty is combining neural networks with an efficient numerical method (the 
indirect near boundary element method) for solving inverse problems of potential theory. 

2. Related works 

In paper [1] finite element simulation is employed to generate synthetic data. To augment data 
brightness, contrast, exposure and noise adjustments were employed. To preprocess data Sobel, 
Prewitt and Roberts operators were enabled. Transfer learning was considered to fine-tune state of 
art models.  

The research [2] aims to recognize defects with different sizes and depth of placement. It employs 
both real-world experiments and FEM simulation to generate synthetic data. The defect was 
considered as holes with circles of different diameters and depths. To preprocess data, polynomials 
and Padé approximation were employed. The proposed method enables using LSTM architecture.  

In paper [3] IRT-GAN architecture was proposed to detect defects. The architecture uses U-Net 
as a generator and PatchGAN with GlobalGAN as a discriminator to improve segmentation accuracy. 
To improve noise suppression, Spatial Group-wise Enhance Layer is employed. The dataset was 
obtained by numerical experiment. To improve model generalization data augmentation is employed 
by altering image rotation, scale and noise level. 

The research [4] proposed a method that consists of data compression to reduce data size by 

edge detection. Defect detection is achieved by computing thermal contrasts, maximum amplitude 
and time constants. A change in heat flow direction is considered to improve precise defect 
localization.  

In research [5], a real-world experiment was conducted. Thermal feature extraction is done by 
considering thermal amplitude, time constant and thermal constant. Defect edge highlighting is done 
by computing derivative and processing it using Canny edge detection, applied thresholding before. 
Thermal features were mapped into an RGB image to make defect visualization clearer. 

The paper [6] considers such defects as flat-bottom holes and Teflon inserts in plexiglass, carbon 
fiber reinforcement polymer and steel. An experiment was conducted to build a dataset. Data 
augmentation was employed too. This paper proposes using PCT (Principal Component 
Thermography) to extract features. It uses YOLOv3 and Faster-RCNN to detect defects. U-Net and 
Res-U-Net were employed for semantic segmentation. Instance segmentation is done by Mask-RCNN 
and Center-Mask.  

In paper [7], the proposed method uses Principal Component Analysis (PCA) to enhance defect 
features, deep convolutional neural networks with Region of Interest (ROI) to extract features and 
Faster-RCNN to detect objects. The dataset was built by conducting a real-world experiment. Both 
PCA and data augmentation were employed. 



The paper [8] aims to address the limitations of PCT. It proposes using generative artificial neural 
networks (GANs) to enhance data. The proposed method employs using GAN before applying PCT. 
Specifically, it employs Spectral Normalized GAN and Convolutional Autoencoder. The real-world 
experiment was conducted to scan panel painting with artificially induced defects. 

In paper [10], an adaptive wavelet neural network is employed to detect defects by using a two-
step approach: it reconstructs the 3D point cloud, then it enhances the defect area. As a result, the 
proposed approach outperforms traditional Terrestrial Laser Scanners (TLS) based crack detection. 

The paper [11], contrary to other papers, focused on crack detection based on photos of concrete 
objects. The dataset consists of 990 RGB images. It proposed an approach of using transfer learning. 
It estimated the performance of a few well-known models, such as ResNet18, GoogLeNet, 
MobileNetV2 and VGG16. The best performance was shown by ResNet18. 

A method of continuous laser-based active thermography was proposed in the paper [12]. A real-
world experiment was conducted. Except for the experimental tools, it proposes using thermal 
sequence processing by pixel-wise averaging. It states that Roberts filtering performed better than 
the others.  

The research [13] aims to use infrared thermography to monitor delicate cultural heritage objects. 
The preprocessing is done by contrast enhancement and noise reduction. It proposes using Mask R-
CNN to detect defects.  

In paper [14], improved Faster-RCNN is employed for crack detection. It uses VGG-16 as its 
backbone by employing transfer learning. The dataset was built by conducting a real-world 
experiment. It consists of 3125 infrared thermal images of steel plates. 

