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Abstract
Recent advancements in computer vision and virtual reality (VR) have introduced new possibilities for 
diagnosing  genetic  disorders  based  on  facial  feature  analysis—phenotypic  characteristics.  This  study 
provides an overview of practical implementations of VR in medicine, as well as facial image processing 
methods,  including  preprocessing,  key  point  detection,  and  classification  using  machine  learning 
algorithms such as Support  Vector Machines (SVM) and Convolutional  Neural  Networks (CNN).  The 
potential integration of VR into clinical practice is examined, including the development of interactive 
training  scenarios  for  physicians  and  the  application  of  3D  modeling  for  analyzing  rare  genetic 
syndromes. The study discusses the prospects of implementing VR simulations for testing facial anomaly 
recognition algorithms and remote patient diagnosis. Additionally, key challenges related to algorithm 
accuracy,  the  accessibility  of  VR  solutions,  and  the  need  for  inclusive  datasets  are  highlighted.  The 
integration of VR and machine learning into the diagnostic process enhances the accuracy of medical  
decision-making and expands the potential of personalized medicine.
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1. Introduction

Virtual  reality  technologies  open up wide  opportunities  for  the  rehabilitation of  patients  with 
various impairments, providing significant advantages over traditional methods. VR provides full 
immersion in a virtual environment, simulating conditions close to real ones, which improves the 
perception  of  exercises,  stimulates  participation  and  simplifies  the  implementation  of  complex 
tasks.

One of the key advantages is the individualization of therapy. Unlike traditional methods, it  
creates realistic scenarios tailored to individual patient needs, taking into account their cognitive 
and physical capabilities. In addition, VR creates a safe space, minimizing the risk of injury, which 
is especially important for patients with impaired motor coordination, such as after a stroke or 
with Parkinson's disease. For example, a stroke survivor relearning hand coordination can engage 
in VR-based exercises that simulate everyday tasks, such as picking up objects or preparing a meal, 
in a risk-free environment.  Similarly,  patients with Parkinson’s disease can practice movement 
control through virtual balance and gait training exercises, helping them regain confidence in their 
mobility.

VR  technologies  allow  for  an  objective  assessment  of  rehabilitation  progress,  recording 
parameters  such as speed and accuracy of  movements,  which simplifies the adjustment of  the 
treatment program. Additionally, One of the most compelling aspects of VR-based rehabilitation is 
its  ability  to  boost  patient  motivation  through  gamification.  VR  overcomes  this  challenge  by 
integrating  interactive,  game-like  elements  into  therapy  sessions,  making  the  process  more 
engaging - especially for children with cognitive impairments.

Another advantage of VR is its potential for remote rehabilitation. Patients who live in rural 
areas, have mobility limitations, or struggle with transportation can access therapy sessions from 
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home using VR headsets.  This  increased  accessibility  reduces  barriers  to  consistent  treatment, 
leading  to  better  long-term  recovery  outcomes.  VR  technologies  show  high  potential  for  the 
rehabilitation  of  patients  after  stroke,  with  Parkinson's  disease  and  children  with  cognitive 
disorders, combining safety, effectiveness and an innovative approach.

This article is devoted to the development a novel VR-based respiratory rehabilitation system 
that integrates Strelnikova breathing exercises into an interactive virtual environment using Meta 
Quest 3.

In recent years, there has been a rapid increase in interest in the application of virtual reality 
(VR) and computer vision technologies in medicine. The number of publications on the topic of "VR 
technology in medicine" in the PubMed database increased from 58 in 2017 to 145 in the first half of 
2021 [1, 2].

