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Abstract 
Reliable recovery of sensor information is critically important for the continuous operation of distributed 
IoT systems under conditions of data loss, noise distortion, and structural uncertainty. This paper 
proposes a combined approach to sensor data reconstruction that integrates latent state smoothing via 
recursive filtering with local nonparametric posterior density estimation using kernel functions. In 
contrast to traditional filtering and forecasting schemes, the developed model performs full interpolation 
recovery by incorporating both past and future measurements in time. The mathematical structure of the 
method is theoretically justified, and its properties are examined under partial observability. Numerical 
modelling results confirm the high accuracy and robustness of the proposed approach under up to 40% 
observation loss and reduced signal-to-noise ratio, corresponding to typically adverse conditions in 
LPWAN environments, particularly LoRaWAN. Compared to Kalman filtering and baseline 
nonparametric regression methods, the proposed model achieved a 20 30% improvement in interpolation 
accuracy. The practical value of the study lies in the feasibility of implementing the approach on 
resource-constrained devices without prior training, which opens up prospects for its application in smart 
monitoring systems, energy-efficient management, agroecological surveillance, and environmental 
protection. 
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1. Introduction

Over the past decade, the Internet of Things (IoT) has evolved into a fundamental technological 
platform enabling real-time data collection, processing, and analysis across a wide range of 
applications. For example, in smart cities, sensor networks are employed to monitor air quality, 
noise levels, traffic intensity, or to detect emergencies in water supply systems [1, 2]. In 
agriculture, they are used to measure soil moisture, air temperature, wind speed, and other 
parameters influencing agrotechnological decisions [3, 4]. In healthcare systems, sensor devices are 
applied for remote patient monitoring  for instance, tracking glucose levels, heart rate, or blood 
oxygen saturation [5, 6]. Industrial IoT systems use sensors to monitor the technical condition of 
equipment, detecting vibrations, overheating, or leaks [7, 8]. 

Despite their widespread application, sensor networks face significant technical limitations: 
data transmission may be disrupted due to unstable connectivity, packet loss, interference in radio 
channels, limited sensor energy capacity, or processing node overload. As a result, real-world data 
are often incomplete, exhibiting random losses, gaps in time series, or distortions caused by noise 
[9]. For instance, in smart lighting systems or emergency response frameworks, delays in 
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transmitting sensor events may trigger incorrect actuator responses. In medical systems, 
inaccuracies or loss of vital sign readings may pose a risk to patients. In industrial contexts, 
misinterpretation of data due to signal distortion can lead to equipment downtime or failure. 

Thus, the tasks of accurate and robust recovery of lost or noise-corrupted data are not only of 
theoretical importance but also critically necessary for the reliable operation of practical IoT 
systems. In this context, the need for adaptive mathematical models capable of operating with 
incomplete information while ensuring high reconstruction accuracy is particularly urgent. 

In the current scientific discourse concerning the reconstruction of sensor information under 
conditions of partial availability and high noise levels, several conceptual approaches have 
emerged, each demonstrating a distinct domain of application, degree of mathematical justification, 
and practical effectiveness. Among the most extensively studied are analytical, nonparametric, and 
intelligent methods. However, in addition to these, hybrid, heuristic, sparse-reconstruction, 
multichannel statistical, and reinforcement-based methods are increasingly being employed and 
merit particular attention when analysing relevant analogues. 

Analytical methods [10, 11], primarily represented by filtering and smoothing approaches (such 
as Kalman filtering, particle filters, and RTS smoothing), assume the presence of a well-defined 
system dynamics model and known statistical properties of the noise in advance. These methods 
are mathematically grounded and perform well in linear or quasi-linear systems with normally 
distributed disturbances. However, in IoT sensor networks, such assumptions are rarely fully 
satisfied. The presence of missing data, irregular sampling rates, correlated noise, and the lack of a 
complete a priori model render these methods sensitive to perturbations, ill-suited to complex 
temporal structures, and inadequate for interpolation-based recovery, which requires incorporating 
both past and future measurements [12]. 

An alternative is offered by nonparametric approaches [13, 14], which rely on local 
approximation or empirical distribution estimation without a fixed model structure. Kernel 
regression, locally weighted smoothing (LOESS), nearest neighbour methods, and empirical 
Bayesian procedures exhibit considerable flexibility and allow signal recovery even in the absence 
of information about the underlying generative mechanism. However, these methods are limited in 
terms of computational efficiency, do not scale well to high-dimensional settings, are sensitive to 
window width selection, and fail to capture the latent temporal structure of the data. Moreover, 
they lack a formal mechanism for incorporating the context of future observations, which is crucial 
in interpolation tasks rather than forecasting. 

In recent years, intelligent approaches [15 17], particularly deep learning models, have gained 
significant traction. Recurrent neural networks (RNNs), long short-term memory architectures 
(LSTMs), autoencoders, transformers, and graph neural networks are employed to model complex 
nonlinear relationships between observations and their temporal context. Their key advantage lies 
in the ability to automatically learn data representations and reconstruct missing values without an 
explicitly defined model. At the same time, these methods exhibit notable limitations: they require 
large training datasets, which are often unavailable in sensor networks; they have high 
computational complexity, making them unsuitable for energy-constrained devices; and they lack 
formal interpretability, which complicates verification of reconstruction reliability. In most cases, 
such architectures are designed for extrapolation (i.e. forecasting future values) and do not support 
accurate reconstruction of missing segments within a trajectory, which requires bidirectional 
informational context. 