In paper [15], machine learning algorithms, such as linear regression, multilayer perceptron and 
a few more, were compared to characterize internal defects in additive materials. The features 
considered by the models were conductivity coefficient, max heating temperature, front contrast, 
rear contrast and other physical parameters.  

The paper [16] employs hybrid CNN in combination with a physically informed neural network 
(PINN) to reconstruct temperature distribution for 3D thermal tomography. The finding of the paper 
is that using standard CNNs fails to reconstruct a distribution under real-world noise. Besides that, 
a combination of CNN with PINN achieved the best result in processing noisy data. 

3. Solving the direct problem of potential theory for a piecewise-
homogeneous body 

Before developing an approach to solving the inverse problem, it is necessary to obtain a series of 
datasets corresponding to the solutions of the direct problem with varying geometric and physical 
characteristics of the inclusion. The mathematical models of steady-state processes, constructed for 
methods based on the use of natural and artificial potential fields (gravitational, magnetic, electric, 
thermal, filtration) to detect inhomogeneities within an object, consist of Laplace equations:  

𝑷0
(𝑚)

(𝑢
(𝑚)

(𝑥)) = 𝛥𝑢
(𝑚)

(𝑥) = 0,  𝑥 ∈ 𝛺𝑚, 𝛺𝑚 ⊂ 𝑹2, 𝑚 = 0,1, (1) 

supplemented with prescribed boundary conditions: 

𝑢
(0)

(𝑥) = 𝑓𝛤
(1)

(𝑥),  𝑥 ∈ 𝜕𝛺(1), 
𝜕𝑢(0)(𝑥)

𝜕𝒏(0)(𝑥)
= 𝑓𝛤

(2)
(𝑥),  𝑥 ∈ 𝜕𝛺(2), (2) 

and ideal contact conditions at the interfaces between media: 

𝑢(0)(𝑥) = 𝑢(1)(𝑥), 𝜆0
𝜕𝑢(0)(𝑥)

𝜕𝒏(0)(𝑥)
= −𝜆1

𝜕𝑢(1)(𝑥)

𝜕𝒏(1)(𝑥)
, 𝑥 ∈ 𝜕𝛺1. (3) 

Here 𝛺𝑚 is a homogeneous domain with a constant physical property 𝜆𝑚 (conductivity); 

𝒏(0)(𝑥) = (𝒏1
(0)

(𝑥), 𝒏2
(0)

(𝑥)) is the unit outward normal vector uniquely defined on the boundary 

𝜕𝛺0; 𝛥 =
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥2
2 is the Laplace operator, x=(𝑥1, 𝑥2), ∪𝑞=1

2 𝜕𝛺(𝑞) = 𝜕𝛺 ; 𝜕𝛺(1) ∩ 𝜕𝛺(2) = ∅, 𝛺 =



𝛺0 ∪ 𝛺1 ∪ 𝜕𝛺1, 𝜕𝛺1 is the boundary of the inclusion 𝛺1; and 𝑥 𝑥  is the Cartesian coordinate 
system. 

To solve the boundary value problem (1)  (3), the indirect near-boundary element method was 
used, which has demonstrated higher accuracy compared to the boundary element method (BEM), 

9, 17]. 
The external near-boundary regions are discretized into near-boundary elements (NBEs) 

𝐺𝑣
𝑚 (𝑣 = 1, . . . , 𝑉𝑚) and families of points 𝐺𝑣

𝑚𝑘(𝑘 = 1, . . . , 𝐾𝑚𝑣) are introduced on them. For each 

𝐺𝑣
𝑚 unknown functions 𝜑𝑣

(𝑚)
(𝑥) are introduced, which describe the collective behavior of fictitious 

sources placed at the points 𝐺𝑣
𝑚𝑘. 

Since for the Laplace operator 𝑷0
(𝑚)

(𝑢
(𝑚)

(𝑥)) the known fundamental solution (FS) 𝑈̆(𝑚)(𝑥, 𝜉) 
exists, the integral representations of the solutions to equations (1) and their normal derivatives have 
the following form: 

𝑢
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where 𝑭(𝑚)
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1
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𝑦𝑙

2𝜋𝑟2, r0 is a 

constant used to improve computational stability, 𝜉 = (𝜉1, 𝜉2) ∈ 𝑹2, 𝑟2 = ∑ 𝑦𝑖
22

𝑖=1 , 𝑦𝑖 = 𝑥𝑖 − 𝜉𝑖 . 

