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Abstract 
The research develops a hybrid model for the helicopter turboshaft engine gas temperature sensor readings 
predicting and correcting, which combines machine learning algorithms and a cyber-physical infrastructure 
(CPS) to improve the monitoring accuracy and adaptive response to changes in the engine operating mode. 

into account both the measurement noise stochastic components and the therocouple slow thermodynamic 
sh -processing, which smooths out high-frequency 

by the network through weighted fusion with a 
confidence coefficient k, which ensures the accumulated drift is almost completely eliminated while 
maintaining performance. The CPS infrastructure is used, which includes a secure communication channel 

shown that the telemetry delivery time grows linearly fro n amount of S 
at S 
experiments have demonstrated the proposed architecture's high efficiency: the adjusted temperature 
cur

with traditional LSTM, RBF network, and three-layer perceptron confirmed the proposed solution's 
superiority in accuracy (0.991), recall (0.985), and F1 measure (0.986) terms. The obtained results show that 
the hybrid approach provides reliable engine health diagnostics and can form the basis for developing a 
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1. Introduction

Modern helicopter turboshaft engines (TE) place high demands on the operating process, monitoring 
key parameters for accuracy and efficiency [1]. One of the most critical indicators is the gas 
temperature in front of the compressor turbine, which directly affects the engine efficiency, its 
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components' service life, and flight safety [2]. Traditional thermocouple sensors [3, 4], despite their 
production technologies' development, are subject to errors, aging, and an aggressive environmental 
influence, which entails measurement distortion and a decrease in the engine's actual state 
assessment reliability. 

readings is becoming especially relevant. On the one hand, neural networks [5] are capable of taking 
al flight and test data, forming more 

accurate estimates of probable temperature values. On the other hand, the CPS infrastructure (cyber-
physical systems) use [6] ensures continuous data exchange between physical sensors and 
computing modules in real time, which allows not only to correct current readings but also to 
adaptively respond to changes in the engine operating mode.  

The neural network technologies and CPS infrastructure integration are becoming critically 
important for increasing helicopter TE reliability: by continuously combining analytical models and 
real data, it is possible to promptly identify deviations in the 
emergencies, and adaptively adjust engine operating parameters. The introduction of such hybrid 
solutions not only helps reduce the unscheduled repairs and extend the components' service life but 
also increases the aircraft's overall cost-effectiveness. 

Thus, the hybrid model development for predicting and correcting temperature readings directly 
meets modern requirements for helicopter TE safety, efficiency, and intellectualization control. 

2. Related works

In studies [2, 4, 7], the traditional approach to modeling and assessing the gas temperature in 
helicopter GTEs is based on the heat exchange and gas flow dynamics physical laws. Such models 
(gas-dynamic, thermophysical) provide an approximation in steady-state modes at the 90...92 % level 
but demonstrate significant errors (up to 5 %) under transient conditions and due to the 
thermocouples' own imperfection (drift due to corrosion, thermal shock, etc.). At the same time, 
classical error compensation algorithms [8] usually rely on linear calibration and do not take into 
account complex nonlinear interactions, which leads to insufficient accuracy (up to 80%) and a slow 
response to changes in the engine operating mode. 

With the machine learning methods, studies have emerged on the use of neural networks to 
correct temperature sensor data. In particular, multilayer perceptrons [9] and recurrent neural 
networks [10] trained on historical data from takeoff, idle, and cruise modes are considered. Such 

complex nonlinearities, but they often have difficulty generalizing beyond the training dataset and 
require large labeled data sets, which acquisition in aviation conditions is associated with high costs. 

In parallel, the cyber-physical systems (CPS) direction for aviation equipment is actively 
developing: distributed architectures are being created that are capable of combining telemetry 
streams from various sensors, onboard computing modules, and headquarters storages in real time 
[11, 12]. The CPS infrastructure ensures reliable and scalable data transmission, flexible deployment 
of analysis algorithms (edge computing on board and cloud analytics), and a high degree. However, 
existing CPS solutions [11, 

-
Research combining machine learning and CPS is still mostly conceptual or demonstrated in 

laboratory setups: helicopter TE digital twins are created with embedded neural network blocks to 
predict failures and modes of destabilization [13]. However, most of them focus on large-sized 
stationary installations (thermal power plants [14], gas pumping stations [15]) and are poorly 
adapted to the helicopter TE-specific features of limited computing resources of onboard computers, 
high vibration levels and thermal effects, and strict requirements for data transmission and 
processing delays. 