In response to the limitations of each of the aforementioned classes of methods, the literature 
has seen the emergence of hybrid approaches [18, 19] that combine the formal structure of 
analytical models with the flexibility of nonparametric or intelligent components. Examples 
include the integration of forward filtering with local smoothing or the combination of Bayesian 
models with autoencoders. Such systems allow for the preservation of interpretability and a 
controlled structure while enabling flexible adaptation to changes in the statistical properties of the 
data. However, the complexity of implementation, the need to align heterogeneous components, 



and the lack of sufficient theoretical justification currently hinder the widespread adoption of such 
solutions. 

Heuristic methods [20, 21] are also applied in practical systems, relying on domain-specific 
knowledge or sets of rules. For instance, in reconstructing a temperature profile, one may assume a 
limited rate of change in readings or approximate missing values using linear functions based on 
neighbouring values. Such methods are simple, energy-efficient, and scale well, but they lack 
generalisability and do not guarantee accuracy under complex or atypical system behaviour. 

Special attention should be given to methods based on the concept of sparse representation the 
so-called sparse reconstruction models [22]. These assume that a signal can be expressed as a 
sparse combination of basis vectors in a specific space (for example, wavelet or Fourier). This 
enables effective recovery of missing values even under a high level of data loss. However, such 
models typically require a fixed transformation structure, which may not adequately capture the 
dynamics of real-world sensor processes. 

In many real-world applications, multichannel statistical methods [11, 23] also prove effective, 
as they utilise correlation information between multiple sensor streams. Models of interdependent 
processes, multivariate Bayesian estimations, or multichannel PCA enable the reconstruction of 
data in one channel based on the values from others. This is particularly useful in the context of 
heterogeneous sensor networks; however, such models are sensitive to channel mismatches, signal 
synchronisation issues, and require full observability in at least some of the sources. 

Finally, a promising direction is reconstruction methods based on reinforcement learning [24, 
25], where an agent learns to develop an optimal reconstruction strategy by receiving rewards that 
depend on the accuracy of recovery or its impact on subsequent control. These methods are 
particularly effective in adaptive or dynamically changing environments; however, their training 
requires multi-episode simulation, and the interpretability of the results remains an open 
challenge. 

In summary, despite methodological diversity and numerous attempts to adapt existing 
approaches to sensor environments, no universal solution currently exists that ensures a 
combination of accuracy, adaptability, computational efficiency, and analytical controllability 
under conditions of loss, noise, and limited informational completeness. Analytical methods are 
overly rigid in their assumptions, nonparametric methods are excessively local and resource-
intensive, and intelligent methods are complex, opaque, and weakly interpretable. Even hybrid or 
heuristic approaches, while mitigating the imbalance between flexibility and formality, largely 
remain narrowly specialised or insufficiently theoretically substantiated. In this context, there is a 
clear need to develop a new methodology that combines the advantages of parametric models (such 
as stability, interpretability, and smoothing efficiency) with the flexibility and local adaptability of 
nonparametric estimations. This is precisely the approach implemented in the present study, which 
proposes a sensor data reconstruction model based on posterior interpolation density, combining 
the formal structure of the exponential family of distributions with the capacity for local kernel 
correction. This enables not only accurate recovery of missing information under partial 
availability but also stable system operation amid changing data structures and constrained sensor 
network resources. Accordingly, the proposed research fills a critical methodological gap in the 
field of sensor signal reconstruction, offering a formally grounded, practically feasible, and flexible 
model tailored to the specific requirements of modern IoT systems. 

The object of this study is the process of sensor information reconstruction under conditions of 
partial data availability, noise distortion, and structural uncertainty in the dynamics of distributed 
IoT systems. 

The subject of this study is the set of theoretical foundations, mathematical models, and 
methods for approximating the posterior density that enable continuous reconstruction of sensor 
data under uncertainty, based on the integration of filtering and smoothing procedures with 
nonparametric kernel estimation. 

The aim of this study is to develop and justify a combined method for sensor data 
reconstruction in distributed IoT systems by integrating an analytical model of posterior density 



with nonparametric procedures of local kernel smoothing, in order to ensure accurate and robust 
information recovery under conditions of partial availability and structural uncertainty. 

The scientific novelty of this study lies in the development of a formalised combined approach 
to sensor data reconstruction in distributed IoT systems, which for the first time integrates a 
recursive filtering and smoothing model for posterior density estimation with local nonparametric 
kernel smoothing procedures. The proposed methodology enables interpolation-based data 
recovery at points with partial or zero observability, does not require a complete description of the 
latent process dynamics, adapts to the noise level, and demonstrates improved accuracy compared 
to traditional filtering and empirical approaches. 

The practical value of this study lies in the capability for continuous and resource-efficient 
recovery of sensor information in real time under conditions of partial loss, noise, and structural 
uncertainty features typical of modern IoT systems. The proposed combined method does not 
require a complete model of system dynamics, easily adapts to various sensor network topologies, 
can be implemented on energy-constrained devices, and ensures improved interpolation accuracy 
without the use of training data, making it suitable for deployment in smart monitoring, automated 
control, energy-efficient environments, and other critical applications. 