By directing x in equation (4) from the interior of the domain 𝛺 toward its boundary 𝜕𝛺 to satisfy 
conditions (2) and (3), and by adding an equation expressing the condition that the total effect of all 
sources acting in 𝑹𝑚

2  is zero, we obtain the boundary integral equations (BIE): 

𝑭
(0)

(𝑥, 𝑈̆(0)) + 𝐶0 = 𝑓𝛤
(1)

(𝑥),   𝑥 ∈ 𝜕𝛺(1), 𝑭
(0)

(𝑥, 𝑄̆(0)) = 𝑓𝛤
(2)

(𝑥),   𝑥 ∈ 𝜕𝛺(2), (5) 

𝑭
(0)
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(0)
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(1)
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(6) 

𝑭(𝑚)(𝑥, 1) = 0, x𝑹𝑚
2 . (7) 

The boundary integral equations (5) (7), after approximating the functions 𝜑𝑣
(𝑚)

(𝑥) by unknown 
constants 𝑑𝑣

𝑚, are written in the form of a system of linear algebraic equations (SLAE): 

∑ 𝐴̆𝑣
0(𝑥0𝑤, 𝑈̆(0))𝑑𝑣

0𝑉0
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(1)
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(1), 

∑ 𝐴̆𝑣
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0
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1
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(8) 

where 𝐴̆𝑣
(𝑚)

(𝑥, 𝛷(𝑚)) = ∑ 𝛷(𝑚)(𝑥, 𝜉𝑣0𝑘)
𝐾𝑚𝑣
𝑘=1 . 

Having determined the unknowns 𝑑𝑣
𝑚 and Cm from (8), we use formulas analogous to (4) to 

compute the desired functions 𝑢(𝑚)
(𝑥) and their normal derivatives at both internal points of each 

subdomain 𝛺𝑚, and at the interfaces between media, since the inclusions 𝛺1 and the surrounding 
medium 𝛺0 are now treated as completely independent regions [17]: 

𝑢
(𝑚)

(𝑥𝑚𝑧) = ∑ 𝐴̆𝑣
𝑚(𝑥𝑚𝑧, 𝑈̆(𝑚))𝑑𝑣

𝑚𝑉𝑚
𝑣=1 + 𝑏𝑚(𝑥𝑚𝑧, 𝑈̆(𝑚)) + 𝑚, 𝑥𝑚𝑧 ∈ 𝒁𝑚, (9) 

x 2
mR



𝜕𝑢(𝑚)(𝑥𝑚𝑧)

𝜕𝒏(𝑚)(𝑥)
= ∑ 𝐴̆𝑣

𝑚(𝑥𝑚𝑧, 𝑄̆(𝑚))𝑑𝑣
𝑚

𝑉𝑚

𝑣=1

+ 𝑏𝑚(𝑥𝑚𝑧, 𝑄̆(𝑚)), 

where 𝒁𝑚 is the set of observation points 𝑥𝑚𝑧 ∈ 𝜕𝛺𝑚 ∪ 𝛺𝑚. 
It is worth mentioning that the use of point families on NBEs made it possible, unlike in the BEM, 

to avoid prior analytical extraction of singularities (principal values) when computing the normal 
derivatives of the desired functions. Point families significantly simplify the problem-solving 
algorithm, as they replace integration over NBEs with the summation of products of the fundamental 
solution and the unknown (8) or known (9) source intensities. Thus, they can be recommended for 
obtaining initial approximations as a rapid method for solving inverse problems of mathematical 
physics, where time optimization is prioritized over accuracy. 

4. Generating heat distribution data by indirect near boundary 
element method 

To generate a dataset the INBEM [18] is employed. As already mentioned before, the main advantage 
of it is the significantly lower computation cost compared with BEM and similar methods. The visual 
representation of an object with inclusion is shown in Figure 1. 

