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Abstract 
The application of Natural Language Interfaces to Databases (NLIDB) serves as an important means of 
reducing the technical and IT competence requirements for database users. The objective of this study is 
the development and experimental evaluation of an NLIDB system that leverages a transformer-based 
architecture to generate SQL queries from user inputs formulated in natural language. The paper presents 
a generalized scheme of user interaction with the database via the NLIDB system and describes the main 
stages of input query preprocessing, including tokenization, embedding, positional encoding, and the 
architecture of the transformer-based neural network. The proposed model incorporates multi-head 
attention, which enables effective modeling of input query contexts, as well as the ADAM optimizer. The 
Spider corpus was utilized for training and evaluating the model. To assess the performance of the resulting 
model, in addition to accuracy, the BLEU metric was employed to quantitatively evaluate the degree of 
correspondence between the generated and expected queries, taking lexical similarity into account. The 
best experimental accuracy reached 69% using the BERT-base tokenizer and 63% with the basic Keras 
tokenizer. The highest BLEU score for the model with the BERT-base tokenizer was 46%, and 43.3% for the 
model with the basic Keras tokenizer. A comparative analysis demonstrated the competitiveness of the 
proposed model, indicating the effectiveness of the adopted solutions. The model performed best on simple 
and short queries, while the most challenging cases involved queries with literals that required inter-table 
relationships and domain-specific knowledge.  
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1. Introduction

The use of natural language as a means of interaction between humans and information or computer 
systems is one of the key research directions in the fields of data processing and artificial intelligence. 
One of the current challenges in Natural Language Processing (NLP) is the development of Natural 
Language Interfaces to Databases (NLIDB), which enable users to formulate queries in natural 
language without the need to know or use the Structured Query Language (SQL). A Natural 
Language Interface to Database is a system that provides users with a mechanism for transforming 
input text into SQL queries, thereby enabling natural language interaction with relational databases 
[1]. The integration of an NLIDB interface as an abstraction layer between users and relational 
database systems offers a key advantage  simplified interaction through natural language  and can 
be employed to lower the knowledge requirements for both developers and users of relational 
databases. The main purpose of embedding the NLIDB module into the architecture of an 
information system is to improve access to databases, facilitate interaction with information systems, 
and enhance overall user productivity. Practical applications of NLIDB include its use in business 
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contexts to simplify data access and improve analytics, as well as its integration with other intelligent 
technologies for automatic entity linking, sentiment analysis, and machine learning, with the goal of 
developing comprehensive solutions for business analytics and business process refactoring. The 
growing interest of the business sector in adopting this technology, particularly in combination with 
deep learning, underpins the rapid advancement and increasing popularity of NLIDB development 
tasks. 

The automatic generation of SQL queries from natural language text sequences is a complex task 
that requires precise analysis, contextual processing, and the transformation of unstructured text 
into formalized queries [2]. The accuracy of such transformations remains insufficient due to the 
inherent complexity of natural language, including word polysemy, syntactic variability, and 
semantic ambiguity. 

Significant progress in this field has been achieved by transitioning from rule-based and template-
based approaches to the application of neural networks and deep learning techniques. Currently, 
various types of recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are 
typically employed to solve natural language processing (NLP) tasks, including the Text-to-SQL 
problem. However, transformer-based neural networks are gradually replacing them due to their 
flexibility and high performance [3]. 

The objective of the present study is to design, adapt, and experimentally evaluate a transformer-
based architecture for the task of automatic SQL query generation from natural language text 
sequences. The research is based on the hypothesis that the transformer neural network architecture, 
equipped with a self-attention mechanism, can be effectively applied to the Text-to-SQL problem. 

