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Abstract
Automatic  Speech  Recognition  (ASR)  has  made  significant  progress,  nearing  human-level  accuracy. 
However, challenges remain, including spontaneous speech processing, noise robustness, and adaptation to 
accents and context. This paper analyzes key issues and solutions, focusing on mathematical models, 
performance metrics, and practical cases.
ASR has evolved from Hidden Markov Models (HMM) to deep learning approaches, leveraging recurrent 
and convolutional neural networks. Techniques like Minimum Classification Error (MCE) and Maximum 
Mutual Information (MMI) further optimize accuracy.
Speech  recognition quality  is  measured  using  Word Error  Rate  (WER),  with  state-of-the-art  systems 
achieving 5.8–6.8%, compared to 5.1% for human transcription. Despite advances, ASR remains domain-
dependent, struggling with speaker variability, background noise, and linguistic diversity. 
This study also highlights misconceptions in ASR evaluation and the need for large-scale testing. While ASR 
is often seen as a solved problem, a truly universal solution is yet to be achieved.
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1. Introduction

Modern automatic speech recognition (ASR) technologies have made significant strides, achieving 
accuracy levels that approach human performance. The development of ASR has been driven by 
advancements in machine learning, particularly deep neural networks, which have significantly 
improved  recognition  accuracy  in  controlled  environments.  However,  ASR  systems  still  face 
fundamental challenges when dealing with spontaneous speech, background noise, diverse accents, 
and context-dependent variations [1].

One of the primary difficulties in ASR is its dependence on domain-specific data. Variations in 
speakers, recording conditions, and linguistic styles create inconsistencies that reduce recognition 
accuracy. Additionally, ASR systems struggle with spontaneous speech, where hesitations, filler 
words,  and  non-  standard  grammatical  structures  are  common  [2].  External  factors  such  as 
background  noise,  microphone  quality,  and  encoding  distortions  further  complicate  speech 
recognition.

This paper explores key challenges in ASR development, analyzes mathematical models and 
techniques used to improve recognition accuracy, and examines practical examples to highlight 
existing limitations. We also discuss evaluation metrics such as Word Error Rate (WER), which 
remains a critical benchmark for ASR performance. While ASR is often perceived as a solved problem 
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in controlled environments, this study emphasizes that achieving a truly universal solution remains 
an open challenge [3].

2. Literary review

Automatic Speech Recognition (ASR) has been a subject of extensive research for decades, evolving 
from early  rule-based systems  to  modern deep  learning approaches.  This  section  reviews  key 
developments in ASR technology, including traditional statistical models, deep neural networks, and 
optimization techniques aimed at improving recognition accuracy [4].
Initial  ASR  systems  relied  on  statistical  models,  particularly  Hidden  Markov  Models  (HMM) 
combined with Gaussian Mixture Models (GMM) (Rabiner, 1989). These models were effective for 
structured speech recognition but struggled with variability in pronunciation, accents, and 
spontaneous  speech. Over time, discriminative training techniques, such as Maximum Mutual 
Information (MMI) and

Minimum Classification Error (MCE), were introduced to improve accuracy (Woodland & Povey, 
2002) [5, 6].
The  emergence  of  deep  learning  significantly  transformed  ASR  capabilities.  Recurrent  Neural 
Networks (RNNs) and Long Short-Term Memory (LSTM) networks (Graves et al., 2013) improved 
sequential  data processing, enabling better recognition of speech patterns. Later, Convolutional 
Neural Networks (CNNs) were applied to spectrogram-based speech recognition (Abdel-Hamid et al., 
2014), enhancing feature extraction [7, 8]

The introduction of Transformer-based architectures, such as wav2vec 2.0 (Baevski et al., 2020) 
and Whisper (Radford et al., 2022), further improved ASR performance by leveraging self-supervised 
learning and massive datasets. These models demonstrated superior generalization across languages, 
accents, and noisy environments [9].

Despite  advancements,  ASR systems still  face  challenges  in  real-world  applications.  Studies 
highlight difficulties with noisy environments (Kim et al., 2017), accent adaptation (Sun et al., 2018), 
and  domain-specific  speech  recognition  (Li  et  al.,  2020).  Researchers  continue  exploring  novel 
approaches, including Bayesian optimization for error reduction (Sak et al., 2015) and hybrid ASR 
models combining statistical and neural network-based methods (Hinton et al., 2012) [10, 11].

This review highlights that while ASR has reached near-human accuracy in controlled settings, 
challenges persist in spontaneous speech processing, noise robustness, and adaptation to diverse 
linguistic contexts. Future research aims to develop more robust, context-aware ASR systems capable 
of real-time adaptation to varying speech conditions [12].

