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Abstract  
This paper reviews algorithms for UAV navigation and stabilization. The advantages and disadvantages of 
known algorithms are identified and a method for local UAV navigation using convolutional neural 
networks (CNN) and recurrent neural networks (RNN) is proposed. A deep convolutional neural network 
(CNN) in combination with a recurrent network (LSTM) is used to estimate the distance to objects and form 
a map of the environment. The input data consists of a sequence of video frames processed by CNN to 
extract features, and then transferred to LSTM to calculate spatial changes. As a result of the study, it was 
found that the proposed local navigation method based on CNN-LSTM-SLAM neural networks provides 
significantly higher accuracy of drone positioning in space than traditional methods. In particular, the 
average absolute error MAE for this method was 0.15 m, which is significantly less than that of optical flow 
(0.32 m) and IMU method (0.45 m). This demonstrates the ability of the neural network approach to more 
accurately predict drone movements. 
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1. Introduction

Unmanned aerial vehicles (UAVs), known as drones, have become an integral part of the modern 
world, finding application in various spheres of human activity. Their popularity is due to their 
versatility, accessibility and ability to perform tasks that were previously unattainable or required 
significant resources. 

One of the most common areas of use of drones is aerial photography and videography. Due to 
the ability to climb to considerable heights and maneuver in confined spaces, drones allow you to 
obtain unique footage used in the cinematography, journalism and advertising industries. 

In addition, they are actively used in agriculture to monitor crops, detect pests and optimize 
irrigation and fertilizer processes, which increases the efficiency of agricultural production. 

In the military sphere, drones have made a real revolution, changing the tactics of warfare. They 
are used for reconnaissance, adjusting artillery fire, delivering cargo and even as strike weapons. In 
particular, during the war in Ukraine, drones became an important tool for gaining an asymmetric 
advantage over the enemy, allowing for effective targeting and minimizing risks to personnel. 

However, to ensure the safe and efficient operation of drones, it is necessary to implement reliable 
stabilization mechanisms. Flight stability is critical for performing precise maneuvers, obtaining 
high-quality images and preventing emergency situations. Without proper stabilization, the drone 
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can become uncontrollable, which will lead to potentially dangerous consequences, especially in 
urban environments or during critical missions. 

Drone stabilization ensures their ability to withstand external influences, such as wind gusts, 
turbulence or sudden changes in load. This is especially important when performing tasks in extreme 
conditions or when operating at high altitudes. Reliable stabilization systems allow the drone to 
maintain a given trajectory and orientation, which is necessary for the accurate execution of missions 
and ensuring the safety of both the operator and others around it. 

In addition, modern drones often rely on global navigation satellite systems (GNSS), such as GPS, 
to determine their location and navigation. However, in conditions where the GNSS signal may be 
unavailable or intentionally suppressed, there is a need to develop autonomous navigation 
algorithms that do not depend on external signal sources. Such algorithms will allow drones to 
effectively perform their tasks even in difficult conditions, ensuring high accuracy and reliability of 
navigation. 

Drones open up wide opportunities in various industries, but their effective and safe use is 
impossible without the implementation of modern stabilization mechanisms and autonomous 
navigation systems. The development and improvement of such technologies is a key direction in 
the development of unmanned aerial vehicles, which will contribute to the expansion of their 
application and increase the reliability of performing the tasks assigned. Therefore, the use of neural 
networks to improve local UAV navigation is a relevant and important task today. 

2. Overview of existing drone navigation and stabilization algorithms 

In modern unmanned aerial vehicles (UAVs), navigation and stabilization are interrelated processes 
that ensure accuracy, safety, and flight efficiency. These functions are implemented through the 
integration of various algorithms, sensor systems, and control technologies that work together to 
maintain the stability and controllability of the drone under various external influences. 