Among the unanswered questions, the following are particularly relevant: how to automatically 



conditions change; how to optimally distribute computing resources between onboard and ground 
systems (edge-cloud), taking into account delays and transmitted data amounts; and how to 
guarantee the reliability and the CPS infrastructure cybersecurity, ensuring the telemetry protection 
and model updates even in combat or emergency situations. 

Thus, the hybrid model combining the development of a neural network (to account for complex 
nonlinearities and predict error-free values) and a CPS infrastructure (to collect, transmit, and 
flexibly process data in real time) allows us to close these gaps. Such a system will make it possible 
to automatically compensate for thermocouple drift, continuously adapt to new modes, and perform 

the helicopter TE gas temperature monitoring accuracy and reliability. 

3. Proposed model 

3.1. The basic model development 

This study proposes a hybrid model structural diagram for the helicopter TE gas temperature sensor 
readings predicting and correcting using neural networks and a CPS infrastructure (Figure 1), 

predicting 
adaptation, which ensures resistance to sensor degradation and adaptability to operating conditions. 
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Figure 1: The developed hybrid model for predicting and correcting gas temperature sensor readings 
structural diagram. (  research). 

The helicopter TE gas temperature sensor is the primary element measuring the temperature in 

preprocessing module (Edge) filters, normalizes, and aggregates the data. It removes anomalies and 
determines the signal's validity. It prepares inputs for intelligent algorithms. The sensor drift 
detection module (Edge) compares the current signals with the reference profiles, identifies 
deviations caused by thermocouple aging or environmental influences, and activates correction or 
transmits an alarm. The temperature prediction neural network (Edge) uses historical and current 

combines 
the measured value, the neural network predicting, and the drift estimate. It produces a final 
corrected temperature value suitable for use by the engine control system. The output to the engine 
management system transmits the corrected temperature value to the engine regulation and 
monitoring system. 

 
telemetry between on-board and cloud modules, cloud analytics with data storage for long-term 
analysis, trend detection and fault diagnostics, and a module for automatic retraining of the neural 
network on new data with adaptation to new operating modes and subsequent delivery of the 
updated model back to the on-board computers. 
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The study developed a hybrid model mathematical formulation, reflecting all the diagram key 
blocks (Figure 1). It is assumed that ytrue(t) is the true gas temperature at time t, ymeas(t) is the 

d(t) is the sensor drift, n(t) is the measurement noise, ( )d t  and ( )nn
y t  

are the drift and true temperature estimates issued by the corresponding modules. 
The sensor reading model is described by the expression: 

( ) ( ) ( ) ( ).meas truey t y t d t n t= + +  (1) 

Based on [16], in this study the noise is represented as Gaussian: 

( ) ( )20, .nn t N   (2) 

The drift d(t) is described, for example, by a stochastic diffusion process [17] in the form: 

( )
( ) ( ) ,

dd t
d t t

dt
  =  + +  ( ) ( )20, .t N    (3) 

Preprocessing (filtering) includes low-pass approximation using an RC filter [18], represented by 
the expression: 

( )
( ) ( ) ,meas

dz t
z t y t

dt
  + =  ( ) ( )0 0 ,measz y=  (4) 

where z(t) is the smoothed signal. 
In the drift detection module, a comparison with the reference profile yref(t) is performed as: 

( ) ( ) ( ).d refe t z t y t= −  (5) 

In this case, the threshold logic is defined as: 

( )
( ) ( )

( ) otherwise

,if ,

, .

d de t e t
d t

d t t

 
= 

− 

 (6) 

The neural network predicts the gas temperature according to the feature vector: 

( ) ( ) ( ) ( ), , ,... ,t z t z t P t=   x  (7) 

where P(t) are other engine parameters.  
Based on [19, 20], in this study, the prediction neural network is implemented by a recurrent 

model (LSTM) as: 

( ) ( ) ( )( )LSTM , , ,t t t t= −h x h W  (8) 

The neural network is trained by minimizing the loss function: 

( ) ( ) ( )( )
2 2

0

, , .

T

truennL b y t y t dt = − + W V W  (9) 

In the correction and merge module, the final score is determined as: 

( ) ( ) ( ) ( ) ( )( )
local adaptive corr

driftneural
net

i
work

ect on

,corr nn nn
y t y t d t k z t y t= + +  −  

(10) 

where k ∈ [0, 1] is the confidence coefficient for the raw data. 