2. Models and methods 

2.1. Fundamental assumptions 

In the task of recovering observed data in sensor networks operating within a dynamic and 
probabilistically determined environment, it is essential to formalise interpolation as a procedure 

for estimating the values of system state vectors n

lY  , where n  denotes the dimensionality of 

the hidden state space, based on the available sequence of sensor observations 

( )1 1, ,
Tm m k

mx x x =  , in which m  represents the number of discrete time steps and k  is the 

dimensionality of each vector observation space. The positional index l  indicates the moment 
1 l m   at which recovery is performed. According to the Bayesian approach, optimal 
interpolation can be carried out by approximating the conditional expectation of the function 

( )lR Y , which represents the recoverable characteristic of the system state, given the available 

information 
1

mx . This is mathematically expressed by formula 

( )( ) ( ) ( )1 1
n

m m

l l l l lR Y x R y p y x dy =  , (1) 

where ( )1ml lp y x  denotes the conditional a priori probability density lY  given the known data 

from the sensor sample 
1

mx , which, in the context of real-time recovery requirements, is naturally 

interpreted as the interpolated posterior density. 
In the context of data recovery in IoT sensor networks, where time series measurements are 

partially lost or noise-corrupted, there arises a need to construct the interpolated posterior density 

( )1ml lp y x , which accounts for both historical data and future measurements relative to the 

recovery moment l . One approach to constructing this density is to represent it as a combination 
of observation densities and conditional posterior distributions. This density is defined as 

( )
( ) ( ) ( ) ( )

( ) ( )

1 1

1

1 ,

l m l m

l l l l l lm

l l m

l l

x x y x y x
p y x

x y x

   

 
= , (2) 



where ( )1lx  denotes the density of sensor observations from the beginning up to moment l , 

( )mlx  is the density of sensor observations from moment l  to the end, ( )1ll ly x  is the 

conditional density of the state ly  given prior data, ( )ml l ly x  is the backward density of the same 

state given subsequent observations, and ( ),l ly x  is the joint density of the state and 

corresponding observation at moment l . The representation in (2) enables formalisation of the 
interpolation task under incomplete or noisy information, characteristic of sensor-based IoT 
systems. 

In the context of defining the joint density ( ),l ly x  in the denominator of expression (2), a key 

stage involves the analytical formalisation of the interpolation procedure. In sensor networks 
modelled as Markov dynamic systems with correlated measurements, this density can be 
represented as a convolution over the space of previous states and observations, accounting for the 
historical context of information transmission. This allows for the latent dependency structure 
within the time series of sensor data to be incorporated. The corresponding expression is given in 

( ) ( ) ( ) ( )
1 1

1 1 1 1 1 1, , ,

l l

l l l l l l l l l l l

Y X

y x q y y x x y y x dx dy  

− −

− − − − − −=   , (3) 

where ( )1l lq y y −  denotes the state transition density in the Markov model, ( )1,l l lx x y −  is the 

conditional density of a sensor observation given the state ly  and the previous measurement 1lx − , 

and ( )1 1,l ly x − −  is the joint density at moment 1l − . Accordingly, formula (3) enables the 

computation of the normalisation factor included in expression (2), thereby allowing accurate data 
recovery in sensor-based IoT systems. 

In the process of formalising the task of recovering lost or corrupted data in IoT sensor 
networks, it is appropriate to define an analytical model that unifies computations related to the 
interpolated posterior density (see formula (2)) and the normalisation factor (see formula (3)). In 
this study, it is assumed that the conditional density of observations given the latent state belongs 

to the exponential family of distributions. This allows the density ( ),l ly x  to be expressed in the 

following form 

( ) ( ) ( ) ( ) ( ) , exp T

l l m m m my x K y b x x R y =  , (4) 

where ( )mK y  is the normalising coefficient, ( )mb x  is the base function of the observation, 

( )T

mx  is the sufficient statistic, and ( )mR y  is a parametric function of the latent state. 

Assumption (4) is adopted as the foundation for the subsequent analytical analysis of sensor 
information reconstruction models. 

 
2.2. Analytical interpolation model for the reconstruction of lost data in sensor-based IoT systems 

In addressing a range of applied problems arising during the operation of sensor networks (for 
example, reconstructing missing temperature or pressure readings, restoring the trajectory of a 
moving object from incomplete GPS samples, or adaptive signal smoothing in cases of packet loss), 
it is necessary not only to compute the conditional expectation (see formula (1)) but also to 

construct the full interpolated posterior density of the state ( )1ml lp y x . This density contains all 

the required information about the unknown state ly , and enables not only point estimation but 

also statistical decision-making based on confidence intervals, quantile assessments, or Bayesian 



risks. To simplify the analytical notation, probability density functions of the form ( )x  will 

henceforth be presented without explicitly specifying the argument, unless this leads to ambiguity. 
The argument will be indicated only where necessary for correctness. 

To derive the equation describing the optimal interpolation estimate under conditions of 
incomplete sensor data, it is necessary to rely on the structure of the joint density for the entire 

trajectory of latent states 
1

my  and corresponding observations 
1

mx , which can be represented in a 

recursive form. If the sensor network model is described by conditional densities of the form 

( )1 1, ,l l l ly x y x − −
, the full density ( )1 1,

m my x  is expressed as a product of the form 

( ) ( ) ( )1 1 1 1 1 1

2

, , , ,
m

m m

l l l l

l

y x y x y x y x   − −

=

=  , (5) 

corresponding to the extended structure of a generalised Markov model for the dynamics of latent 
states in a sensor environment. Based on the representation in (5), a formal derivation of the 

expression for the interpolated posterior density ( )1ml lp y x  can be carried out, defined as the ratio 

of the joint density to the marginal density of the sensor sample alone. By sequentially applying 
the chain rule decomposition with consideration of conditional independence, we obtain 

( )
( )
( )

( )
( )

( ) ( ) ( )
( )

1 1 11 1 1

1

1 1 1

,, , ,
l l mm l m

l l l l ll l lm

l l m m m

x y x x y xy x y x x
p y x

x x x

   

  

++
= = = . (6) 

In the subsequent analysis of equation (6), which describes the interpolated posterior density in 

a sensor network, it becomes necessary to detail the product ( ) ( )1 1

l l

l lx y x  . This product can be 

decomposed using the recursive structure of the dependency model between latent states and 
sensor observations. Given that previous realisations of observations and states are known, we 

have ( ) ( ) ( ) ( )2 2

1 1 1 1 1 1 1 1 1, , , , ,
n

l l l l

l l l l l l l l lx y x y x y x y x y x dy   − −

− − − − −=  . 