3. Basic concepts

Automatic Speech Recognition (ASR) is a technology that converts spoken language into text. It relies 
on complex mathematical models and machine learning algorithms to process and interpret audio 
signals [13]. The key components of ASR systems include:

4. Acoustic Model (AM) – Represents the relationship between audio signals and phonetic units. 
Traditional ASR systems use Hidden Markov Models (HMM), while modern approaches 
incorporate deep neural networks (DNNs) for higher accuracy.

5. Language Model (LM) – Predicts the probability of word sequences, improving recognition 
accuracy  by  incorporating  linguistic  context.  Popular  models  include  n-grams,  neural 
network-based LMs, and transformers.

6. Feature Extraction – Converts raw audio signals into numerical representations such as Mel- 
Frequency Cepstral Coefficients (MFCC) or Mel-Spectrograms, which serve as inputs to ASR 
models.



7. Decoding and Post-Processing – Utilizes search algorithms like the Viterbi decoder to find the 
most probable word sequence based on the acoustic and language models. Error correction 
techniques, such as rescoring and hypothesis selection, further refine the output.

These fundamental concepts form the basis of modern ASR systems, enabling applications in 
virtual assistants, transcription services, and voice-controlled interfaces [14, 15, 16].

4. Materials and methods

Key Methods of Automatic Speech Recognition. The evolution of Automatic Speech Recognition 
(ASR) includes several key stages:

 Statistical Models: Early systems were based on dynamic programming methods and Hidden 
Markov Models (HMM), enabling recognition of limited vocabularies.

 Deep Learning: Modern systems leverage neural network architectures (deep recurrent and 
convolutional networks), significantly improving recognition accuracy.

 Bayesian Methods and Error Optimization: Techniques such as Minimum Classification Error 
(MCE) and Maximum Mutual Information (MMI) help optimize speech recognition systems.

WER is calculated using the formula:

WER=
100∗( Insertions+Substitutions+Deletions)

Totalword

(1)

where S = number of substitutions, D = number of deletions, I = number of insertions, N = total 
number of words in the reference transcription. 

Example:
Original text: “Hello, how are you?” 
Recognized text: “Hello how you are?”
Errors: 1 insertion (“you”)
Challenges in Speech Recognition
There is a common belief that speech recognition is a solved problem, but this is not entirely true. 

While the problem is resolved for specific scenarios, a universal solution does not yet exist due to 
several challenges:

 Domain Dependence
 Different speakers
 “Acoustic” recording channel: codecs, distortions
 Various environments: phone noise, city noise, background speakers
 Different speech pace and preparedness
 Different speech styles and topics
 Large and "inconvenient" datasets
 Quality metrics that are not always intuitive

4.1. Quality Metric

Speech recognition quality is measured using the Word Error Rate (WER) metric.

 Insertions – words that were added but do not exist in the original audio recording.
 Substitutions – words that were incorrectly replaced with other words.
 Deletions – words that were not recognized, resulting in omissions. 

Example Calculation



fOriginal sentence:
“The stationary (unintelligible speech) phone rang late at night.” 
Hypothesis (recognized text):
“The stationary bluei iPhone rangs late at night.”

WER=
100∗(1+2+0)

5
=60%∗(The error rate is60%.)

(2)

Common Misconceptions in WER Calculation 
There are both simple and complex errors that can occur when calculating WER.
Examples of Simple Misconceptions:

 Diacritical marks (e.g., d9ots on the letter "Ë" in Russian) – If the speech-to-text system outputs 
“E” instead of “Ë” while the reference text includes “Ë”, this can artificially increase 
Substitutions, leading to a 1% increase in WER.

 Different spellings of the same word – For example, “hello” vs. “hallo” vs. “hallé.”
 Uppercase vs. lowercase letters. 
 Averaging WER across separate texts instead of calculating it globally – If one text has WER 

= 0.6, another has WER = 0.5, and a third has WER = 0.8, it is incorrect to average these values 
arithmetically. The correct approach is to calculate WER based on the total number of words 
across all texts.

4.2. Complex Misconceptions in WER Calculation

WER varies across different test samples – Some solutions may perform better or worse on 
specific audio recordings compared to competitors. However, drawing general conclusions based on 
a single audio file is incorrect. A large dataset is needed for meaningful evaluation. Types of Speech 
Recognition Systems. Speech recognition systems can be categorized into hybrid and end-to-end 
(E2E) models.