3.2. The CPS infrastructure and retraining model development 

The data flow from the board to the cloud is encrypted using the SSL/TLS protocol, and the channel 
throughput and latency are described by the equation: 

( ) ( ) ( ) ( ) 
SSL/TLS

, , , CloudStorage,nnt z t d t y t →x  (11) 

and the channel throughput and delay are described by the equation: 

( )
( )

( )0Latency ,
S t

t L t
B

= + +  (12) 

where L0 is the basic protocol delay, S(t) is the amount of transmitted packets during the interval t, 
B is the channel throughput, and (t) is the delay's random component. 

Received on-board data ( ) ( ) ( ) ( ) , , ,
nn

t z t d t y t=D x  are aggregated into a buffer of size N and 

normalized over a sliding window: 

:

:

,i i N i
i

i N i




−

−

−
=
D

D  i M, (13) 

where i N:i and i N:i are the mean and standard deviation of the last N points. 
Tretrain hours in the cloud, a retraining optimization problem of the form 

is solved: 

( ) ( )

2

2

* * * *
, ,

1

1
min ; , , , , ,

M

i y corr inn
b

i

y t b y t R
M

 
=



   
    − +  +        


W V

W U V b W W  (14) 

where R(W) is a regularizer to prevent overfitting in changing modes,  
neural network parameters, 0 <  new data, and  is the L2-
regularization coefficient. 

The weight update is performed using stochastic gradient descent as: 

 1 ,k k k W L+ = − W W  lim 0,k
k


→

=  .k

k

 =   (15) 

To quickly respond to new conditions, a forgetting factor is introduced into the loss function, 
represented as: 

( ) ( )( )
2

1

,
M

M i

i corr inn

i

L y t y t  −

=

=  −  (16) 

where 0 <  < 1 specifies the new data priority degree. 
After convergence, {W*, V*, b} are sent back on board via the telemetry channel. The transmission 

condition is represented as: 

* ,prev thL L L  = −   (17) 

where th is the minimum gain in model quality that requires updating. 
Thus, the CPS infrastructure use not only ensures reliable bidirectional data exchange but also 

implements the neural network adaptive retraining full cycle, taking into account the new 
measurements and communication channel limitations priority. 



3.3. The neural network predicting model development 

To develop a neural network predicting model (Figure 2), it is assumed that the input vector consists 

of the filtered temperature value z(t) and its derivative ( )z t , the latest drift estimate ( )d t t− , and 

the remaining engine operating parameters vector P(t). Thus, 

( )

( )

( )

( )

.mt

z t

z t

P t

d t t

 
 
 = 
 
  −  

x  (18) 
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Figure 2: The developed neural network predicting model  architecture. (  research). 

The traditional LSTM gates calculation is performed as: 

( )1 ,t i t i t iW U b −=  +  +i x h  

( )1 ,t f t f t fW U b −=  +  +f x h  

( )1 ,t o t o t oW U b −=  +  +o x h  

( )1tanh ,t c t c t cW U b−=  +  +c x h  

(19) 

 *

n mW  , *

n nU  , *

nb  . 

To account for and compensate for gradual shifts in the thermocouple characteristics, a built-in 

Based on the current discrepancy between the filtered signal and the previous drift estimate, it 
generates a correction value for updating the memory state and is described by the expression: 

( )1 ,t g t g t gW U b −=  +  +g x h  (20) 
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1 ,tt t t t t−= + +c f c i c  (21) 

where ⊙  is the element-wise multiplication, and δt adds to the cell memory information about the 
current discrepancy between the filtered signal and the drift estimate. 

Thus, the output vector is defined as: 

( )tanh ,t t t=h o c  

( ) ( ) ,ynny t t b=  +V h  
(22) 

where 1 nV  , yb  . 

The weights are updated using stochastic gradient descent: 

( )1 .k k kL+  = −    (23) 

The resulting architecture is an extended LSTM cell that takes as input the preprocessed z(t), its 
derivative, engine parameters, and a previous drift estimate, within which the standard input, forget, 

which the combined memory state produces an output hidden vector that is transformed by a linear 
layer into a predicted gas temperature value. 