 

Figure 1: A visual representation of discretization of the near-boundary domain into near-boundary 
elements. 

The boundary conditions are the following: upper and lower sides are thermally insulated, the 
left side is set as Dirichlet boundary condition of 0°C and the right side as Dirichlet boundary 

condition of 10°C. The thermal conductivity coefficient of the medium is set to 1 
𝑊

(𝑚∗𝐾)
. The 

temperature distribution within the object is shown in Figure 2. 



 

Figure 2: Visual representations of the temperature distribution using isothermal lines. 

The dimension of the generated data is 100 * 100 to make both the dataset and model more generic. 
The object heat data is put at the very beginning of the distribution array. The rest is filled up with 
zeros as the padding. 

In addition to temperature data, each dataset element includes information about the coordinates 
of the lower-left corner of the inclusion, its height, width, and thermal conductivity coefficient. The 
data is stored in JSON files, each of which represents information from a computational experiment 
with specific variable parameters. The dataset consists of 4 subsets described in detail in Table 1. To 
increase the variance of geometric parameters, the variability of the conductivity parameter is quite 
poor. The common parameters of the subsets are: 

• thermal conductivity coefficient variability: 4.2, 5.9, 8.6, 12.9, 14.6; 
• a number of fictitious point sources in each NBE: 5 rows, 5 columns, a total of 25;   
• number of NBEs on the contact boundary: equal to the width/length of the inclusion;   
• height of the NBE at the object's boundary: 1;   
• height of the NBE at the contact boundary: 0.5.  

Table 1 
Subset parameters 

5. Feature extraction 

To extract informative features from the heat distribution data gradient approximation and 
binarization are employed. All of them are aimed at detecting the edges of the inclusion. As the input 
data may contain paddings the representable part is extracted based on the object dimensions 
provided. Derivative approximation is considered as a basic method [19, 20]. To approximate 
derivatives the forward difference, a combination of forward, central, and backward differences were 
considered. As the heat distribution data is present as a 2D array then its derivative is calculated in 
the following way: 

Object width/ 
height 

Inclusion 
width/height 

X/Y coordinate Number of NBEs Total elements 

10/10 1 to 8, step 0.5/ 
1 to 8, step 0.5 

0.6 to 8.1, step 0.5/ 
0.6 to 8.1, step 0.5 

10 per side, total 40 91,125 

10/5 1 to 3, step 0.5/ 
1 to 6, step 0.5   

0.6 to 8.1, step 0.5/ 
0.6 to 3.1, step 0.5 

10 * 5, total 30 13,500 

5/10 1 to 6, step 0.5/ 
1 to 3, step 0.5  

0.6 to 3.1, step 0.5/ 
0.6 to 8.1, step 0.5  

5 * 10, total 30 13,500 

8/4 1 to 6, step 0.5/ 
1 to 2, step 0.5 

0.6 to 6.1, step 0.5/ 
0.6 to 2.1, step 0.5 

8 * 4, total 24 3,465 



|𝛻𝑇| =  √(
𝜕𝑇

𝜕𝑥
)

2

+ (
𝜕𝑇

𝜕𝑦
)

2

. 

(10) 

The first-order derivative of the thermal data is calculated to highlight regions with abrupt 
temperature changes. These regions represent the boundaries of inclusions.  

The forward difference method (FD) is enabled for the approximation of derivatives (10). It is 
calculated in the following way: 

𝜕𝑇

𝜕𝑥
≈

𝑇(𝑥 + △ 𝑥) −  𝑇(𝑥)

△ 𝑥
. 

(11) 

Despite its being less accurate, this method can calculate derivatives at the edge, specifically for 
the first point. As this method decreases dimension by 1, the last element is padded by the 
appropriate element from the distribution. It leads to a spike around the last element, which can be 
seen visually as high-contrast lines by the end of each axis. Visual representations of objects of size 
8x4 with inclusion are shown in Figure 3. For visualization purposes, an object with a dimension of 
8*4 is taken as an example to prove correct data extraction. 

 

Figure 3: Visual representations of 1st-order derivative approximation by forward differences. 