2. Related works 

Prior to 2017, most natural language processing models relied on RNNs incorporating encoder
decoder mechanisms to capture contextual relationships and dependencies between words in a 
sentence. However, this approach demonstrated lower effectiveness compared to the statistical 
methods dominant at the time, leading to the prevailing belief that neural networks were not well-
suited for machine translation tasks. Moreover, RNN-based models suffered from a limitation in 
which the encoder tended to lose information from the beginning of the sequence if the input was 
too long [5]. For instance, the authors of [6] achieved only 36% BLEU score for their proposed 
Seq2Seq-based NLIDB model. Another model, NL2pSQL [7], implemented using a sequence-to-
sequence architecture, improved the BLEU score from 27% to 31% by incorporating a denoising 
autoencoder mechanism. In [8], a model based on Long Short-Term Memory (LSTM) with two 
hidden layers and a dual-encoder mechanism, trained and evaluated on the SENLIDB and WikiSQL 
datasets, achieved an accuracy of 38.99% on the test set. Various strategies were employed to improve 
neural network performance, such as the use of bidirectional recurrent neural networks [9]. 
However, even in these cases, information from the middle of long sequences was often lost. Another 
significant drawback was the necessity for the encoder to compress the entire input sequence into a 
single hidden state vector, which adversely affected translation quality.  

A breakthrough in addressing the limitations of recurrent neural networks (RNNs) emerged in 
2015 with the introduction of the Attention mechanism, which was integrated into existing RNN 
architectures. This mechanism enabled models to assign weights to different parts of the input 
sequence regardless of their position, thereby allowing for a more flexible and context-aware 
processing of input data [10]. The implementation of attention significantly mitigated issues related 
to information loss in long sequences and the constraint of encoding the entire sentence into a single 
hidden state vector [11]. 

NLIDB models such as SQLova, described in [12], and IRNet [13], which are based on attention-
enhanced bi-directional LSTM architectures, demonstrated considerable performance gains, 
achieving 80% accuracy on the WikiSQL dataset [12] and 53% accuracy on the Spider test set [13], 
respectively. In [14], the integration of a self-attention mechanism into an LSTM-based neural 
network led to translation accuracies ranging from 32% to 60% for natural language to SQL queries. 



In 2017, a novel neural network architecture called the Transformer was introduced in [15]. This 
model proposed a new paradigm that eliminated the need for recurrent components entirely, relying 
solely on attention mechanisms and thereby avoiding sequential computation. This marked a 
significant advancement in the fields of natural language processing and deep learning [16]. The 
Transformer architecture substantially improved training speed and model efficiency, particularly 
when applied to large-scale datasets [17]. Transformer models opened a new frontier in data 
processing  especially textual data  and redefined the methodology for tackling NLP tasks. 

The Transformer model has become one of the most prominent architectures for Natural 
Language Inference (NLI) tasks [18], which encompass a wide range of NLIDB-related challenges. 
Studies [8 15] report on the development, evaluation, and performance analysis of various neural 
network models, including TaPEx, which achieved 57 89% accuracy on the WikiSQL dataset [19], 
and SQL-PaLM [20], which demonstrated 77% execution accuracy on short queries from the Spider 
dataset. The SPSQL model, introduced in [21], reported an impressive 95% accuracy; however, this 
high recognition rate was attained on a significantly restricted dataset. Specifically, the experiments 
were conducted using a single database consisting of 37 tables, and the training and testing datasets 
included only 9,792 and 1,088 query pairs, respectively. In [22], the authors proposed the STAR 
framework, which leverages transformer-based pre-training and a self-attention mechanism to 
encode both text and SQL queries. This approach achieved 46.6% and 28.2% on the Interaction Match 
metric for the SParC and CoSQL test datasets, respectively. The RASAT model [23] extends a 
pretrained Seq2Seq transformer architecture and demonstrated execution accuracies of 37.4% and 
52.6% on the CoSQL and SParC benchmarks, respectively.  

An important milestone in the development of NLIDB is the modifications of the Transformer 
model, for example, the Bidirectional Encoder Representations from Transformers (BERT) model. It 
is based on the Transformer model, the improvements of which allow this model to more accurately 
understand the context through the analysis of sequences in two directions. Transformer and BERT 
architectures allows systems to analyze more complex phrases, better understand context, and form 
queries that require a deeper understanding of language. Model RAT-SQL [24] integrates BERT and 
demonstrates 65.6% accuracy on the Spider benchmark dataset. SDSQL [25] is a transformer-based 
model that incorporates BERT as a pre-trained encoder to generate rich contextual embeddings.  