Modern methods for diagnosing genetic diseases require significant resources, time, and the 
involvement  of  highly  qualified  specialists.  Moreover,  traditional  approaches  based  on  genetic 
testing and clinical analysis involve high financial costs, limiting accessibility for patients in certain 
regions and social groups. For example, according to a study by Smith et al. (2021), the cost of  
genetic testing in some countries ranges from $500 to $2,000 per patient, creating a substantial  
financial burden on healthcare systems [3]. In Almaty, in major private medical laboratories such 
as Invivo and Invitro, the cost of testing for major hereditary diseases is 328,730 tenge [4]. Whole  
Genome Sequencing with a geneticist’s report costs 538,040 tenge and 690,000 , respectively [5]₸

Traditionally,  genetic  research  faces  challenges  related  to  processing  vast  amounts  of 
information and the complexity of determining relationships between genes, proteins, and other 
biomolecules. Analytical procedures often lack clarity in identifying hidden patterns and dynamic 
processes.  Furthermore,  such  procedures  can  take  considerable  time,  sometimes,  with  results 
requiring  several  days  to  weeks,  significantly  delaying  treatment  initiation  and  reducing  its 
effectiveness.

The integration of VR and computer vision offers the possibility of creating interactive and 
immersive environments in which researchers can:

1. Interactively  visualize  multidimensional  genetic  data  in  a  three-dimensional  space, 
facilitating a deeper understanding of their structure and relationships.

2. Detect anomalies and patterns using computer vision algorithms adapted for the specificity 
of biological data.

The use of VR and machine learning methods not only automates the analysis process but also 
enables the creation of interactive tools for physicians and researchers. A study by Ivanov et al. 
(2023) demonstrated that the implementation of VR technologies in the genetic disease diagnostic 
process can reduce analysis time by up to 40% compared to traditional methods [6].

Thus,  the  integration  of  VR  and  computer  vision  into  medical  diagnostics  represents  a 
promising  direction  that  can reduce  diagnostic  costs  through process  automation,  shorten  the 
waiting time for analysis results, accelerate treatment initiation, and improve diagnostic accuracy 
through machine learning algorithms and immersive technologies.

The motivation for this research is high, as the application of VR and computer vision in genetic 
studies can significantly accelerate the discovery of new genetic patterns and relationships, which 
is of great value for both fundamental science and practical medicine. A better understanding of 
the genetic characteristics of individual patients contributes to the development of personalized 
treatment approaches, which is a key focus of modern medicine.

The aim of this review is to explore the potential of virtual reality and computer vision for the  
automated analysis of facial phenotypic features associated with genetic diseases. The following 
sections analyze existing VR and machine learning technologies in medical diagnostics, identify 
key computer vision methods applicable to facial anomaly analysis, and examine successful case 
studies of implementing these technologies in clinical practice.



2. Overview of Technologies and Methods

Virtual reality (VR) is actively being implemented in medical practice, offering new opportunities 
for diagnostics, surgical planning, and professional training. VR enables the creation of interactive 
3D models of a patient's anatomical structures, allowing physicians to thoroughly examine specific 
cases before performing surgical interventions. For instance, the Surgical Theater platform is used 
for neurosurgical planning, enabling the development of interactive 3D and VR models [7]. At the 
Stanford Simulation and Virtual Reality Center for Neurosurgery, this technology is employed to 
create 360-degree virtual models of patients’ brains, enhancing surgical planning and improving 
treatment efficiency.

Figure 1: Precision VR™, Surgical Theater’s VR medical visualization platform in use

Also, numerical modeling plays a significant role in simulating biological systems. For example, 
[8]  conducted  a  study  using  ANSYS  Fluent  to  simulate  blood  flow  in  coronary  arteries, 
demonstrating the importance of computational fluid dynamics (CFD) in cardiovascular analysis 
and supporting the broader integration of modeling technologies into medical research.

Additionally, VR is used in the rehabilitation of patients after strokes and injuries. Specialized  
programs allow patients to control their movements in a virtual environment, which contributes to 
motor  function  recovery.  According  to  a  study  by  Dolganov  and  Karpova,  the  use  of  VR  in 
conjunction with standard rehabilitation programs in the acute phase of a stroke improves upper  
limb function and reduces limitations in daily activities [9]. In another case, these technologies  
have  demonstrated  effectiveness  in  rehabilitation  and  biofeedback  therapy  for  patients  with 
impaired fine motor skills after an ischemic stroke [10].