A combination of forward, central, and backward methods (CD) is taken to achieve a better 
quality of approximation. The formulas for calculating central and backward differences are the 
following: 

𝜕𝑇

𝜕𝑥
≈

𝑇(𝑥 + △ 𝑥) −  𝑇(𝑥 − △ 𝑥)

2 △ 𝑥
, 

(12) 

𝜕𝑇

𝜕𝑥
≈

  𝑇(𝑥) −  𝑇(𝑥 − △ 𝑥)

△ 𝑥
. 

(13) 

The central difference method (12) is quite more accurate. However, it 
edges. Thus, to resolve it, combinations of forward and backward differences are used at the edges. 
Visual representations of objects of size 8x4 with inclusion are shown in Figure 4. 

 

Figure 4: Visual representations of 1st-order derivative approximation by the combination of central 
(12), forward (11) and backward (13) differences. 

As the second derivative represents acceleration in terms of heat distribution, it allows identifying 
clear corners and edges of the inclusion [19]. Of course, noise presence may be considered as parts 
of false edges or contours. However, we are not considering noise robustness in the scope of this 
work and it is the point for future research. A visual representation of the preprocessed thermal data 
using the forward difference method is shown in Figure 5. The red-highlighted areas likely represent 



the contours of inclusions.  

 

Figure 5: Visual representations of 2nd-order derivative approximation by forward differences. 

Visual results of using a combination of forward, central and backward differences to approximate 
the second derivative are given in Figure 6. 

 

Figure 6: Visual representations of 2nd-order derivative approximation by the combination of 
central, forward and backward differences. 

As shown in the previous figures, the contours are visually identifiable. However, there is a 
presence of peaks at the edges of the inclusion. Some parts of the contour are quite thick. The reason 
is partially lying in the lower accuracy of the INBEM on the corners. To resolve it, quite a fine-tuning 
is required to optimize accuracy at the corners; it is the point of the upcoming research. 

Aiming to receive a strict contour of the inclusion, binarization is also employed. The threshold 
to choose between 1 and 0 is determined by taking the mean of the heat image distribution. 
Visualization is shown in Figure 7. 

 

Figure 7: Visual representations of 2nd-order derivative approximation by a combination of central, 
forward and backward differences with binarization technique. 

6. Method of estimating both geometric and conductivity parameters 

The model of processing heat distribution data is visualized in Figure 8. As the input the model takes 
distribution data. Considering the input dimension as 100 * 100, to support objects with different 
sizes and shapes the model also requires dimension data. It is necessary to extract the object heat 
data and do not consider paddings as it might lead to less accurate estimation. Then the features are 
extracted using already described techniques. The next step involves a neural network model to 
predict the geometric parameters of the inclusion. This data is required to proceed with extracting 
conductivity features from the distribution. A neural network estimates conductivity. As a result, 
both geometric parameters and conductivity are estimated.  



 
Figure 8: Diagram explaining the method of recognizing both geometric and conductivity 
parameters. 

As is clearly shown, estimating conductivity relies on precise geometric data estimation. The main 
goal of this paper is to validate feature extraction techniques first as a tool to improve the precision 
of the neural network. At the same time, straight-forward neural network models are enabled to 
achieve the next goals: 

• do not overfit the model, as the large one might just remember the data instead of 
generalizing it; 

• start building the model from scratch, increasing complexity only when it is required as a 
complex one will also require more computational resources. 

Despite the paper aiming to improve geometric parameters estimation, the method of 
conductivity estimation is provided in advance. The conductivity features extraction method consists 
of the following steps: 

• identify a horizontal segment that runs along the entire object precisely through the center 
of the inclusion; 

• determine the gradient at four points before the contact boundary and at four points beyond 
the contact boundary. 

 

Figure 9: Visual representation of the conductivity extraction model. 

The method reduces the data dimensionality to 1D and enables clearer extraction of a greater 
number of informative features. The neural model architecture for estimation inclusion conductivity 
is visualized in Fig. 9. We assume that the main  conductivity is equal to 1 and do not accept 
it as an input parameter. In the future, object conductivity also must be considered. The proposed 
model includes three main stages: 

• deep object and inclusion feature extraction from the already preprocessed data; 
• concatenating features; 



• conductivity parameters estimation based on concatenated features. 