Its developers achieved up to 85% Logical Form Accuracy on the Spider test dataset. 
The results of recent studies demonstrate that, despite the original purpose of Transformer models 
being sequence-to-sequence translation, their application in the task of NLIDB proves to be a 
promising direction and remains a relevant scientific and practical challenge.  

3. Proposed methodology 

The implementation of the proposed task was carried out in several stages: data preprocessing, 
Transformer model development, evaluation of the obtained results, and optimization of the model 
architecture. To construct the model, both BERT tokenizers and the basic Keras tokenizer were 
employed to ensure high-quality vector representations of natural language input queries. The 
decoder was implemented based on the classical Transformer architecture, enabling efficient 
generation of SQL queries through step-by-step construction of output sequence tokens. 

performance on multi-table schemas with complex joins, nested queries, and aggregations. The 
neural network was trained using the Adam optimizer, with categorical cross-entropy selected as 
the loss function. A series of experiments was conducted to determine the optimal model 
hyperparameters, including the number of Transformer layers, the dimensionality of hidden vectors, 
the number of attention heads, batch size, and the number of training epochs. 

To quantitatively assess the proposed model, accuracy and the BLEU score (adapted for the Text-
to-SQL task) were used as evaluation metrics. 



4. Results 

The primary type of data storage in modern information systems is the relational database, in which 
data are stored in the form of interrelated tables. While the use of SQL remains an effective tool for 
interacting with databases, it requires technical expertise and knowledge of the underlying database 
structure. The application of a Natural Language Interface to Database (NLIDB) helps reduce the 
entry barrier for using information systems and enhances data accessibility and usability, as it 
enables users to interact with databases using natural language. Text-to-SQL is one of the approaches 
to implementing NLIDB. It involves the automatic transformation of a natural language query into 
an executable SQL query over a relational database. A generalized schema of the Text-to-SQL 
problem implementation is presented in Figure 1.  

 

Figure 1: Generalized scheme of user-database interaction using NLIDB. 

In the generalized case, the architecture of a neural network applied to solve the Text-to-SQL 
problem and enable the conversion of an input natural language text sequence into output SQL 
queries includes mandatory components such as:  

• encoder  is a set of neural modules that provide taking of words from the input sequence 
by turns and formation of one or more hidden states characterizing the input sequence; 

• decoder  is a collection of neural modules, that use the hidden state of the encoder to predict 
the result; 

• components for translating natural language sentences to SQL queries.  

The application of the Transformer model involves performing the following data preprocessing 
operations: tokenization, embedding, and positional encoding, the result of which is data prepared 
for input into the neural network.  

4.1. Preprocessing stages 

Tokenization plays an important role in sequence transformation problems. It is used to divide the 
input and output sequences into separate elements called tokens. A token can represent a word, word 
substring, or even a character, depending on the level of detail required. Tokenization methods vary 
depending on the details of the text breaking and the specific requirements of the task. During the 
development of the proposed NN model, both general and individual tokenizers were used to perform 
textual sequences to the form of tensors. In the development and testing process the BERT tokenizer 
was implemented. The developed and implemented into the NN tokenization algorithm can be 
realized in the following basic steps: 

1. The initial textual sequence is encoded using a tokenizer, single for the input sequence, or 
separate for each of them. 

2. The tokenizer denotes the beginning and the end of each sequence with < sos > and < eos > 
(start of sentence, end of sentence) markers. 

3. The first token sent to the decoder is the sequence start label (< sos >). 
4. The decoder creates a prediction by checking the output self-  
5. The predicted token is then fed back to the decoder input. This operation is repeated until 

the model displays a label about the end of the sequence (< eos >). 