Machine learning methods, combined with computer vision, play a crucial role in facial data 
analysis for diagnosing various diseases, including genetic syndromes. The key algorithms include 
neural networks, Support Vector Machines (SVM), and the k-Nearest Neighbors (kNN) algorithm. 
Additionally, convolutional neural networks (CNN) enable automatic recognition and classification 
of facial features due to their ability to extract complex patterns from data and process spatial 
dependencies [11]. First of all, the architecture consists of a Convolutional Layer that highlights 
spatial features such as edges, textures, and shapes by applying filters to the input data (Figure 2).  
Then comes the Pooling Layer,  which reduces the dimension of the data,  preserving the most 
significant features,  which reduces computational complexity.  The third Fully Connected Layer 
converts selected features into classes or results, for example, for the diagnosis of syndromes.



Figure 2: The typical architecture of CNN

SVM is widely used for high-accuracy data classification and regression tasks, particularly when 
dealing with limited datasets. However, it has limitations—it is computationally intensive for large 
datasets and sensitive to the choice of kernel and its parameters. The core principle of SVM is 
finding a hyperplane that best separates data points into different classes [12]. Key components of 
an SVM model include:

1. Hyperplane  –  a  decision  boundary  that  maximally  separates  different  classes  in 
multidimensional space.

2. Support vectors – data points closest to the hyperplane that determine its position.
3. Regularization parameter  (C)  –  balances  the  margin  maximization between classes  and 

classification error minimization.
4. Kernel  functions – transform data into higher-dimensional  space where classes become 

linearly separable. Examples include linear, polynomial, and Radial Basis Function (RBF) 
kernels.

Figure 3: The typical architecture of SVM algorithm

Advanced CNN models such as ResNet and Inception offer improved accuracy in medical image 
analysis, exceeding 90% in certain diagnostic tasks [13]. ResNet is a deep network with residual  
connections that solve the problem of gradient attenuation. Inception uses multiscale convolutions, 
which allows to identify features of different levels of complexity at the same time. This makes the 
model  universal  for  analyzing  various  types  of  data.  EfficientNet  optimizes  accuracy  and 
computational costs by using compound scaling, i.e. changing the depth, width, and resolution of 
the network at the same time. 

Various methods are employed for 3D facial scanning, each with its advantages and limitations. 
Light Detection and Ranging (LiDAR) utilizes laser pulses to measure distances to objects, creating 
highly accurate three-dimensional models [14]. This method provides superior precision and detail, 
making  it  particularly  useful  for  tasks  that  require  precise  facial  geometry  reconstruction. 
However, LiDAR technology is expensive and often requires specialized equipment and controlled 



scanning  environments.  Additionally,  LiDAR  devices  can  be  sensitive  to  bright  sunlight  or 
atmospheric interference, affecting their performance in outdoor conditions. The second method 
-photogrammetry, is based on analyzing multiple images of an object taken from different angles.  
These images are then processed using specialized software to create a 3D model [15]. Compared to 
LiDAR, photogrammetry is more accessible, as it requires only standard photographic equipment.  
However, its accuracy and level of detail may be lower than that of LiDAR, especially if the image 
quality is poor or the number of captured photos is insufficient. Additionally, the processing time 
for generating a model can be computationally intensive and time-consuming.

Third method - 3D Reconstruction Deep learning techniques enable the reconstruction of 3D 
facial models from 2D images. Algorithms such as CNNs are trained on large datasets to predict  
three-dimensional facial structures based on two-dimensional photographs [16]. These approaches 
are rapidly evolving and have shown promising results,  allowing the generation of 3D models 
without  the  need  for  specialized  scanning  equipment.  However,  the  accuracy  of  such  models 
depends on the quality and diversity of training data,  as  well  as  the complexity of  the neural  
network architecture.