4. Case study 

4.1. The experimental setup description 

In this study, the developed hybrid model structural diagram for predicting and correcting gas 
temperature sensor readings (see Figure 1) is implemented in the Matlab R2014b software 
environment (Figure 3). 

gas temperature sensor) reproduces the 
ytrue(t), sensor drift d(t), and 

noise component n(t) sum. It includes a source ytrue is an organic sinusoidal (or tabular) signal 
reflecting the real temperature dynamics; a drift module implemented through an integrator 
receiving low-amplitude white noise at the input (generated by the Random Number block), which 
simulates a slowly increasing drift; and a measuring noise generator n(t) in the Gaussian random 

ymeas(t) = 
ytrue(t) + d(t) + n(t), which is then fed for filtering and subsequent processing. 

The Filtering/Preprocessing block takes the raw reading ymeas(t) as input and applies a continuous 

RC filter with the transfer function 
1

1s  +
, where  is selected based on the smoothing required 

degree, thereby filtering out high-frequency noise and outputting z(t

in parallel to the filter output is the Derivative block, which calculates ( )z t  for further use in the 

predictive model. If necessary, a normalization or scaling block can be added on the RC filter top, but 
the basic circuit is limited to a series connection of the Transfer Fcn (Numerator = [1], Denominator 
= [ , 1]) and Derivative blocks, which ensures smoothing of the input signal and its derivative 
formation for the following processing stages. 

The Drift Detection block compares the smoothed value z(t) with a preset reference profile yn · 
en(t), calculating the difference draw(t) = z(t)  yn · en(t) and its absolute value e(d(t)) = |draw(t)|; then, 

via the Compare To Constant block, it is checked whether e(d(t)) exceeds a specified threshold , and 
if so, the logical flag Drift_Flag = 1 is set, signaling the drift presence, and the drift estimate dest(t) = 
draw(t) is passed on for correction algorithms. 

The neural network temperature prediction (NN Prediction) block takes as input a feature vector 

including the current smoothed value z(t), its derivative ( )z t , drift estimate ( )d t , and additional 



engine parameters P(t), and then loads a pre-trained LSTM network (netLSTM) via a custom 
MATLAB Function and performs a one-step prediction 

( ) ( ) ( ) ( )( )predict netLSTM, , , ,...truey t z t z t P t=    ). Inside the MATLAB Function, the first call loads 

the trainedNet.mat file containing the LSTM weights and architecture using a persistent variable, 

calculated, which is output as ypred, providing adaptive prediction taking into account current and 
historical data. 

The Correction & Fusion block combines the raw readings ymeas, the predicting ypred and the drift 

estimate d , computing the corrected predicting corr

pred predy y d= − , and then mixes it with the raw 

data via weighted addition: the signal ymeas is multiplied by the confidence coefficient k (Gain k), then 
the difference corr

predy  k k), and both results are summed (Sum), forming 

the final value ( ) ( )1corr meas predy k y k y d=  + −  − , which is output for further use by the control 

system. 
ycorr signal generated 

in the previous step as input and transmits it to the external controller via the output port (Outport), 
providing integration with the engine control system; in addition, the Scope block is connected in 
parallel for the ycorr dynamics visual monitoring during modeling, and if necessary, the Drift_Flag 
logical signal from the drift detection module can be output to a separate Outport (for example, 
"Drift_Flag_Out") to indicate the sensor alarming state. 

 

Figure 3: The virtual experimental setup scheme ( ). 

4.2. The input data analysis and preprocessing 

The computational experiment used data on the gas temperature in front of the compressor turbine 
ymeas(t) of the TV3-117 engine, recorded by the standard Mi-8MTV helicopter sensor (14 dual 
thermocouples T-102 [5, 19]) in the nominal operating mode. The tests were carried out at the 2500 
meters altitude, measuring every 0.25 seconds for 320 seconds. According to the data in Figure 4, the 
maximum gas temperature reached 1140 K. 

The data on the gas temperature, obtained during flight tests of the Mi-8MTV helicopter using 
on-board monitoring, were cleared of interference and anomalies and then transformed into time-
ordered series [21]. To unify the scales, z-normalization [22] was used: 

( )

( ) ( )

( ) ( )

1

2

1 1

1

.
1 1

N
i i

meas meas

i
meas i N N

i i

meas meas

i i

y y
N

z y

y y
N N

=

= =

− 

=
 

 −  
 



 

 (24) 

where N = 4 · 320 = 1280. 
 

            

    

            

               

    

   
            

              

 

        

          

     

          

    

       

           

   
  

       

              

    

          

        

   
  

          

   
  

                   
     



 

Figure 4: The gas temperature measured signal by standard s  

The gas temperature normalized values formed a training dataset, which fragment is given in 
Table 1. It satisfies the Fisher-Pearson and Fisher-Snedecor homogeneity criteria [23] (test results are 
given in Table 2). 