2.1. Navigation algorithms 

Traditionally, drones have used GPS to determine their location. However, in environments with 
limited or no GPS signal, alternative methods are used. One key approach is simultaneous 
localization and mapping (SLAM) algorithms, which allow a drone to build a map of an unknown 
environment and determine its position relative to that map using data from cameras, lidar, and 
inertial measurement units. This is especially important for navigating indoors or in urban 
environments where GPS signals may be unavailable or distorted. 

Thus, in [1] an end-to-end UAV simulation platform for SLAM, navigation research, and 
applications was introduced, including the detailed simulator setup and an out-of-box localization, 
mapping, and navigation system. In [2] the authors propose a novel and complete framework to 
realize the autonomous landing of UAVs in unknown indoor scenes based on visual SLAM, semantic 
segmentation, terrain estimation, and a decision-making model. The paper [3] describes an 
application of the Cartographer graph SLAM stack as a pose sensor in a UAV feedback control loop, 
with certain application-specific changes in the SLAM stack such as smoothing of the optimized 
pose. The article [4] presents a survey of simultaneous localization and mapping (SLAM) and data 
fusion techniques for object detection and environmental scene perception in unmanned aerial 
vehicles (UAVs).  

Another approach is to use star navigation, where the drone navigates by the location of stars in 
the night sky. This method is particularly useful in cases where GPS is unavailable or jammed. 
Scientists have developed algorithms that can determine the location of the drone from a series of 
images of the night sky with an accuracy of up to four kilometers, even in difficult conditions, such 

path planning, which calculate the shortest path to the target while avoiding obstacles. This ensures 
efficient and safe drone navigation in complex environments. For example, an extension of the A* 



algorithm, known as Cell A*, allows for stable route planning with less computational overhead, 
which is important for long-duration missions. 

In [5] the evaluation function is revised by using dynamic weighting; use azimuth to change the 
search neighborhood, and adjust the search method adaptively according to different map areas; 
then, considering the influence of the actual size of the UAV, set the UAV and the safety radius of 
obstacles. The study [6] introduces an improved algorithm for three-dimensional path planning in 
obstacle-rich environments, such as urban and industrial areas. The proposed approach integrates 
the A* search algorithm with a customized heuristic function which incorporates local obstacle 
density. The study [7] proposes an efficient algorithm to detect air pollution in urban areas using 
UAVs. An improved A-star algorithm that can efficiently perform searches based on a probabilistic 
search model using a UAV is designed. 

In cases where it is necessary to coordinate the movement of several drones at the same time, 
swarm intelligence and reinforcement learning algorithms are used. These methods allow a swarm 
of drones to effectively explore unknown territories, avoiding obstacles and coordinating their 
actions to achieve a common goal. In particular, Q-Learning algorithms help each drone in the swarm 
make optimal decisions based on its own experience and information from other drones.  
Thus, in [8] the authors propose an adaptive conversion speed Q-Learning algorithm (ACSQL). 
Performing UAV missions autonomously is divided into two stages: rescue mission search stage and 
optimal path search stage. In [9] the authors develop a DRL framework for UAV autonomous 
navigation in a high dynamic and complex environment. The authors of [10] propose Q-learning 
algorithm to efficiently plan the path of UAVs in environments containing both static and dynamic 
obstacles. The study [11] proposes a new system that employs Q-Learning and ANNs with two dense 
layers to control UAV swarms in maps with obstacles. 

2.2. Stabilization algorithms 

One of the key components of mechanical stabilization is gyrostabilized camera gimbals. These 
gimbals use data from gyroscopes to compensate for unwanted movements and vibrations, providing 
a stable image during flight. There are two- and three-axis gimbals, which allow you to compensate 
for the movements of the drone along the corresponding axes, ensuring smooth video recording and 
accurate navigation. Studies show that the combination of mechanical stabilization with digital 
signal processing allows you to achieve high image quality even in conditions of significant 
vibrations and external disturbances. At the software level, PID controllers (proportional-integral-
derivative controllers) are widely used, which process data from inertial sensors to maintain a stable 
position of the drone. However, in complex and noisy environments, traditional PID controllers may 
not be effective enough. In such cases, advanced controllers such as Proportional-Integral-
Derivative-Accelerated (PIDA) with genetic filters are implemented. These algorithms allow to 
improve the stability and accuracy of the drone flight, effectively compensating for the influence of 
external disturbances and noise. 