As of the early stage of the research, the inclusion detection problem is considered a simple 
regression task that predicts a bounding box for a single object. We neglect the fact that there might 
be no inclusion or more than one. This is the purpose of the upcoming research and will be resolved 
by enabling a bounding box or anchor-free methods to the model. For the research purpose CNNs 
[21] with several convolution layers from 1 to 3 were used. We call those models CNN1, CNN2, 
CNN3. 

The CNN1 network consists of one convolutional layer followed by a pooling operation and two 
fully connected (dense) layers. The architecture is as follows: 

• Input Layer: the model accepts a single-channel input image of size 100×100. 
• Conv2D: 16 filters of size 3×3, a stride of 1 and padding of 1. 
• Activation: ReLU. 
• Max Pooling Layer. 
• Flattening Layer. 
• Fully Connected Layer. 
• Activation: ReLU. 
• Output Layer: 4 output values representing x, y, width, height. 

The architecture of CNN2 is the following: 

• Input Layer: the model accepts a single-channel image input of dimensions 100×100. 
• Conv2D: 16 filters of size 3×3, a stride of 1, and padding of 1. 
• Activation: ReLU. 
• Max Pooling Layer. 
• Conv2D: 32 filters of size 3×3, stride 1 and padding 1. 
• Activation: ReLU. 
• Max Pooling Layer. 
• Flattening Layer. 
• Fully Connected Layer. 
• Activation: ReLU. 
• Output Layer: 4 output values representing x, y, width, height. 

The CNN3 architecture is the following:  

• Input Layer: The model accepts a single-channel image of dimensions 100×100 as input. 
• Conv2D: 32 filters of size 3×3, with stride 1 and padding 1. 
• Activation: ReLU. 
• Max Pooling Layer. 
• Conv2D: 40 filters of size 3×3, stride 1, and padding 1. 
• Activation: ReLU. 
• Max Pooling Layer. 
• Conv2D: 48 filters of size 3×3, stride 1, and padding 1. 
• Activation: ReLU. 
• Flattening Layer. 
• Fully Connected Layer. 
• Activation: ReLU. 
• Output Layer: 4 output values representing x, y, width, height. 



7. Results and discussion 

The derivatives of first and second order, in combination with binarization techniques, are employed 
in this experiment to preprocess data and extract representative features. The preprocessed data is 
considered as an input for the already described neural network models. The limit of epochs is set as 
100. To regularize the model, such techniques as early stopping and restoring best weights are 
employed. Each of the neural network models is tested out without any preprocessing technique but 
normalization.  

The following metrics are taken to measure the performance of the models: mean absolute error 
(MAE) and mean square error (MSE). Some of the most representative results are presented in Table 2.  

Table 2 
Metrics 

Analyzing them there are next findings. 

1. CNN with just normalization showed the worst results. Basically, preprocessing improves 
metrics by 2-4 times considering the same neural network architecture.  

2. The combination of forward, central and backward derivatives of both the first and second 
derivatives showed quite a close impact on the performance. In some specific cases, forward 
differences outperformed it by around 10%. It is clearly shown for CNN with 3 convolution 
layers. However, considering the metrics for both CNN with 1 and 2 convolution layers, the 
difference is quite inconsistent. It might be stated that using both preprocessing techniques 
at the same time makes sense for future research. Thus, it means that the neural network 
architecture might be modified to be multi-channel in terms of input.  

3. As for the previous point, using second-order or first-order derivatives had an impact mostly 
visible for CNN with 3 layers. The increase in performance, generally, does not exceed 10%.  

4. U
threshold-setting method than using just the meaning of the image. The method is not noise-
resistance. We are speaking about the data that, in real-world scenarios, will be obtained by 
an IR scanner. Thus, the noise as Gaussian or similar will be present and binarization might 
provide many false contours as a result. 

The following improvements and future research aspects are listed below. 