To further simplify the computations, let us assume that the joint distribution density ( )1 ,
l

lx y  

can be factorised into the conditional density ( )1,l l lx x y −  and the Markov transition density 

( )1l lq y y − . In this case, taking into account the properties of conditional independence, we obtain 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

1 1 1 1 1 1 1

1 1

1 1 1

,

, ,

n

l l l

l l l l l l l l l

l l

l l l l

x y x x x y q y y y x dy

x y x x x y

   
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−

− − − −

− −

−

= =

=


 (7) 

where the factor ( )11lly x −  represents the updated state estimate based on the observation history 

up to moment l , and the dependence on lx  in the right-hand side of equation (7) reflects the 

contribution of the current measurement to the formation of the predicted density. 

Let us consider the factor ( )1 ,m

l l lx y x +  in the numerator of formula (6), which corresponds to 

l . This factor 
contains information about future measurements, conditional on the current system state and 
observation. It can be expressed as an integral over densities that characterise transition and 
observation probabilities at subsequent time steps. To achieve this, we employ the structure of the 
generalised model and obtain 



( ) ( ) ( )

( )
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( )
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=
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 (8) 

This approach enables the dependence on future measurements to be expressed as integration 
over possible states 1ly + , thereby formalising the mechanism of information reconstruction in a 

sensor network in cases where part of the observations is missing. Thus, the method generalised by 
expression (6) allows the construction of interpolation estimates even under incomplete sensor 
trajectories. However, if the sensor network model is described as one that permits factorisation of 
the full density into a product of conditional densities and prior distributions, then the interpolated 

posterior density ( )1ml lp y x , previously defined in formula (6), can be rewritten in a generalised 

form using formulas (7) and (8): 

( )
( ) ( ) ( )

( )

( )

( )
( )

( ) ( ) ( )
( )

1 1 1

1

1

1

1 11

1

,

,

l l m
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l mm
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l

l

l
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l lm
ll

x y x x y x
p y x

x

y y x y xx
x y

q yx

x

xx

  


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



+

−

+

= =

=
!

!

 (9) 

where the construction 
1 l

mx x!  denotes the vector 
1

mx  excluding the element lx , and the factor 

( )l   generalises the normalisation component, which depends on the full sensor trajectory. From 

formula (9), it follows that the first factor on the right-hand side does not contain ly , while the 

second explicitly depends on lx , which is essential for implementing estimation procedures under 

conditions of incomplete data. 
The analytical form of the interpolation equation, as presented in formula (9), enables further 

structuring of the posterior density in information recovery tasks within sensor-based IoT systems. 

To facilitate the construction of estimation expressions, we introduce an auxiliary function ( )l lh y , 

which consolidates the components that depend exclusively on the latent state: 

( ) ( ) ( ) ( )1

1 1

l m

l l l l l lh y y x y x q y −

+= . (10) 

Using the definition in (10), formula (9) can be rewritten in a simplified form for the 
interpolated posterior density: 

( )
( )

( )
( ) ( )

1

1

1

m

lm

l l l l l lm

l l

l

l

p
x

x

x
y x x y h y

x x





=

!

!
, (11) 

which allows the influence of the observation lx  to be separated from the generalised impact of the 

past and future within the trajectory. In this case, the ratio of the normalising factors in the 
numerator and denominator of formula (11) can also be interpreted through an integral 
representation 



( )
( )

( ) ( )
1

1 l

m

l l

l l l l lm

l Yl

lx x
x y h y dy

x

x

x





= 

!

!
. (12) 

Formulas (11) and (12) enable the estimation of the interpolation distribution through 

integration of the likelihood function ( )l lx y , taking into account the entire available context of 

the sensor sample, which is particularly relevant in cases of partial data loss or when 
reconstruction is required based on asymmetric information from past and future values. 

Assuming now that the conditional density of sensor observations relative to the latent state 
belongs to the exponential family (see formula (4)), it is possible to derive a gradient form of the 
equation for the distribution density of the reconstructed signal in an IoT system. This enables a 
formalised description of the influence of the observation lx  on the refinement of the state 

estimate ly  during interpolation. Under these conditions, the following relation holds: 

( )
( )

( ) ( )
1

1

l

l

l

m

l

l

m

x l l

x l l l l l

Yl

x x
x y h y d

x
y

x x







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!

!
, (13) 

where 
lx

  denotes the gradient operator with respect to the variable lx . Given that the conditional 

density ( )l lx y  belongs to the exponential class (see (4)), its gradient with respect to lx  can be 

expressed as 

( ) ( ) ( ) ( )( ) ( )ln
l l l

T

x l l x l x l l l lx y g x S x y x y  =  +  , (14) 

where ( )lg x  is the base function, ( )lS x  is the vector of sufficient statistics, and ( )ly  is the 

vector of parametric functions of the state. 
As a result, substituting the state estimate ˆ

ly  into the functional of the exponential model 

allows the observed part of the logarithmic gradient of the conditional density to be expressed in 
the form 

( ) ( )
( )

( )

1
ˆ

l

m

l l lT

l l x

l

x x x
S x y

g x


 =

!
, (15) 

where all terms are either estimated or computable from the sensor trajectory. Relation (15) enables 
parametric recovery based on the gradient of the logarithmic density, which constitutes an 
effective approach to estimation tasks under conditions of incompleteness or noise in sensor 
networks. 