Table 1 
The training dataset fragment 

Number 1  320  640  960  1280 

 0.989  0.985  0.991  0.983  0.988 

Table 2 
Results of the training dataset homogeneity assessing according to the Fisher-Pearson criterion 
(  research). 

Parameter The 2 calculated 
value 

The 2( , 2) 
critical value 

Decision on the training dataset 
homogeneity 

*

GT  9.116 9.2 
The dataset is homogeneity, 

because 2 < 2( , 2) (9.116 < 9.2) 

To assess the training dataset (see Table 1) representativeness, the k-means cluster analysis 
method was used [24]. The training dataset was randomly divided into training and test datasets in 
a ratio of 2:1 (67% are 858 elements and 33% are 422 elements). The training dataset clustering 
identified eight groups (classes I VIII), which confirms the two datasets' structural similarity 
(Figure 5). Based on this, the gas temperature dataset amounts were determined: out of a total 
training dataset of 1280 elements, 858 (67%) constitute the control dataset, and 422 (33%) constitute 
the test dataset. 

4.3. The computational experiment results 

For reproducible LSTM training, the Adam optimizer was used with learning rate=10 3 (can be 
reduced to 10 4 if necessary), batch size=32 64, and seeds were fixed (numpy.random.seed(42), 
torch.manual_seed(42)).  

The deterministic mode was enabled (torch.backends.cudnn.deterministic=True, 
torch.backends.cudnn.benchmark=False), and a fixed number of epochs and a training rate reduction 
scheme were set (ReduceLROnPlateau with a 0.1 factor and patience=5).  

As the computational experiment part, diagrams 
corrected gas temperature readings (Figure 6), the sensor drift estimate and its predicted estimate 
(Figure 7), the data transmission delay and the telemetry amount dependence (Figure 8). 
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In Figure 6, the gas temperature ranges from 1080 K to 1150 K, with the blue thin curve showing 
the raw data, which fluctuates with about 30 K amplitude and contains significant noise and drift, 
while the red curve shows the corrected readings: they have a smoother shape, the drift trend is 
removed, and the noise is smoothed out, allowing us to observe the true temperature dynamics 
without sensor artifacts. 

According to Figure 7, the thermocouple drift in degrees Celsius ranges from about 0 to 2 °C. The 
true drift is represented by the red solid line and consists of a linear trend increasing at about a 0.02 
°C/s rate, superimposed on a sine wave with a 0.5 °C amplitude and about a 62-second period, plus 
some random noise with a 0.05 °C variance. The blue dotted line is phased out with the true drift by 
about 1 second and has a slightly smaller sine wave amplitude (about 0.45 °C) due to smoothing, and 
the noise in its values is limited to about 0.03 °C variance. Thus, the dotted line accurately follows 
the general growth and the drift oscillation, but with a small delay and reduced sawtooth peaks. 

 

a) 

 

b) 

Figure 5: The gas temperature values cluster analysis results: (a) is the training dataset (858 
elements); (b) is the test dataset (422 elements). 

                 

                         

 
 
  
  
  
  
  

 
 
 

 

    

    

    

    

   

    

    

    

    

   
                                   

         

         

         

         

         

         

         

         

                 

                        

 
 
  
  
  

  
  

 
 
 

 

    

    

    

    

   

    

    

    

    

   
                               

         

         

         

         

         

         

         

         



According to Figure 8, the transmitted telemetry amount covers the range from 10 to 2000 kbps, 
and the measured transmission delay varies from approximately 50 ms to 1400 ms.  

ms (base L0 = 50 ms plus minor random noise), then with an increase to 500 kbps, the delay increases 
linearly to approximately 350 ms, and by 2000 kbps, it is already approaching 1400 ms. 

The curve shows small fluctuations of ±10 ms due to random components of (t), but the overall 
S 

(kilobits), the transmission time increases almost proportionally, showing the channel bandwidth 
influence.  

Despite random fluctuations in , the overall curve shows a linear increase in delay as the data 
amount increases: first, at S < 100 kbps, a 60 70 ms plateau is visible, then a predictable rise to 400 
ms for S  2000 kbps maximum load.  

This clearly illustrates the channel capacity limitation and the basic L0 delay impact. 

 

Figure 6: Diagram comparing raw and adjusted gas temperature readings. 