The input sentence, presented in natural language, is transformed into numerical representations 
known as embeddings. Embeddings capture the semantic meaning of tokens within the input 
sequence. Through embedding, the input tokens are converted into their corresponding vector 
representations. The key parameters of this process include the vocabulary size V and the embedding 
vector dimension d. The embedding process can be described as follows:  

𝐸(𝑥𝑖) = 𝑊𝐸 ∙ 𝑜𝑖, (1) 

where xi  is the i-th input token, WE  is the embedding matrix, that can be described as 𝐸 =

𝑊𝐸 ∈ 𝑅𝑉×𝑑𝑚𝑜𝑑𝑒𝑙 , oi  is a one-hot vector for the token xi. 
The embedding mechanism is employed only in the lowest block of the encoder. Each encoder 

layer receives as input a vector whose size is a global parameter of the network and typically 
corresponds to the length of the longest sentence. The main parameters of the embedding are: 

• the number of unique words or categories in the given dataset; 
• the dimensionality of the vector space into which the words are embedded. This value is user-

defined and serves as a hyperparameter of the model; 
• the length of input sequences, i.e., the number of words in each input example. This 

parameter helps to fix the size of input sequences for more consistent processing by the 
model. 

To handle the problem of different occurrences of the same word, positional encoding is used  
vectors that represent the context of a word within the sequence. Positional encoding is added to the 
embedded tokens before their input to the model. It provides the model with information indicating 
the position or relative distance between tokens in the sequence. This is crucial because transformers 
lack recurrence or convolution mechanisms. For each position p and embedding dimension i:  

𝑃𝐸(𝑝, 2𝑖) = sin (
𝑝

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

), 

𝑃𝐸(𝑝, 2𝑖 + 1) = cos (
𝑝

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

), 

(2) 

where p  is a position of the token in the sequence.  
The result of positional encoding is a matrix of the same size as the token embeddings, containing 

encoded positional information. 

4.2. Transformer-based architecture  

Transformers consist of multiple layers that progressively refine data representations, enabling the 
capture of hierarchical and abstract features. When conceptualized as a black box, the internal 
structure of the model comprises two main components: the encoder and the decoder, within which 
transformer blocks are implemented, with the attention layer serving as the core mechanism. Figure 
2 illustrates the architecture of the transformer-based neural network.  

The encoder is the part of the neural network responsible for processing the input message, while 
te the output sequence. In the Text-to-SQL task, the encoder is 

used to transform the input text into representations that preserve the semantics of the database 
query. The encoder receives vector representations of the input tokens and processes them through 
multiple layers. In turn, the decoder takes the processed input sequence from the encoder and 
translates it into SQL queries. The use of the encoder and decoder, along with data normalization 
through the application of a softmax layer, enables the transformation of natural language input text 
into syntactically correct SQL queries. 

A key architectural difference in the decoder is the presence of an additional attention block, 
which helps the decoder attend to relevant parts of the input sentence. To construct a Transformer 



model, it is necessary to combine the encoder and decoder components and add, after the decoder 
output, a linear layer whose output size equals the target language vocabulary, followed by a softmax 
layer. Each transformer block consists of two main parts: self-attention and a feed-forward network. 
The input data first passes through the self-attention layer, which enables the model to consider 
other words in the sequence while encoding the current word. Subsequently, the output from this 
layer is fed into a fully connected feed-forward neural network, which remains the same across all 
layers. 

 

Figure 2: Transformer-based architecture. 

The generalized algorithm for applying the transformer in the Text-to-SQL task consists of the 
following steps: 

1. The input text, presented in natural language, is converted into a tokenized sequence. 
2. The transformer processes this sequence by utilizing the following layers:  

a. Multi-Head Attention: determines relationships between tokens. 
b. Add layer: incorporates a residual connection where the output of the attention mechanism 
is added to the original tensor. 
c. Layer Normalization: stabilizes the data after the attention layer. 
d. Feed-Forward Network: performs a nonlinear transformation. 
e. Add layer: incorporates a residual connection where the output of the Feed-Forward 
Network layer is added to its input via an Add operation to preserve essential information 
from the previous layer. 
f. Layer Normalization: again stabilizes the data. 