3. Challenges and Risks

Despite  the  rapid  development  of  computer  vision  and  VR  technologies,  their  application  in 
medical  diagnostics faces several  challenges.  First  and foremost,  the accuracy and reliability of 
algorithms capable  of  identifying  facial  features  characteristic  of  genetic  disorders  are  crucial.  
Achieving this requires large datasets and thorough model validation. The limited availability of 
datasets for rare syndromes poses difficulties in model generalization. Studies indicate that machine 
learning models can exhibit bias based on ethnicity, gender, and age, primarily due to imbalanced 
training datasets [17].

One  key  recommendation  is  the  implementation  of  bias  mitigation  techniques  and  the 
development of  more inclusive datasets.  This  is  particularly  important  in  regions with diverse 
ethnic  compositions,  such  as  Kazakhstan  and  Central  Asia,  where  ethnic  characteristics  may 
influence the expression of facial features. Research suggests that data augmentation can improve 
algorithm accuracy by up to 15% [18].

Secondly, high-precision VR devices and computer vision systems can be expensive, limiting 
their  use  in  low-resource  regions.  The cost  of  specialized  hardware  and  software  may hinder  
widespread adoption, making affordability a key challenge for integrating these technologies into 
clinical settings. Thirdly, medical professionals must understand how AI-driven algorithms make 
decisions to build trust in automated diagnostic methods. The interpretability and transparency of 
these algorithms are essential for their acceptance in medical practice.

Additionally, the use of facial images in medical diagnostics raises ethical and legal concerns. 
Strict data privacy regulations, such as the General Data Protection Regulation (GDPR), must be 
adhered to when collecting and processing biometric data. Violations of privacy in facial image 
data handling can have significant consequences for patients and their families. Addressing these 
ethical concerns is critical for ensuring the responsible deployment of AI and VR technologies in 
medical diagnostics.

4. Phenotypic Features in Diagnosis

Phenotypic manifestations refer to a set of external traits that arise from the interaction of genes 
influencing growth, development, and the function of tissues and organs. Human facial structures 
are shaped by complex genetic interactions, which determine not only basic proportions but also 
unique facial characteristics. For instance, mutations in genes involved in morphogenesis, such as 
TCF4 or FGFR2, can lead to craniofacial deformities.



One well-known example is Down syndrome, which results from trisomy of 21st chromosome. 
It is characterized by a flat facial profile, almond-shaped eyes, a short nose, and distinctive hand 
features. These physical traits help physicians diagnose the condition at an early stage.

Another case is Marfan syndrome, caused by a mutation in the FBN1 gene. This disorder is  
associated with tall stature, long fingers (arachnodactyly),  and distinct facial features such as a 
narrow  lower  jaw.  Marfan  syndrome  is  also  linked  to  systemic  complications,  including 
cardiovascular abnormalities.

According  to  the  American  Journal  of  Medical  Genetics,  approximately  60%  of  genetic 
syndromes exhibit distinct external phenotypic features [19]. These findings emphasize the crucial 
role of facial analysis in diagnosis, particularly for rare diseases where genetic testing may not 
always be available. Thus, machine learning (ML) and computer vision provide new opportunities 
for automated diagnosis,  enabling the identification of patterns associated with specific genetic 
conditions.

5. Successful Cases in Disease Diagnosis and Specialist Training

One of the most successful cases in computer vision-based genetic diagnostics is DeepGestalt, a  
system that utilizes convolutional neural networks (CNNs) for facial image analysis. It has been 
tested on over 10,000 images, achieving 91% accuracy [20]. Another notable example is Face2Gene, 
which is widely used in clinical practice. This system enables the diagnosis of genetic disorders 
based  on  facial  images  by  leveraging  large  annotated  databases.  These  databases  contain 
phenotypic markers, including facial characteristics and other manifestations of genetic syndromes. 
According to clinical trials, Face2Gene has demonstrated an accuracy of 89% for Down syndrome 
and 82% for Noonan syndrome [11]. Both systems rely on large biometric datasets, allowing them 
to learn from diverse phenotypic patterns and improve diagnostic precision.