From expressions (9) (15), it follows that a central role in the reconstruction of sensor 
information is played by the a priori or posteriorly known dependency between the current 

observation lx  and the hidden state ly . The construction of the likelihood function ( )l lx y , 

which defines the shape of the signal distribution given a specified state, critically influences 
estimation accuracy. In practical sensor environments, this function is often not analytically 
known, or its parametric specification is insufficiently accurate due to limited data or the presence 
of noise. In such cases, a natural alternative is the application of nonparametric approaches, 
particularly kernel density estimation methods, which allow the recovery of the distribution 
without assumptions about its parametric form. Thus, even in complex and heterogeneous IoT 
systems, effective interpolation-based estimation can be achieved using approximated densities 

( )l lx y  derived through nonparametric kernel procedures. 



To address the interpolation problem in sensor networks based on a single realisation of the 
observed vector signal, it is appropriate to estimate the conditional density in the form of a partial 
approximation of the full posterior model. For this purpose, we define the conditional 

approximation as ( ) ( ) ( )1 1

1 1, ,l l c l c l l c

l l c l l c l c lx x x x x x  − + + − +

− + − − += , where the parameter c  specifies the 

number of observations symmetrically selected before and after moment l , which are taken into 
account for reconstructing the value of lx . This approach reduces model complexity and enables a 

transition to nonparametric estimation based on a finite sample. 

Assuming that the full density ( )1

mx  is unknown, we apply the classical kernel method for its 

estimation, whereby the approximation is performed based on M  realisations. Accordingly, the 
approach to constructing the kernel density is generalised by expression 

( )
( )

1

1 1 1

1
j jm kM
l lm

M mk
i l jM M

x X i
x K

Mb b


= = =

 −
=  

 
 

 , (16) 

where K  is the smoothing kernel, Mb  is the window width (smoothing parameter), k  denotes the 

dimensionality of the observation space, and ( )j

lX i  is the j -th component of the i -th realisation 

at time l . 
Considering the exponential structure of the model and employing the kernel estimate (16), it is 

possible to approximate the gradient of the log-density estimate in the form 

( ) ( )
( )

( )
( )

( )
,

ˆ l l

l c

x M l c x lT

l l M l c
lM l c

x b x
S x y

b xx





+

−

+

−

 
 = − , (17) 

which enables the reconstruction of the exponential model structure without explicit 
parametrisation under conditions of limited statistical information, relying solely on empirical 
observations and the corresponding kernel. 

The interpretation of equation (17) is quite intuitive in the context of data reconstruction in a 
sensor environment. In essence, expression (17) implies that the gradient of the logarithmic kernel 

density estimate should be compensated by the influence of the base function ( )lb x , which may 

reflect the a priori structure or background properties of the sensor signal. The quantity 

( ) ( ),
ˆT

l l MS x y  in this context serves as an estimate of the generalised state parameters of the 

system, ensuring a balance between empirical statistics and the formal distribution model. Thus, 
equation (17) can be used as a heuristic update for constructing an interpolation estimate in cases 
where model parameters are not predefined a priori or when observations are limited to a single 
trajectory. In this setting, the role of the parameter c  is to define the scope of the local context (in 
both directions from moment l ) considered in the estimation. The larger the value of c , the 
broader the temporal context used, which may enhance the stability of recovery but also increases 
the required number of observations and computational complexity. The final choice of parameter 
c  is usually determined empirically and depends on the data structure, the nature of the sensor 
network, and the dimensionality of the observation vector. 

3. Results and discussion 

To demonstrate the effectiveness of the interpolation-based recovery method presented in Section 
2 for reconstructing lost data in sensor-based IoT systems, a test sensor environment was simulated 
in which the observations lx   depend on a latent state ly   that is not directly accessible. 

The system dynamics are described by a first-order stochastic Markov process with additive noise, 



and the observations are generated as a linear transformation of the state with additional sensor 
noise. This model structure aligns with monitoring scenarios in IoT systems, where part of the data 
may be lost or corrupted due to interference, overload, or communication disruptions. The model 
of the test sensor environment is analytically formalised as 

1 1l l ly y + += + , ( )2 2 21  = − , (18) 

l l lx y =  + , ,l ly x  , (19) 

where l  and l  are independent random variables, distributed according to ( )0,1 , representing 

process disturbance and sensor measurement noise, respectively. The remaining fixed parameters 

introduced in expressions (18) and (19) are hereinafter set as 0.7 = , 2 2 = , 1 = = ; the length 
of the realisation is 1000m = . Data loss is simulated by randomly zeroing 10% of the observation 
values lx , which models interruptions in the flow of sensor information. All computations were 

performed in the Python 3.10 environment using the following libraries: NumPy (for trajectory 
generation and array processing), SciPy (for implementing the normal distribution and 
integration), scikit-learn (for nonparametric density estimation), Matplotlib (for plotting), and 
statsmodels (for auxiliary stochastic signal processing). 

To implement sensor information recovery under conditions of partial data unavailability, a 
recursive state estimation procedure was applied, structurally corresponding to the classical 
filtering scheme for linear stochastic models with scalar observations. The forward phase of the 
recursion (i.e. forward-in-time estimation) generates current a priori estimates of the latent state 
ˆ
ly  based on the available values 1, , lx x , while the backward phase (smoothing) refines these 

estimates using information from subsequent time steps. The recursive formulas for the forward 
phase are given as 

( )
2 2

1 12 2 2 2 2
ˆ ˆ ˆl
l l l l

l
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v
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+ +
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, (20) 

with initial conditions 
2

1 12 2 2
ŷ x






=
 +

, 
2 2

1 12 2 2
v x






=
 +

.. 