3. The resulting vector representation is decoded into an SQL query.  

4.2.1. Self-attention mechanism implementation 

The self-
text during the generation of the output translation [22]. During training on a large dataset, the 
model internalizes this understanding. The self-attention mechanism allows each word to 
simultaneously attend to other words in the sequence, considering their importance relative to the 
current token. Thus, it can be argued that machine learning models can learn grammatical rules 
based on the statistical probabilities of word usage in language. To implement the self-attention 
mechanism, three vectors corresponding to each encoder vector must be created: Q={q1,...,qn}  is a 
set of queries, K={k1,...,km}  is a set of keys, V={v1,...,vi}  is a set of values. These vectors are formed 



by multiplying the embedding by three weight matrices WQ, WK, WV corresponding to queries, keys, 
and values, respectively:  

𝑄 = 𝑋 ∙ 𝑊𝑄 ,       𝐾 = 𝑋 ∙ 𝑊𝐾 ,       𝑉 = 𝑋 ∙ 𝑊𝑉 ,   (4) 

where X  matrix of embedding vectors of input tokens. 
Self-attention calculation is carried as:  

𝑆 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄 ∗ 𝐾𝑇

√𝑑𝑘

𝑉. (5) 

The generalized algorithm for applying the self-attention mechanism involves the following 
steps: 

1. Calculation of the attention score for each current token, which is the result of the dot 
product between the query vector Q and the keys vector K of the current word. 

2. Scaling of scores. To avoid excessively large values, the scores are divided by the square root 
of the vector dimension 

3. The softmax function is applied to normalize the scores into the range between 0 and 1. 
4. The resulting attention weights are applied to the value vectors V for each token. 

This result represents a weighted representation of the input sequence, where the importance of 
each token is considered in the context of others. In this work, the basic attention mechanism was 
implemented, and all other attention mechanisms in the model inherited its implementation. 
Moreover, since it is necessary to determine not only the weight of each word in a sentence but also 
its relationship with other words, for each word it is necessary to compute multiple self-attention 
vectors and then calculate their arithmetic mean. This process is called Multi-Head Attention. The 
main parameters of Multi-Head Attention are: 

• number of heads in the attention mechanism. Each attention head hi has its own query vector, 
key and value ∀ℎ𝑖, ∃𝑄𝑖 , 𝐾𝑖, 𝑉𝑖; 

• size of the keys set and values for each head, that usually obtained by dividing the total size 
of the layer by the number of self-attention heads; 

•  dimension of the values set for each block, calculated as a result of division of the total layer 
size by the number of self-attention heads; 

•  dropout probability for block responses before combining them into the final output.  

After passing through n multi-head attention blocks, n matrices were obtained, one from each block. 
The computed results for each head hi were concatenated and passed through an additional linear 
transformation:  

𝑀𝐻𝐴 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ1, ℎ2, . . , ℎ𝑛)𝑊𝑜,   (6) 

where Wo  is the weight matrix for combining the heads. 
The attention block that connects the encoder and decoder parts is the most significant use of 

attention in the model and performs the task of identifying dependencies between the input and 
output sequences. In the developed model, this layer was termed Cross-Attention and implemented 
by passing the target sequence X as the query vector Q, and the context from the encoder as the key 
K and value V vectors.  

4.2.2. Adaptive moment estimate algorithm 

Transformer models are trained using supervised learning by minimizing a loss function. During 

vocabulary is first created, which consists of a vector of words as well as a vector indicating each 
word in the vocabulary. For model training, the decision was made to apply the Adaptive Moment 



Estimation (ADAM) optimization algorithm, which combines the concepts of two other methods  
Momentum and RMSProp  
to compute individual learning rates for each parameter. To stabilize the training process and reduce 
oscillations, exponentially weighted moving averages of the gradients and their squares are used:  

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡, 
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡

2, 
(7) 

where mt   the first moment, vt   the second moment, gt   the gradient of the current mini-
batch,  1  2  are the coefficients for the first and second moments, respectively. 

It implements correction of NN learning speed using the formula:  

𝑟𝑎𝑡𝑒 = 𝑑𝑚𝑜𝑑𝑒𝑙
−0.5 min(𝑠𝑡𝑒𝑝𝑛𝑢𝑚

−0.5, 𝑠𝑡𝑒𝑝𝑛𝑢𝑚 ∙ 𝑤𝑎𝑟𝑚𝑢𝑝𝑠𝑡𝑒𝑝𝑠
−1.5).  (8) 

ADAM has adaptive gradient descent properties and adapts the learning rate for each parameter, 
using an exponentially weighted average squared gradient, that allows to control the amplitude of 
updating weights effectively. The learning rate diagram of the developed model is shown in Fig. 3. 