In the field of medical training, the VR-NRP platform was developed for neonatal resuscitation 
training [21]. It provides a realistic and interactive VR environment, where medical professionals 
can practice life-saving techniques on newborns, increasing their confidence and efficiency in real-
world scenarios. Another example is a mixed reality system for medical procedures, such as central  
venous catheter insertion [22]. This technology allows remote experts to guide local practitioners 
through medical  procedures,  enhancing training quality  and reducing errors.  Additionally,  the 
SONIA system provides interactive VR-based neuroanatomy training [23]. It enables students and 
educators to explore complex brain structures, improving comprehension and knowledge retention.

6. Computer Vision Image Analysis Methods and Virtual Reality 
Integration 

Various types of data are used for genetic disease analysis, each contributing to different aspects of 
facial feature recognition and classification:

1. 2D Photographs constitute the primary data type for most machine learning-based facial 
analysis systems. Modern research in machine learning for facial image processing relies on 
publicly available datasets such as Labeled Faces in the Wild (LFW) and CelebA [24]. These 
datasets provide high-quality images that are widely used for training and testing deep 
learning models.

2. 3D  Images  allow  for  a  more  precise  analysis  by  creating  volumetric  models  of  facial 
structures. For example, FaceBase is a database containing 3D facial scans of individuals  
with craniofacial anomalies. Additionally, the 3D Facial Alignment in the Wild (3DFAW) 
dataset  includes 3D face scans captured in various expressions and lighting conditions, 
making it valuable for developing robust models resistant to external factors.

3. Biometric Data – key facial landmarks, such as the distance between critical facial points,  
are used to build models for facial structure analysis and disease detection.

Stages of Data Processing:



 Preprocessing  –  This  step  involves  noise  removal,  image  normalization,  and  facial 
alignment, ensuring consistency across the dataset.

 Augmentation – Since high-quality medical datasets are often limited, augmentation is used 
to expand training data. This includes image transformations such as rotation, scaling, and 
noise addition. Tools like Albumentations and TensorFlow ImageDataGenerator are widely 
applied to enhance model robustness, particularly in scenarios with small datasets.

 Data Cleaning – The removal of duplicate images and mislabeling corrections ensures that  
only high-quality and accurately labeled data are used for training.

Facial landmark detection involves identifying specific facial points, such as the eyes, nose, and 
mouth, to determine the structure of the face. This process consists of preliminary face localization 
using models like MTCNN (Multi-task Cascaded Convolutional Neural Network) or Haar-Cascade. 
A multi-task cascaded deep convolutional neural network (Figure 4) is a method consisting of three 
convolutional networks that work in stages: first, coarse detection, then refinement, and finally 
localization of  key points.  MTCNN, implemented in PyTorch or TensorFlow, detects  faces and 
simultaneously  identifies  the  eyes,  nose,  and  mouth.  It  is  particularly  effective  for  handling 
variations  in  pose,  lighting,  and  occlusion.  Haar-Cascade,  on  the  other  hand,  analyzes  pixel 
groupings  to  detect  potential  face  regions  by  applying  pretrained  feature  classifiers.  Although 
Haar-Cascade is computationally efficient, it is generally less accurate compared to deep learning-
based models like MTCNN.