After the completion of the forward phase, smoothing is performed to refine the estimates ˆ
ly  

based on information from subsequent observations. This is achieved using the relation 

( )( )2 2 2 2 21l lD v  =  + − + , where lD  is the normalisation factor representing the expected 

total variance of the sensor observation 1lx + , accounting for the uncertainty in the previous state 

ly , the dynamic disturbance l , and the sensor noise l . The factor lD  serves as a scaling 

coefficient in the smoothing formula and ensures numerical stability of the procedure (20). 
Further smoothing is analytically formalised as 

( )1
ˆ ˆ

l l l l l ly y v X y D += +  − , ( )( )2 2 2 21l l lv v D =  − + . (21) 

The recursive procedure is finalised through backward-time refinement: 

( )( ) ( )2 2

1 1
ˆ1l l l l l l ly y v y y d v  + += + − − , ( )( ) ( )

2
2 2 2 2

1 11l l l l l lv v v v D v + += + − , (22) 

where 2, 1l n= − , and the parameter ( )( )2 2 2 2 2

1 1l ld v  +=  + − +  serves as the normalisation 

factor at the next smoothing step, acting as an analogue to lD . The value ld  accounts for the 



predicted variance of the sensor measurement 1lx + , as well as the uncertainty in the predicted state 

1ly + . This ensures stable propagation of future information backward along the time axis, enabling 

refinement of the state estimate even in cases of data loss or channel instability in sensor-based IoT 
systems. 

As part of the experimental analysis, an alternative nonparametric interpolation scheme was 
also implemented, which does not rely on recursive procedures but is instead based on local kernel 
approximation of the conditional density distribution. This approach enables the recovery of the 
value of a lost sensor observation lx  or its corresponding latent state ly  without relying on a 

parametric model or precise knowledge of the source dynamics. The corresponding interpolation 
formula is given as 

( ) ( )
( )

2

ˆ

l c

l M l cc l
l l c

M l c

x x x
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
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 
= +
 

, (23) 

where ( )l c

M l cx +

−  is the kernel density estimate of the joint observation vector within a window of 

width 2 1c + , computed using the nonparametric method 

( ) ( ) ( ) ( )
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where Mb  is the bandwidth parameter for the smoothing kernel function ( )1
K , and the partial 

derivative in the numerator of formula (23) is analytically computed based on the Gaussian kernel 
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This approach allows the state estimate ˆ c
ly  to be computed directly via the gradient of the 

logarithmic density, focusing solely on the local context  a  symmetric window of width 2 1c +  
centred around the moment l .  

The method does not require knowledge of the model or its parameters, making it suitable for 
tasks in which the structure of the data source is unknown or dynamically changing, as is typical 
in many practical sensor-based IoT systems. It should be noted that the quality of approximation is 

critically dependent on the choice of the smoothing kernel ( )1
K  and the window width parameter 

b . As with most kernel-based methods, these parameters are not explicitly defined, since their 
optimal values depend on the a priori unknown properties of the observation distribution and the 
latent process. 

To evaluate the effectiveness of the proposed interpolation procedures, the reconstructed 
dynamics of the latent state were assessed over a segment of the sensor trajectory. The simulation 
environment was based on the models generalised by expressions (18) and (19), with the fixed 

parameter values 2, , , , ,m     specified at the beginning of the section. Based on the 

generated data, three independent recovery trajectories were constructed: 

• Forward filtering according to formula (20), which provided a recursive estimate of the 
state ˆly  based on the available information up to moment l ; 



• Optimal interpolation, approximating smoothing in accordance with (21) (22), and 
implemented as an averaging of adjacent filtered values; 

• Nonparametric recovery, which applied a gradient-based estimate derived from local 
density in accordance with formulas (23) (25), and was approximately implemented 
through signal smoothing lx  within a fixed window. 

Fig. 1 presents a comparison of each of these trajectories with the true (unobserved) realisation 

of the latent process over the interval  900,1000l . The resulting plots provide a visual 

assessment of how closely the reconstructed trajectories approximate the original signal under 
conditions of sensor noise and data loss. 

Fig. 1 illustrates the comparison of the three implemented interpolation methods with the true 

trajectory of the latent process over the interval  900,1000l . Forward filtering (formula (20)) 

provides a satisfactory approximation, but in regions of rapid change (e.g. near 975l = ), a 
characteristic lag in the estimate is observed. This confirms the well-known limitation of forward 
filters under conditions of partial data availability.  

The implemented smoothing (formulas (21), (22)) significantly improves accuracy, particularly 
in dynamic segments where the incorporation of future information helps to compensate for local 
bias. In contrast to smoothing (21), (22), the nonparametric interpolation (formulas (23) (25)) tends 
to over-smooth, especially in unstable segments, indicating sensitivity to the choice of window 
width b .  

Overall, Figure 1 confirms the correctness of the implemented formula adaptations and supports 
the relevance of parametric smoothing as the principal method for reconstruction in sensor 
networks with data loss. 

 
Figure 1: Visual comparison of interpolation methods with the true latent trajectory. 

 
Overall, Figure 1 confirms the correctness of the implemented formula adaptations and supports 

the relevance of parametric smoothing as the principal method for reconstruction in sensor 
networks with data loss. 



From a performance perspective, the proposed interpolation model is computationally efficient 
and suitable for deployment on resource-constrained IoT devices. The recursive filtering and 

smoothing procedures (formulas (20) (22)) exhibit linear time complexity ( )O T  with constant 

memory usage per step, as each update relies only on the previous state and observation. In 
contrast, the nonparametric kernel estimator (formulas (23) (25)) has a computational complexity 

of ( )2O md  per reconstruction point, where mm is the half-window size and dd is the observation 

space dimensionality, rendering it more practical in small-scale, low-dimensional deployments. The 
method does not require pre-training or extensive memory resources, ensuring its applicability in 
real-time LPWAN environments (e.g., LoRaWAN). 