Our previous study [12] was aimed at FPV drone stabilization on an automatically determined 
target and its further observation. The study [13] proposes video repeater design concept for UAV 
control. 

Current research is aimed at implementing deep learning algorithms for automatic adjustment of 
stabilization parameters. In particular, the use of deep learning methods with reinforcement, such as 
Proximal Policy Optimization (PPO), allows the drone to adaptively adjust its control parameters in 
real time, ensuring optimal stability and maneuverability even in dynamically changing conditions. 

Thus, despite the significant development of navigation and stabilization algorithms, there is a 
need to create new methods that will ensure the autonomous operation of unmanned aerial vehicles 
without dependence on external signals, such as GPS. This study is aimed at developing a method 
for drone navigation and stabilization that will use a camera to determine the position in space and 
adjust the flight. Modern approaches, such as computer vision, SLAM algorithms and swarm 
intelligence, demonstrate effectiveness in complex environments, but they have limitations in 



processing speed, energy consumption and adaptability to unpredictable conditions. The proposed 
method will allow the drone to autonomously navigate in space, which is critically important for 
operation in environments with obstacles or under the influence of electronic warfare. The use of 
real-time image analysis algorithms will ensure stable maintenance of the device in a given position 
and accurate navigation, which opens up new opportunities for its application in military, rescue 
and research missions. Further development in this area should be aimed at creating localized 
algorithms capable of operating effectively in GPS-failure environments, ensuring the stability and 
accuracy of drone flight in critical conditions. 

3. Local navigation method 

Local navigation of an unmanned aerial vehicle (UAV) is a complex task that requires the integration 
of computer vision, sensor analysis, and machine learning methods. The absence of GPS or other 
global positioning systems makes it difficult to determine the location of the drone, which requires 
the use of autonomous navigation methods. The main idea of the method is to use convolutional 
neural networks (CNN) and recurrent neural networks (RNN) to analyze the video stream and 
calculate the relative position of the drone in space. The neural network allows you to obtain the 
necessary characteristics of the environment, which are critically important for building a flight 
trajectory. 

Let 𝐼𝑡(𝑥, 𝑦), image obtained from the drone camera at time 𝑡, 𝑃𝑡(𝑥𝑡, 𝑦𝑡 , 𝑧𝑡) - its coordinates in 
space. The task of local navigation is to determine the trajectory 𝑃𝑡+1, which ensures flight stability 
and obstacle avoidance. This uses a comprehensive approach that includes image segmentation, 
object detection, and scene depth analysis. 

3.1. Model architecture 

A deep convolutional neural network (CNN) combined with a recurrent network (LSTM) is used to 
estimate the distance to objects and form a map of the environment. The input data consists of a 
sequence of video frames, processed by the CNN to extract features, and then passed to the LSTM to 
calculate spatial changes. 

Formally, each frame 𝐼𝑡 turns into signs 𝐹𝑡 using a convolutional network can be denoted by the 
Formula 1. 

𝐹𝑡 = 𝐶𝑁𝑁(𝐼𝑡), (1) 

where 𝐹𝑡 is feature vector obtained after image processing 𝐼𝑡 a convolutional neural network 
that extracts structural and textural information about the environment. 

The recurrent layer uses the features described in the Formula 2 to predict position changes. 

Δ𝑃𝑡 = 𝐿𝑆𝑇𝑀(𝐹𝑡 , 𝐹𝑡−1,…,𝐹𝑡−𝑛), (2) 

where Δ𝑃𝑡 is a vector of change in the drone's position, estimated based on the analysis of 
previous features 𝐹𝑡 , 𝐹𝑡−1,…,𝐹𝑡−𝑛 etc., using the long-term memory mechanism to detect patterns in 
the motion. 