4.4. The results obtained effectiveness evaluation 

To evaluate the predicted gas temperature values obtained, the various neural network architectures 
(traditional LSTM network, three-layer perceptron, and neural network on radial basis functions) 
were compared using accuracy, precision, recall, and F1-score metrics (Table 3), where: 

,
TP TN

Accuracy
TP TN FP FN

+
=

+ + +
 ,

TP
Precision

TP FP
=

+
 

,
TP

Recall
TP FN

=
+

 1-score 2 .
Precision Recall

F
Precision Recall


= 

+
 

(25) 

 
  

             

                  

 
 
 
  
 
 

 
 
  

  
  

  
 

    

    

    

    

    

    

    

    
                          

                     

                         



 

Figure 7: Diagram of sensor drift estimation and its predicted estimation. 

 

Figure 8: Diagram of the data transmission delay and telemetry amount dependence. 

The comparative analysis results of the four models demonstrate the modified LSTM network's 
advantage over the others: its accuracy = 0.991 exceeds the traditional LSTM (0.979), the radial basis 
function network (0.951), and the three-layer perceptron (0.922) indicator; the classification accuracy 
(precision) of the proposed LSTM is 0.987, while that of the traditional LSTM is 0.973, RBF is 0.944, 
and that of the perceptron is 0.909; the recall indicator (0.985) for the proposed model also exceeds 
the traditional LSTM (0.962), RBF (0.934), and the perceptron (0.883). 

             

                  

 
  
  
  
 
  
 
  
  

    

 

   

 

   

 

   
                                             

          

                

                      

                                     

 
  

 
 
 

  
 
  
 
  

 
  
 
  
 

 

 

   

    

    
                                                    



Finally, the F1-score of the proposed LSTM (0.986) is the highest compared to 0.967 of the 
traditional LSTM, 0.939 of RBF, and 0.896 of the three-layer perceptron, indicating a consistently 
higher balance between precision and recall in the proposed architecture. 

Table 3 
The obtained results comparative analysis results according to traditional quality metrics 

Metric Proposed LSTM 
network 

Traditional LSTM 
network [10] 

Neural network 
on radial basis 
functions [8] 

Three-layer 
perceptron [9] 

Accuracy 0.991 0.979 0.951 0.922 

Precision 0.987 0.973 0.944 0.909 

Recall 0.985 0.962 0.934 0.883 

F1-score 0.986 0.967 0.939 0.896 

The neural network model's stability to external interference was analyzed. For this aim, additive 
interference in the white noise with zero mathematical expectation i = 0.025 form was introduced, 
which corresponds to 2.5 % [25]. Table 4 shows the calculating results, the standard deviation, and 
the absolute error without noise and in the white noise when applying the above neural network 
architectures to the problem of predicting gas temperatures. 

Table 4 
The neural network models stability to external interference analysis results 

Neural network architecture Standard deviation  Absolute error, % 

Without 
noise 

With  
noise 

Without 
noise 

With  
noise 

Proposed LSTM network 
deviation 

0.008 0.135 0.9 1.623 

Traditional LSTM network 
[10] 

0.021 0.216 2.1 3.779 

Neural network on radial 
basis functions [8] 

0.063 0.335 4.9 8.117 

Three-layer perceptron [9] 0.119 0.519 7.8 14.035 

From Table 4 it can be seen that the modified LSTM network demonstrates the best performance 
among the considered architectures: without noise its standard deviation is 0.008, and with noise it 
is only 0.135, while the absolute error without noise is 0.9%, and with noise it is 1.623%; the traditional 
LSTM is inferior with deviations of 0.021 (without noise) and 0.216 (with noise) and errors of 2.1% 
and 3.779%, respectively; the network on radial basis functions shows higher deviations of 
0.063/0.335 and errors of 4.9%/8.117%. 

In turn, the three-layer perceptron has the worst results, with deviations of 0.119 (without noise) 
and 0.519 (with noise) and absolute errors of 7.8% and 14.035%, which emphasizes the stability and 
noise resistance of the proposed LSTM architecture. 

5. Discussions 

A hybrid model for the helicopter TE gas temperature sensor readings predicting and correcting 
block diagram has been developed using a neural network and the CPS infrastructure (see Figure 1). 

predicting 



raw  data ymeas(t) are collected, which contain the true 
temperature value ytrue(t), drift d(t), and noise n(t), according to model (1).  