Figure 4: Multi-task cascade deep convolutional neural (MTCD-CNN) architecture [25]

The second stage involves detecting key points, such as the corners of the eyes, the tip of the 
nose, and the mouth. Convolutional neural networks trained on annotated datasets such as 300-W, 
where  facial  landmarks  were  manually  labeled,  are  used  for  this  task  [26].  For  more  diverse 
conditions, including images taken from different angles, the Annotated Facial Landmarks in the 
Wild  (AFLW)  dataset  is  applied.  Feature  extraction  refers  to  identifying  significant  image 
characteristics, including: geometric features – distances between key facial points; gradients and 
textures – methods such as Histogram of Oriented Gradients (HOG) and Local Binary Patterns 
(LBP). On one hand, HOG extracts gradient directions in small image regions to derive texture-
based  characteristics.  On  the  other  hand,  LBP  compares  pixel  values  within  a  small  window, 
generating binary patterns  [27].  Tools  such as  OpenCV,  a  library used for  preprocessing,  face 
localization,  and  feature  analysis,  and  Dlib,  which  predicts  68  facial  landmarks  for  structural 
analysis, are widely used for implementing these methods.

Various metrics are used to assess the efficiency of developed models, including accuracy, recall, 
and the F-measure. Validation is performed on test datasets that were not used during the training 
process  to  ensure  objective  evaluation.  Additionally,  cross-validation  methods  are  applied  to 
enhance the reliability of the results.

The integration of computer vision and VR into medical practice enhances diagnostic accuracy 
and training efficiency, providing new tools for analyzing and visualizing complex medical data. 



Thus, the combination of VR, computer vision, and advanced 3D scanning methods opens new 
perspectives for medical diagnostics and treatment, contributing to greater precision and efficiency 
in medical procedures.

7. Prospects for future research

Despite significant advancements in computer vision and VR, several unresolved challenges require 
further investigation:

1. Enhancing  the  accuracy  of  facial  feature  recognition  algorithms  –  Developing  more 
balanced datasets that consider ethnic and age diversity among patients.

2. Creating more accessible VR systems that can be implemented in clinical settings.
3. Developing  VR interfaces  that  enable  interaction  with  patient  biometric  data  for  more 

precise diagnostics.
4. Analyzing  the  impact  of  VR  simulations  on  clinical  decision-making  and  diagnostic 

accuracy.
Further  research  in  VR  and  computer  vision  could  greatly  improve  the  precision  and 

accessibility of genetic disease diagnostics while also enhancing medical education. The integration 
of  these  technologies  into  clinical  practice  will  contribute  to  the  development  of  personalized 
medicine and improve the overall quality of healthcare services.

8. Conclusion

This  study  provides  a  comprehensive  review  of  modern  approaches  to  the  analysis  of  facial  
phenotypic features associated with genetic diseases using machine learning and computer vision. 
Key image processing techniques, including preprocessing, key point detection, and classification 
using  deep  learning  models,  have  been  examined.  Additionally,  the  role  of  VR  in  medical 
diagnostics, patient rehabilitation, and physician training has been analyzed.

The application of VR and computer vision in facial data analysis enhances diagnostic accuracy,  
automates  the  recognition  of  genetic  syndromes,  and  enables  the  development  of  interactive 
educational tools for medical professionals. The use of advanced machine learning algorithms, such 
as CNN, ResNet, and Inception, demonstrates high effectiveness in facial recognition and anomaly 
classification tasks.

The integration of VR into the diagnosis and treatment of genetic diseases can be implemented 
in the following ways:

1. VR Simulations for Facial Anomaly Recognition Testing. Utilization of 3D modeling of facial 
structures for analyzing phenotypic features of rare genetic disorders.

2. VR in Clinical Practice. Development of VR applications that allow physicians to interact 
with 3D facial models of patients in real-time. Creation of VR platforms for telemedicine, 
enabling remote consultations and diagnostics.

3. VR-Based Training and Simulations. Immersive VR training systems for teaching physicians 
methods  for  diagnosing  genetic  diseases.  Development  of  virtual  case  studies  with  real 
patient data to enhance the qualification of medical specialists.
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