 

Figure 3: Learning rate for the proposed transformer-based neural network. 

5. Experiments 

For the development and testing of neural models, the Kaggle environment was chosen. This 
development platform provides cloud-based development and application deployment, offering fast 
graphical accelerators that significantly speed up the training of various models. Another advantage 
of this service is the ability to save input data within the project. Such data may include training 
datasets as well as saved and trained models, which allow using the model without retraining it from 
scratch. 

For the experiments, it was decided to use 8 self-attention blocks, varying the number of layers 
(from 4 to 6), embedding vector sizes (from 128 to 512), and the dimensionality of the feed-forward 
network layer (from 512 to 2048). Compared to WikiSQL, the SQL syntax in the Spider dataset is 
more complex and diverse. Spider is a large-scale collection of interdomain semantic analysis and 
textual SQL datasets. The aim of using Spider is to develop natural language interfaces for 
interdomain databases. The Spider training set contains 10,181 questions and 5,693 unique complex 
SQL queries for 200 databases with multiple tables, covering 138 different data domains. The Spider 
dataset includes the use of JOIN operations, aggregate functions, nested subqueries, string and date 
operations, as well as operators such as LIKE, IN, and BETWEEN, which are especially useful for 



implementing real-world NLIDB systems. Spider has SQL queries of varying complexity, as well as 
sets with databases for NNs learning and testing. The Spider dataset consists of the following data: 

• db_id  is a database identifier;  
• question  is a query in natural language;  
• question_toks  is a query in a natural language divided into tokens; 
• query  is a SQL-query; 
• query_toks_no_value  is a natural language query divided into tokens, where the 

parameters for conditional con  mask; 
• query_toks  is a natural language query;  
• sql  additional parameters related to query parameters (query type, availability of conditions 

or aggregation, parameters for conditional operators). 

In a series of experiments using the Spider dataset, the field question was translated into the field 
query. Additionally, the query_toks_no_value field was used to transform natural language into an 
SQL query, where conditional parameters were replaced with the mask "value." Subsequently, these 
masks were substituted with specific values using auxiliary neural networks or syntactic analysis of 
the input sequence. For the insertion of conditional operator values, semantic analyzers and regular 
expressions were employed to identify numerical values or substrings within the input sequence. 
Table 1 presents the identified optimal hyperparameters of the model. 

Table 1 
Optimal model hyperparameters 

To analyze and compare the accuracy of each model, translation was performed on the first 100 
pairs from the test set of the given dataset. This sample size was chosen due to the relatively long 
generation time of the neural model, while enabling an object
performance. The loss function and execution accuracy of the proposed model using the BERT-base 
tokenizer are presented in Figure 4. These graphs serve as important tools for monitoring and 
diagnosing the training process of the model and assist in making informed decisions regarding 
hyperparameter optimization and architectural improvements. During training, the neural model 
trained with Spider dataset demonstrated a gradual decrease in loss function and increased accuracy 
on the training sample. 

Analyzing the loss function graph, it can be concluded that the proposed model trains well on the 
training data, with its error decreasing accordingly. However, the validation loss initially decreases 
but begins to increase after the 6th epoch, indicating model overfitting and a loss of generalization 
capability on new, unseen data. Since the minimum validation loss is reached approximately at the 
6th epoch, this may indicate an optimal point to stop training in order to prevent further overfitting. 

Training accuracy steadily increases, consistent with the decrease in training loss, confirming 
that the model becomes progressively more accurate. Validation accuracy also rises during the initial 
epochs but then plateaus, further confirming the presence of overfitting. Although the model 
continues to improve performance on the training data, its generalization ability on new data either 

Parameter Value 
Number of layers 6 

Embedding vector size 256 
Feed-forward network dimension 1024 

Number of heads 8 
Dropout 0,1 

Tokenizer BERT-base-uncased, 
Basic keras tokenizer 



stagnates or increases very slowly. The highest accuracy achieved by the model using the BERT-base 
tokenizer was 69%, compared to 63% using the basic tokenizer. 

  

a) 

 

b) 

Figure 4: Diagrams for the model: a) loss, b) accuracy. 