The new position vector is calculated by the Formula 3. 

𝑃̂𝑡+1 = 𝑃𝑡 +  Δ𝑃𝑡, 
(3) 

where 𝑃̂𝑡+1 are predicted coordinates of the drone at a given point in time 𝑡 + 1 , which are 
determined based on the current situation 𝑃𝑡 and displacement Δ𝑃𝑡. 



3.2. Route correction 

The resulting coordinates are used to update the local map and avoid obstacles. This is done using 
the simultaneous localization and mapping (SLAM) method, where each frame is compared with the 
previous ones, and key points of the image are stored in the local map and denoted by the equation 
4. 

𝑀𝑡 = SLAM(𝐿, 𝑃𝑡), (4) 

where 𝑀𝑡 is a current map of the environment containing information about the location of 
objects relative to the drone. 

Route correction is performed using gradient descent, which minimizes the error between the 
desired and actual trajectory (Formula 5). 

𝑃𝑡+1 = 𝑃𝑡 − 𝜂
𝑑𝐿

𝑑𝑃𝑡
 

(5) 

where 𝜂 is a learning speed, 𝐿 is a loss function that determines the deviation from the desired 
trajectory. 

3.3. Neural network training algorithm 

The neural network is trained in two stages: pre-training in safe conditions on a simulator and 
further refinement of the model in real operating conditions. First, a simulator is used to generate a 
data set that includes various flight conditions, obstacles and variable environmental parameters. 
The network is trained to minimize the error between the predicted and actual coordinates (Formula 
6). 

𝐿 = ∑ ‖𝑃𝑡 − 𝑃̂𝑡‖
2𝑇

𝑡=1 , (6) 

where 𝐿 is the loss function that measures the difference between the true position of the drone 
𝑃𝑡 and predicted 𝑃̂𝑡.  

Optimization is carried out using the gradient descent method denoted by the Formula 7. 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
𝑑𝐿

𝑑𝜃
, (7) 

where 𝜃 denotes model parameters, 𝜂 is a learning rate. After completing simulation training, 
the model is transferred to real conditions, where it adapts based on data obtained from the real 
environment. 

Auxiliary sensors are used to improve local navigation accuracy. Barometer estimates altitude 
ℎ𝑡, which is included in the drone state vector (Formula 8). 

𝑆𝑡 = (𝐹𝑡 , ℎ, 𝐶𝑡), (8) 
where 𝐶𝑡 is the orientation of the drone, obtained from the compass, and 𝐹𝑡 is a feature vector 

from the camera. Taking these parameters into account allows to increase the resistance to external 
interference. 

Based on the obtained coordinates and the landmark map, the drone velocity vector is 
determined, which is controlled via a PID controller and denoted by the Formula 9. 

𝑉𝑡+1 = 𝐾𝑝(𝑃𝑡+1 −  𝑃𝑡) + 𝐾𝑑(𝑃̇𝑡+1 −  𝑃̇𝑡) + 𝐾𝑖 ∑ (𝑃𝑖 − 𝑃𝑖−1)𝑡
𝑖=1 , (9) 



where 𝐾𝑝,𝐾𝑑,𝐾𝑖 is PID controller coefficients that control the proportional, differential and 
integral contributions to the drone's speed according to the position error. This controller allows you 
to maintain stable movement even in difficult conditions. 

The proposed method combines computer vision, deep neural networks and sensor data to 
provide autonomous local drone navigation. The use of CNN and LSTM allows you to predict the 
change in position in space, and the integration of additional sensors increases the accuracy and 
reliability of the system. The PID controller ensures stability of movement based on the calculated 
coordinates. This approach can be used for autonomous systems operating in GPS-unavailable 
conditions, ensuring high navigation efficiency even in dynamic scenarios. 