To verify the robustness of the implemented methods against sensor observation noise, a series 
of experiments was conducted (see Fig. 2) using a fixed trajectory of the latent state ly , modelling 

the hidden process in typical IoT environments. In each trial, the latent sequence ly  remained 

unchanged, while random disturbances l  were added to the observations l l lx y =  + , 

following a normal distribution with zero mean and variance  2 0.5,5.0  . The proportion of 

missing values was fixed at 10%, simulating a typical data loss scenario in a sensor environment 
with an unstable communication channel. 

 
Figure 2: RMSE of interpolation methods as a function of observation noise level. 

 
Fig. 2 shows the root mean square error (RMSE) of the three recovery methods  forward 

filtering (formula 20), smoothing (formulas 21 22), and nonparametric interpolation (formulas 23
25) as the noise level in the input observations increases. The latent trajectory ly  remained fixed, 

while noise in the signal lx  was modelled with varying variance. According to the results, 

smoothing consistently outperforms filtering in terms of accuracy, especially under high-noise 
conditions, due to its use of both past and future information. The nonparametric method proved 
effective only at low noise levels; however, under high-noise conditions, its accuracy deteriorated 
sharply, indicating sensitivity to the signal-to-noise ratio and a lack of internal structural 
adaptation. 



The latent trajectory ly  remained fixed, while the signal noise lx  was modelled with varying 

variance. According to the obtained results, smoothing consistently demonstrated higher accuracy 
than filtering, particularly under high-noise conditions, which is explained by its use of both past 
and future information.  

The nonparametric method proved effective only at low noise levels; however, under high-noise 
conditions, its accuracy deteriorated sharply, indicating its sensitivity to the signal-to-noise ratio 
and the absence of internal structural adaptation. 

To analyse the impact of data incompleteness on signal recovery accuracy, a scenario was 
simulated in which the latent state trajectory ly  remained fixed across all trials, while random 

disturbances l l lx y =  +  with fixed variance l  were added to the observations 2 2 = . The 

observation gaps were introduced according to a completely random masking (MCAR) scheme, i.e. 
independently of the value and position of lx , with a loss rate ranging from 0% to 50%. The results 

of the study are presented in Fig. 3. 

 
Figure 3: RMSE of interpolation methods as a function of data loss rate. 

 
Figure 3 illustrates the variation in RMSE of the three recovery methods as the proportion of 

missing observations increases. The same realisation of the latent trajectory ly  was used across 

all methods to ensure result comparability. In the backward smoothing phase, losses were 
accounted for by masking unavailable observations, preventing their inclusion in the recursive 
update.  

The results indicate that smoothing consistently outperforms filtering in terms of recovery 
accuracy, even with up to 50% data loss. In contrast, the accuracy of filtering declines more 
gradually, yet predictably. The nonparametric approach proved to be the most sensitive to reduced 
data availability: at a 50% loss rate, its RMSE more than doubled compared to the corresponding 
values for filtering and smoothing, indicating the limited adaptability of this method in highly 
unstable sensor environments. 



The accuracy of nonparametric signal recovery was investigated separately by varying a key 
component the kernel function. Three methodologically relevant kernels were selected for 
analysis: Gaussian, Tricube, and Epanechnikov. Each represents a distinct smoothing strategy: the 
Gaussian kernel has infinite support and performs global smoothing;  

Tricube provides local smoothing with strong attenuation at the edges; and Epanechnikov is 
optimal in terms of minimising the mean integrated squared error. The analysis was conducted 
using a fixed realisation of the latent signal ly  of length 1000m = , with data loss simulated under 

a completely random masking scheme at a 10% loss rate and a noise level 2 2 = .  
Missing observations were linearly interpolated prior to applying the convolution. To improve 

the stability of smoothing, a symmetric convolution with edge reflection was used. 
The Gaussian convolution was implemented in a fixed form, without further adaptation to the 

loss structure. RMSE was chosen as the accuracy metric, as it is more sensitive to extreme 
deviations and better captures the effects of over- or under-smoothing.  

The results of the study are presented in Fig. 4. 

 
Figure 4: RMSE as a function of kernel width c  for three nonparametric smoothing methods. 

Fig. 4 illustrates the variation in RMSE with respect to kernel width  1,6c  for nonparametric 

smoothing methods based on Gaussian, Epanechnikov, and Tricube kernels. For comparison, 
horizontal benchmark lines are included: the blue dashed line represents the accuracy of filtering 
based on formula (20), and the green dashed line represents analytical smoothing according to 
formulas (21), (22).  

All kernels exhibit the characteristic U-shaped RMSE curve, with optima within the range 

 2.5,3.5c . The Gaussian kernel, due to its global nature, achieves the lowest RMSE across the 

entire range, reaching a minimum of 1.08 at 2.5c = . The Tricube kernel shows similar behaviour, 
with a slightly higher minimum error of 1.12 at 3c = , indicating its effectiveness in local 
smoothing. The Epanechnikov kernel yields higher RMSE throughout the range, with a minimum 
of 1.22 at 3c = , attributed to its less aggressive smoothing compared to Tricube. None of the 



nonparametric methods surpass analytical smoothing in accuracy; however, Tricube approaches 
the filtering level (20) within its optimal range, making it a viable choice in scenarios where full 
model information is unavailable. 

In this study, the kernel bandwidth hh was selected empirically by evaluating RMSE across a 
range of candidate values on a fixed realisation of the latent process.  

As shown in Figure 4, smaller kernel widths were observed to produce lower RMSE values 
across all tested kernel types. Accordingly, the optimal value was selected as the smallest tested 
bandwidth ( 1h = ), which provided the best interpolation accuracy among the considered settings. 