In addition to accuracy values, criteria that assess the naturalness of translation are used to 
evaluate the quality of neural translation. To assess the quality of results obtained using a 
transformer-based neural network, this work employed the Bilingual Evaluation Understudy (BLEU) 
metric in the context of the Text-to-SQL task. This metric measures the similarity between the 
translation and the original text based on a statistical analysis of word overlap. To apply the BLEU 
metric for evaluating the quality of NLIDB, it is necessary to implement the following steps: 

1. The predicted and reference text are tokenized into separate words or phrases. SQL queries 
are tokenized by keywords, operators, and values (e.g., SELECT, FROM, WHERE, =, numbers, 
and identifiers). Some  

2. Each token is given weight depending on its length. 



3. BLEU calculates the number of n-grams (n token sequences) in the generated translation, 
which are also found in reference SQL-query.  

4. BLEU calculates the accuracy of the generated translation by comparing the number of n-
grams matches in the predicted SQL-query and reference one.  

5. Accuracy is calculated for different levels of n-grams (usually from 1 to 4), and then combined 
into arithmetic mean to obtain the final BLEU score. In this work, bigrams were used for the 
BLEU calculation. 

Table 2 
Some examples of the used queries with Spider dataset 

To prevent overestimation due to repetitions in the generated query, the frequency of n-grams in 
the hypothesis is limited by their frequency in the references. The BLEU metric value is defined as:  

𝐵𝐿𝐸𝑈 = BP ∙ exp (∑ 𝑤𝑛𝑙𝑜𝑔𝑃𝑛

𝑁

𝑛−1

), 
(9) 

where wn  are weights for each n-gram, BP stands for Brevity Penalty, which is used as a length 
penalty. The purpose of applying BP is to reduce the score of short queries that may have high 
precision. BP is defined by the following condition:  

𝐵𝑃 = {

1, 𝑖𝑓 𝑆𝑄𝐿 − 𝑞𝑢𝑒𝑟𝑦 𝑙𝑒𝑛𝑡ℎ ≥ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ,

𝑒𝑥𝑝 (1 −
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑠𝑞𝑙 − 𝑞𝑢𝑒𝑟𝑦 𝑙𝑒𝑛𝑔𝑡ℎ
) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 
(10) 

Analyzing the chosen combinations of NN parameters using the BLEU metric, the most accurate 
was a medium-sized with a BERT tokenizer NN model trained on the Spider dataset. Its BLEU score 
is 46% for the first 100 test sample conversions. A similar NN model with a basic tokenizer reached 
a BERT score of 43.3%.  

Comparative analysis of the obtained results with neural network models tested on the different 
datasets is presents in the Table 3. 

The presented model underperforms compared to SQL-PaLM [20] and SDSQL [25], which achieve 
accuracies of 77% and 85%, respectively; however, these models are significantly larger, employ large-
scale fine-tuning, or incorporate built-in context. In other cases, the proposed model demonstrates 
competitive accuracy, which may indicate the effectiveness of the proposed design solutions. The 
accuracy of SQL query generation strongly depends on the neural network architecture, its 
hyperparameters, and the training algorithm. The use of neural network models enhances the power 
of NLIDB systems, making them more adaptable to various types of databases and improving their 
ability to interpret unstructured information. The diversity of proposed architectures and 

Initial textual sequence Reference SQL-query Predicted SQl-query 
Training 

How many departments are 
led by heads who are not 
mentioned? 

select count ( * ) from 
department where 
department_id not in ( select 
department_id from 
management ) 

select count ( * ) from 
department where department 
_ id not in ( select department 
_ id from department ) 

Count the number of farms select count ( * ) from farm select count ( * ) from farm 
Testing 

How many concerts are there 
in year 2014 or 2015? 

select count ( * ) from concert 
where YEAR  =  2014 OR 
YEAR  =  2015 

select count ( * ) from 
campuses where year = 2014 
or year = 2015 

How many singers are from 
each country? 

select country , count ( * ) 
from singer group by country 

select country, count ( * ) from 
artist group by country 



implementation approaches underscores the relevance of finding effective solutions for translating 
natural language into SQL queries. 