4. Experiments and Results 

To evaluate the effectiveness of the proposed method, an experimental study was conducted, 
including a comparison with other local navigation methods. The main goal of the experiments was 
to determine the navigation accuracy, processing speed, and resistance to interference in different 
conditions. 

4.1. Conditions for conducting the experiment 

The study was conducted in a test environment that included simulation of real-world flight 
conditions using a simulator and physical experiments with a real drone. Three main scenarios were 
identified: 

- Stable environment. Minimal distractions, well-lit room. 
- Changing environment. Presence of dynamic objects (moving obstacles). 
- Low light. Testing operation in conditions of limited visibility. 

Each navigation method was tested in all three environments to evaluate its performance. Three 
methods were selected for comparison: the proposed CNN-LSTM-SLAM, an optical flow-based 
method, and a method using only IMU data. 

4.2. Evaluation metrics 

The results were analyzed according to the following indicators, which allow us to evaluate the 
accuracy, adaptability and efficiency of the proposed method. 

The first criterion was the mean absolute error (MAE) in determining the location of the drone. 
It was calculated by the Formula 10. 

MAE =
1

𝑁
∑ |𝑃𝑖 − 𝑃𝑖

∗|
𝑁

𝑖=1
,  

(10) 

where 𝑃𝑖 is an actual drone position, 𝑃𝑖
∗ is the predicted position, 𝑁 is the number of test points. 

The second indicator was the resistance to environmental changes, which was assessed by the 
percentage of correctly adjusted trajectories when new objects appeared. 

The last criterion was the processing time required to analyze one frame and calculate the 
correction commands. 

4.3. Experiment results 

As a result of the experiments conducted, Table 1 was obtained. 
The table shows that the proposed CNN-LSTM-SLAM method provides significantly better 

positioning accuracy (MAE = 0.15 m) compared to optical flow (MAE = 0.32 m) and IMU method 



(MAE = 0.45 m). Although the CNN-LSTM-SLAM method has a slightly longer processing time (35 
ms), this is compensated by high noise immunity (94%), which is superior to traditional methods. 
Additionally, testing was carried out in real conditions with strong wind and precipitation. However, 
the results of this experiment were not taken into account in the overall analysis due to the 
impossibility of repeating the weather conditions for each method participating in the experiment. 
Despite this, observations showed that the proposed method demonstrates higher resistance to 
external factors compared to traditional navigation methods. 

Table 1 
Test results of three methods 

5. Conclusions 

As a result of the study, it was found that the proposed method of local navigation based on neural 
networks CNN-LSTM-SLAM provides a significantly higher accuracy of drone positioning in space 
than traditional methods. In particular, the average absolute error MAE for this method was 0.15 m, 
which is significantly less than the optical flow (0.32 m) and the IMU method (0.45 m). This indicates 
the ability of the neural network approach to more accurately predict the movement of the drone. 

In addition, the proposed method demonstrates high resistance to interference (94%), which is 
almost twice as high as the similar indicator for the IMU method (40%) and significantly better than 
in the case of optical flow (68%). This confirms the effectiveness of using CNN-LSTM in complex 
conditions with dynamic objects. 

The only drawback of the method is a slightly longer frame processing time (35 ms), compared to 
other methods, such as IMU (10 ms) and optical flow (20 ms). However, this difference is justified in 
view of the obtained accuracy and stability. 

Thus, the results of experimental studies confirmed the effectiveness of the proposed approach 
for autonomous drone navigation in GPS-unavailable conditions. It is a promising solution for 
application in complex dynamic environments, such as urban areas, forests or search and rescue 
operations. 

Further research will be aimed at improving the data processing speed and reducing the 
computational complexity of the method. In particular, a promising direction of development is the 
optimization of the neural network architecture for operation on limited computing resources, which 
will allow implementing the system on less powerful drones. The possibility of integrating additional 
sensors, such as lidars and radar systems, to improve navigation accuracy in difficult weather 
conditions and in the absence of visual information will also be investigated. 
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