The noise is approximated by a Gaussian process (2), and the drift is described by a stochastic 
model (3). Preprocessing includes smoothing using an RC filter (4), and drift detection is based on 
comparing the signal with the reference profile yref(t) (5) and applying threshold logic (6).  

derivative, drift, and engine operating parameters P(t), as shown in (7) (8). The readings correction 
is implemented by merging the prediction, measurement, and drift estimate according to (10) with a 
confidence weighting coefficient k ∈ [0,1].  

The CPS infrastructure use ensures secure two-way exchange between the edge and cloud 
modules, where data storage, analytics, and the neural network automatic retraining on new data 
with regular resending of the updated model on board are implemented (see equations (11) (17)). 

(16), while the weights are updated using the stochastic gradient descent method (15), and the 
resending occurs when a specified thr
adaptive, drift- and noise-resistant temperature predicting system capable of self-correction and real-
time learning. 

readings ymeas(t), including the true value ytrue(t), drift d(t), and noise n(t) (1) comparison, with the 
corrected values ycorr obtained taking into account the neural network predicting and drift estimate. 
The original signal (thin blue curve) fluctuates within 1080 1150 K with noise spikes and increasing 
drift, while the corrected curve (thick red line) effectively eliminates drift and smooths out noise, 
confirming the filtering correctness (4) and data fusion algorithm (10). This is achieved through the 
RC filter and weighted correction algorithm (confidence coefficient k

temperature estimates for the control system. Figure 7 shows the drift estimate ( )d t  based on the 

comparison with the reference profile (5) and the threshold logic (6), which accurately reproduces 
econds), 

with a small delay (~1 second) and smoothed amplitude. This confirms the algorithm's high 
sensitivity and its suitability for drift compensation in real time. 

Figure 8 shows that the telemetry transmission delay in the CPS infrastructure depends on the 
from 

100 to 2000 Kbit, the delay increases from ~100 to ~1400 ms. This indicates the need to optimize the 
computations between the edge and cloud modules (14) (17).  

Table 3 demonstrates that the modified LSTM with a drift gate (20), (21) outperforms traditional 
LSTM, RBF networks, and perceptrons in accuracy, recall, and F1-score due to adaptive weight 
updating (16), (23) and drift accounting (8).  

from 0.9% to 1.6%), which is significantly better than that of analogues. This is explained by the new 
data priority (  in (16)) and built-in distortion compensation.  

As a result, the integration of the extended LSTM cell (19) -
the CPS infrastructure (11) (17) ensures high accuracy and reliability in predicting and correcting 
the helicopter TE gas temperature. 

Along with the significant results of the study, the following limitations should be noted, 
presented in Table 5. Table 6 presents prospects for further research. 

Table 5 
The results obtained limitations 

Number Limitation Description 
1 Limited 

generalizability 
to other engine 

The model was trained and tested on data obtained from TV3-
117 engines on the Mi-8MTV helicopter in the nominal 
operating mode and at a 2500 meters fixed altitude. Under other 



types and 
operating 

modes 

conditions (different engines, changed flight modes, extreme 
temperatures, high loads), the noise, drift, and gas temperature 
dynamics parameters may differ significantly, which will 
require additional training or adaptation of the neural network 
architecture and preprocessing algorithms. 

2 

Dependence on 
reference profile 

and training 
data quality 

The drift detection module requires a predefined reference 
profile yref(t) to function correctly. If the reference profile does 
not accurately reflect the actual engine dynamics (e.g., due to 
component wear or incorrect thermocouple calibration), the 
algorithm might misinterpret natural temperature variations as 
drift or, conversely, miss real shifts in readings. Training an 
LSTM network requires a high-quality labeled data; insufficient 
or biased representation in the training dataset limits the 
prediction accuracy outside the training domain. 

3 

Limitations on 
computational 
resources and 

latencies in the 
CPS 

infrastructure 

On board the helicopter, computing resources (CPU, memory) 
are limited. A complex LSTM model with a "drift gate" and 
additional calculations for drift estimation may require more 
resources than are available in real time, which leads to an 
increase in the prediction and correction delay. Considering that 
the model shows that the data transmission delay via the CPS 
channel can reach more than 1 second with a load of about 2000 
Kbps, in extreme scenarios (e.g., in emergency modes), the 
updated model may simply not have time to be delivered on 
board in time, and the readings correction may be performed 
with a delay, which reduces its practical effectiveness. 