1. Considering the specific nature of the INBEM method, the accuracy of potential calculation 
at the edges of the inclusion might be low. The parameters of INBEM, considering the scope 
of the paper, were looked up empirically and presented in the paper. The execution time was 
the main goal. The analysis showed quite moderate accuracy in specific cases, mainly with 

Model X 
MAE | MSE 

Y 
MAE | MSE 

Width 
MAE | MSE 

Height 
MAE | MSE 

CNN1 + Normalization 0.0491 0.0058 0.0567 0.0073 0.0542 0.0053 0.0631 0.0077 
CNN1 + CD (1st order) 0.0201 0.0007 0.0165 0.0006 0.0224 0.0009 0.0213 0.0008 
CNN1 + FD (1st order) 0.0142 0.0004 0.0164 0.0005 0.0206 0.0007 0.0223 0.0008 
CNN1 + FD (2nd order) 0.0148 0.0004 0.0130 0.0004 0.0214 0.0007 0.0188 0.0006 
CNN2 + Normalization 0.0200 0.0007 0.0225 0.0010 0.0279 0.0013 0.0351 0.0021 
CNN2 + FD (2nd order) 0.0078 0.0001 0.0098 0.0002 0.0143 0.0004 0.0127 0.0003 
CNN3 + Normalization 0.0189 0.0006 0.0197 0.0007 0.0257 0.0011 0.0305 0.0016 
CNN3 + FD (1st order) 0.0073 0.0001 0.0080 0.0001 0.0153 0.0004 0.0128 0.0003 
CNN3 + FD (2nd order) 0.0062 0.0001 0.0067 0.0001 0.0108 0.0002 0.0088 0.0001 
CNN3 + FD (2nd order) + 
Binarization 

0.0089 0.0001 0.0130 0.0003 0.0176 0.0005 0.0141 0.0003 



the large inclusion. Thus, fine-tuning as an optimization task might be successfully done by 
a genetic algorithm (GA) or different techniques. 

2. Considering the improvements in accuracy by using all the derivatives-based methods, it 
makes sense to use them for future investigation. It might make sense to use multi-channel 
input to combine all the positive aspects of the methods. At the same time, the idea of building 
ensembles of the models is worth considering. 

3. The future research should include evaluating the already mentioned preprocessing methods 
with noisy data. Denoising methods should be considered too. 

4. As the future aims to process real-world data, which are quite noisy, the preferred 
architecture for the model will be relying on CNN with 3 or more layers, as it is not just more 
accurate but extracts low-order features.  

8. Conclusions 

The results presented in the paper proved that INBEM, in combination with data preprocessing 
methods and neural networks, can solve the task of recognizing inclusion parameters. The numerical 
results showed that using second-order derivative preprocessing improved the prediction accuracy 
of geometric parameters by up to four times. The CNN3+FD (2nd-order) model showed the best 
performance, achieving a mean absolute error of less than 0.01, while CNN3+Normalization showed 
a mean absolute error between 0.019 and 0.03. It showed the perspective of using this combination 
of methods for estimating specifically the geometric parameters. Using such methods looks 
promising in terms of future research, aiming to be able to recognize multiple inclusions in 2D and 
3D dimensions. As is stated, using INBEM as a tool for numerical experiments makes it feasible to 
produce large datasets in a reasonable time. Thus, it allows exploring new techniques and models of 
inclusion detection, preserving a wide variety of parameters of inclusions and the object.  

The proposed approach, however, has certain limitations. It demonstrated lower accuracy of 
INBEM in corner regions. Thus, fine-tuning and regularization techniques look promising as a 
solution and must be considered in advance. The neural network model was validated only for 
stationary (steady-state) heat conduction and was not tested for transient (non-stationary) processes. 
In addition, the method is not yet noise-robust and requires further improvement in this direction. 
Also, the method was validated only for one inclusion detection task. 

Thus, future research will aim to overcome these limitations, to extend the method towards 
recognizing multiple inclusions, and to perform simulation and detection in 3D space. Another 
important direction will be improving the robustness of the method when applied to noisy and real-
world data, as real experiments typically introduce significant measurement noise. In addition, 
adapting the method for transient (non-stationary) heat conduction processes will also be considered, 
as this would expand its practical applicability in various industrial and scientific domains. 
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