-in estimators) were 
not applied, since their underlying assumptions  such as stationarity or observation 
independence  are not met in the context of temporally correlated and nonstationary sensor 
signals. In future work, we plan to incorporate adaptive mechanisms for bandwidth selection based 
on local signal density or variability. 

To qualitatively compare the nature of errors in the reconstruction of the latent process ly , 

error distributions ˆ
l l ly y = −  were constructed for filtering (formula (20)), analytical smoothing 

(formulas (21), (22)), and the nonparametric method based on the Gaussian kernel with 2.5c = , 
which was identified as the most accurate among nonparametric approaches according to the 
analysis summarised in Fig. 4. All methods were applied to the same signal realisation with 10% 

randomly missing values (MCAR scheme) and a noise level 2 2 = . For the nonparametric method, 
a fixed convolution was used without adaptation to the structure of the gaps, and missing values 
were preliminarily restored using linear interpolation.  

The resulting error histograms (see Fig. 5) were normalised to density (i.e. the area under each 
curve equals 1), ensuring a valid comparison of their shape regardless of the number of 
observations. Additionally, kernel density estimates (KDE) were superimposed using a Gaussian 

of histogram fluctuations and accurate assessment of symmetry, variability, and the presence of 
heavy tails in the error distributions. 

Filtering (blue curve) exhibits a symmetric but relatively wide error distribution, with a 
standard deviation of approximately 1.35. Analytical smoothing (green curve) has the narrowest 
profile, with a standard deviation of about 0.89, confirming the highest accuracy of this method. 
The Gaussian method (red curve) occupies an intermediate position, with a deviation of around 
1.07, demonstrating better accuracy than filtering while maintaining a simple convolution-based 
implementation. All distributions are centred near zero, indicating the absence of systematic bias in 
the estimates. Furthermore, no significant asymmetry or heavy tails are observed, confirming the 
stability of estimation across all three methods. Thus, the Gaussian method offers an effective 
compromise between accuracy and computational simplicity under conditions of partial data loss 
and uncertainty, although it does not reach the accuracy of smoothing based on the full analytical 
model. 

Overall, the results of numerical modelling confirm the practical adequacy of the mathematical 
framework developed in Section 2 (particularly formulas (11), (17)), and (20) (22)  for the task of 
interpolation-based data recovery in sensor-based IoT systems. The highest accuracy was achieved 
by analytical smoothing, for which RMSE remained below 0.9 even with 50% data loss (Fig. 3), 
while nonparametric recovery using the Gaussian kernel (formulas (23) (25)) approached the 
accuracy of filtering (20) under an optimal choice of kernel width (Fig. 4).  

All methods were tested under conditions simulating real-world scenarios of loss and noise in 
IoT environments  specifically, random zeroing of observations and the addition of additive noise 

with variance 2 2 = . This leads to the conclusion that the constructed estimation structures are 
not only theoretically well-founded but also practically effective for data reconstruction in unstable 
sensor networks. 

 



 
Figure 5: Error distributions ˆ

l l ly y = −  for Kalman filtering, analytical smoothing, and the 

nonparametric method. 

4. Conclusions 

The article successfully achieves the stated research objective  developing and theoretically 
substantiating a new combined approach to sensor data reconstruction in distributed IoT systems, 
enabling interpolation of values at points with partial or complete measurement loss. The proposed 
model integrates an analytical posterior density estimate based on recursive filtering and 
smoothing with nonparametric kernel smoothing of the conditional density. Unlike classical 
filtering methods, the construction of the posterior estimate incorporates both past and future 
measurements, ensuring the correct formation of interpolated values. The formal foundation of the 
proposed approach is expression (21), which combines forward and backward estimation 
components with subsequent nonparametric refinement as defined by formula (25). 

The scientific novelty of this study lies in the integration of a smoothing scheme with kernel-
based posterior density refinement without assuming model linearity or Gaussian noise 
characteristics. For the first time, a combined interpolation model is proposed that is suitable for 
implementation in weakly observable environments without requiring complete a priori 
information about the latent process dynamics. The method offers flexible adaptation to the local 
properties of the data through adjustable kernel width, while maintaining computational efficiency 
due to the recursive nature of the calculations. 

Numerical experiments demonstrated the high effectiveness of the proposed method compared 
to baseline approaches. Specifically, under conditions of 40% observation loss and a signal-to-noise 

and a 19% reduction relative to nonparametric smoothing based on the Gaussian kernel. At the 
same time, the results remained robust even under irregular temporal discretisation and the 
presence of isolated noise spikes. The study also revealed that the optimal kernel width parameter 
depends on the local density of observations, which may be further adapted automatically. 

The practical value of this work lies in the applicability of the proposed model under conditions 
of limited computational resources and energy consumption. The method does not require a pre-
training phase, making it suitable for a wide range of distributed IoT scenarios, including indoor 



microclimate monitoring systems, agricultural control, urban air quality monitoring, and thermal 
analysis of smart buildings. For instance, in LoRaWAN-type sensor networks, where packet loss 
may reach 30 50%, the proposed model enables automatic recovery of missing values without the 
need for retransmission requests or the use of large memory volumes. 

Among the limitations of the proposed approach, it is important to note its sensitivity to the 
choice of kernel type and bandwidth in cases of non-uniform temporal grids, which is particularly 
relevant for high-frequency or event-driven sensor streams. Additionally, the study does not cover 
scenarios involving multichannel correlated reconstruction or integration with anomaly detection 
mechanisms. 

In future work, the model is planned to be extended to cases of multidimensional sensor 
observations, with the inclusion of an adaptive mechanism for optimising smoothing parameters, 
as well as testing on real experimental data from open IoT platforms. An additional development 
direction involves designing a dynamic mechanism for estimating reconstruction error during 
system operation, which would enhance reliability in mission-critical applications. 
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