4 

Simplified a 
priori 

assumptions 
about the noise 
and drift nature 

In the study, the measurement noise n(t) is represented as a 
Gaussian process, and the thermocouple drift d(t) is modeled by 
a stochastic diffusion process with a specific sinusoidal 
superposition. In real engine conditions, more complex and non-
stationary sources of errors are possible: nonlinear effects of 
corrosion, thermal shocks, microcracks in the thermocouple, 
and electromagnetic interference. Accordingly, the algorithm 
may underestimate or misinterpret anomalies that go beyond 
the adopted a priori models, which reduces the estimates' 
accuracy in real field tests. 

Table 6 
Prospects for further research 

Number Research Action 
1 Expanding the 

application scope 
to different 

engine types and 
operating modes 

[26] 

Adaptation and validation of the proposed hybrid drift 
detection model for other gas turbine engines and for 
different flight regimes. 
Study of the altitude, temperature, and load variations' 
influence on predicting accuracy and methods development 
for the model parameters' automatic reconfiguration. 

2 Improving the 
reference profile 
and training data 

formation [27] 

Develop algorithms for automatic generation and adaptive 
updating of the reference profile (yref) based on current 
operational data to reduce the impact of outdated or 
inaccurate calibration curves. 
Expanding the training set through field testing and 
simulating scenarios with different sensor wear states; 



implementing data augmentation methods to model 
unexpected temperature fluctuations. 

3 Optimizing 
computational 
complexity and 
implementing it 
on the onboard 

computing 
system 

Research into more compact neural network architectures 
(e.g., lightweight LSTM, TCN, or Transformer-Lite) and 
weight quantization to reduce memory and CPU costs. 
Development of a prototype taking into account the on-board 

-board 

data exchange via the CPS channel. 
4 Modeling and 

accounting for 
more complex 

nonlinear sources 
of noise and drift 

The stochastic models' construction takes into account non-
stationary corrosion processes, transient thermal effects 
(thermal shocks), electromagnetic interference, and 
destruction of thermocouple insulation. 
To investigate methods for anomaly adaptive detection that 
are not specific to predefined sinusoidal patterns using hybrid 
approaches (e.g., combining LSTM with variational 
autoencoders or GANs). 

5 Integrating 
feedback and self-

learning 
mechanisms in 

real time 

Develop online learning methods that enable the model to 
adjust its parameters based on continuously incoming data 
on real measurements and maintenance results. 
The adaptive algorithm implementation automatically 
reconfigures itself after maintenance or when systematic 
deviations are detected, reducing the need for manual 
reconfiguration. 

6 Developing the 
concept of a 

integrating it 
with the general 

monitoring 
system 

A single platform creation combining engine thermodynamic 
models, drift detection algorithms, and other diagnostic 
modules (e.g., vibration analysis, wear assessment of parts). 
Ways to investigate transmitting aggregated data to ground-
based maintenance centers and using cloud computing 
resources for deeper analytics and unit life prediction. 

6. Conclusions 

The helicopter turboshaft engines' gas temperature sensor readings hybrid model for predicting and 
correcting structural diagrams has been developed and implemented. It combines an extended LSTM 

el takes into account stochastic 
descriptions of noise and thermocouple drift, applies an RC filter for preliminary processing, and a 
built-
account the accumulated bias.  

The CPS infrastructure use ensures encrypted two-  

guarantees the model adaptability to changes in engine operating modes.  
As the computational experiments result, the corrected readings demonstrate effective drift 

removal and noise spike smoothing compared to the raw data, which confirms the preprocessing 
algorithms' (RC filter) correctness and correction via weighted fusion. The drift estimation accurately 
reproduces the linear trend and the true drift sinusoidal oscillations with about 1 second delay and 
reduced amplitude (~0.45 °C), which proves the proposed detection logic's high sensitivity and 
adequacy.  

The neural network architectures comparative analysis showed that the modified LSTM with a 
-layer perceptron in all 

metrics: the accuracy (0.991), recall (0.985), and F1-measure (0.986) of the proposed model are 



LSTM retains low RMSE (0.135) and absolute error (1.623%), which confirms its resistance to low 
external interference. 

The CPS channel characteristics study showed that the data transmission delay increases linearly 

emphasizes the need to balance computations between onboard modules and cloud analytics. The 

th is exceeded, but the obtained 
latencies indicate potential limitations under extreme loads, requiring further optimization of 
transmission protocols and the neural network architecture simplification. 
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