Table 3 
Comparative analysis results 

The described model performed well in translating simple queries to tables used during training. 
The most problematic queries were: 

1. Complex queries requiring joins between tables. When training and test sets contained 
queries related to different entities, the model sometimes failed to understand which entities 
to use, despite generating a structurally correct query. 
Queries containing constant values and keywords. Unmasked values for conditional 
operators did not distinguish values in the natural language query, resulting in incorrect 
outputs. 

Possible ways to improve the accuracy of the developed model include:  

1. Extracting specific words and entities from natural language queries in full. This approach 
removes from the natural language sequence those words that characterize important parts 
of the query, such as query type, target table, condition types, grouping, and table joins. After 
extracting these components, the query can be constructed according to a predefined 
template. 

2. Training the model on database schemas, so that given existing entities, the model can 
recognize which words correspond to field and table names, identify their associated 
databases, understand relationships between tables, and recognize dynamic values used, for 
example, in conditional operators. 

Regarding the strategy for improving model training, the authors consider it appropriate to 
implement Early Stopping to prevent overfitting and Data Augmentation by transforming existing 
data, which will be addressed in future research. 

6. Conclusion 

The main task of the NLIDB system developer is to implement functionality that allows to establish 
human-system interaction, so user queries are recognizable, can be turned into SQL command and 
provides the correct and expected results. Overall, the development of NLIDB systems can be justified 
by the need to improve data accessibility, facilitate interaction with information systems, and 
enhance user productivity. The task of creating an NLIDB system can be approached algorithmically 
in a manner analogous to automatic natural language translation, with the key distinction that the 

Model Architecture type Accuracy,% Dataset BLEU, % 
Presented model Transformer-based 69 Spider 46 
Neural model [6] RNN - Spider 36 
NL2pSQL [7] RNN - Spider 31 
IRNet [13] Attention-based bi-LSTM 53 Spider - 
SQL-PaLM [19]  Transformer-based 77 Spider - 
STAR [22] Pre-trained transformer-based  46.6 SParC - 
STAR [22] Pre-trained transformer-based  28.2 CoSQL - 
RASAT [23] Transformer-based 37.4 CoSQL - 
RASAT [23] Transformer-based 52.6 SparC - 
RAT-SQL [24] Transformer-based + BERT 65.6 Spider - 
SDSQL [25] Transformer-based + BERT 85 Spider - 



target language is not a natural language but the structured query language SQL. This implies that 
machine translation technologies can be adapted to transform textual queries into SQL. 

In the present work, the application of a transformer-based neural network architecture for the 
task of automatic SQL query generation from natural language text sequences (Text-to-SQL), which 
constitutes a core component of NLIDB systems, was proposed. The objective of the study was to 
develop and adapt a transformer-based architecture for the efficient conversion of natural language 
queries into formalized SQL statements. 

Although transformers are most commonly utilized for translation between natural languages, 
experimental results on the Spider dataset demonstrated the potential of the proposed architecture 
in solving the Text-to-SQL task. The highest achieved model accuracy using the BERT-base tokenizer 
was 69%, while using the basic Keras tokenizer it reached 63%. To evaluate the quality of the 
translation from natural language queries to SQL, the BLEU metric adapted for the Text-to-SQL task 
was additionally employed, enabling the assessment of similarity between generated SQL queries 
and reference queries. The use of BLEU allowed a quantitative estimation of the correspondence of 
generated queries to the expected results, taking lexical similarity into account. The highest BLEU 
score for the model with the BERT-base tokenizer was 46%, and 43.3% for the model with the basic 
Keras tokenizer. 

Analysis of the obtained results revealed certain limitations of the developed model, particularly 
in handling complex SQL queries involving multiple table joins and non-standard conditional 
operator values. The model exhibited better performance on simpler queries to tables represented in 
the training dataset. To further improve accuracy and generalization capability, it is advisable to 
apply methods for extracting key entities from natural language queries, to train the model on 
database schemas for better understanding of context and relationships between tables, as well as to 
implement Early Stopping and Data Augmentation strategies to prevent overfitting. 

Declaration on Generative AI 

The authors have not employed any Generative AI tools. 
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