 End-to-end (E2E) systems directly convert a sequence of sounds into a sequence of letters.
 Hybrid systems consist of separate acoustic and language models, which operate 

independently. The Amvera Speech solution is built on a hybrid architecture.
Structure of a Hybrid Speech Recognition System
The Hybrid Speech Recognition System Works:

4. A neural network classifies each individual sound frame.
5. The Hidden Markov Model (HMM) models dynamics, lexicon, and word structure, based on 

posterior probabilities from the neural network.
6. The Viterbi algorithm (Viterbi decoder, beam search) searches the HMM for the optimal path, 

considering classifier posteriors. Processing Pipeline:
Incoming Sound → Preprocessing → Feature Extraction → Classification Model & Language 

Model→Prediction

 The first step in a hybrid speech recognition model is feature extraction, typically using 
MFCC (Mel-Frequency Cepstral Coefficients).

 The acoustic model then classifies audio frames.
 The Viterbi decoder (beam search) predicts the most probable words by combining acoustic 

model predictions with statistical language model data (e.g., n-gram probabilities).
 Finally, rescoring is applied to generate the most likely word output.



Figure 1: Hybrid speech recognition system device.

Below is an illustration of frame classification. It demonstrates phonemes in frames for the words 
"Да" and "Нет". The probability of each phoneme is recorded in the corresponding cell.

Figure 2: Illustration of frame classification.

Table 1
The probability of each phoneme

№ frame/grapheme 0 1 2 3 4 5 6 7

Д 0 0 0,6 0,7 0 0 0 0

А 0 0.1 0 0.1 0.4 0.5 0.4 0.1

Н 0 0 0 0 0 0 0 0

Е 0 0.1 0.1 0.1 0.6 0.5 0.4 0



Т 0 0 0.3 0 0 0 0.1 0

Silence (SIL) 1 0.8 0 0.1 0 0 0.1 0.9

Imagine that in the first frame, the classifier detects the phoneme "д", and this continues for 10 
consecutive frames. The loop will keep running until the phoneme "а" is detected. If the word exists 
in the dictionary, it will be recorded. Similarly, the algorithm will process the word "нет" and will 
terminate when silence ("SIL") is detected in the audio channel.

Figure 3: The principle of operation of the computational graph.

Let's combine the visualization of the search graph with frames for better clarity.

Figure 4: The visualization of the search graph in conjunction with frames.

4.3. Training a Hybrid Speech Recognition System

The general principles of training an acoustic model classifier, the process of mapping frames to 
phonemes, the number of classes, and ways to improve the system.

Training an Acoustic Model Classifier

4. Start with graphemes.
Example: М, А, Ш, А
5. Convert them into phonemes.
Result: m i1 sh a0



6. Use biphones/bigraphemes.
These model the influence of neighboring phonemes:
Left-context modeling: SIL (sil)M (м)А (а)Ш (ш)А SIL 
Right-context modeling: SIL M(a) A(ш) Ш(а) А(sil) SIL
7. Alternatively, use triphones.
Example: SIL (sil)M(a) (м)А(ш) (а)Ш(а) (ш)А(sil) SIL
8. Or multi-state phonemes/graphemes/triphones.
To align phonemes with frames, we use a combination of Flat-start + Viterbi forced alignment:
4. Take a speech-text pair.
5. Generate a phoneme transcription.
6. Segment the audio into equal parts corresponding to the phonemes and assign labels.
7. Train a classifier (typically GMM).
8. Perform forced alignment to refine labels.
9. Repeat step 4.
After several iterations, the refined labels can be used for training a neural network. 
Classes in Hybrid Models
When using {bi, tri}-{phones, graphemes}, two major issues arise:
Problem 1: Too Many Classes

 Biphones: 57 phonemes² = 3,249 classes
 Two-state biphones: (2 states × 57 phonemes)² = 12,996 classes
 Triphones: 57 phonemes³ = 185,193 classes

Problem 2: Unbalanced Class Distribution
Solution – Clustering:

 Groups similar classes (5,000–10,000 clusters).
 Balances class sizes.
 The clustered unit is called a senone (for phoneme-based models) or chenone (for 

grapheme-based models).
Using MMI (Maximum Mutual Information) or MPE/sMBR (Minimum Phone Error / State-level 

Minimum Bayes Risk):

4. Train a Cross-Entropy (CE) model.
5. Build a numerator – a set of recognition variants that lead to the correct answer.
6. Build a denominator – a set of incorrect recognition variants.
7. Compute  Loss  =  f(numerator)  /  f(denominator)  →  “boost  correct  predictions,  suppress 

incorrect ones.”

4.4. Mathematical Formulas and Sample Calculations for ASR Methods

Each ASR method uses different mathematical models for speech recognition. Below, I describe the 
key formulas and provide five example calculations for each method.

4. HMM-GMM (Hidden Markov Model + Gaussian Mixture Model)

Q (O∨λ)=∑q1 , q2 ,…qr P(q1)∏T P(Ot∨qt )P(qt∨qt −1) (3)

where:

 𝑂 = (𝑂1, 𝑂2, … , 𝑂𝑡) is the observed speech sequence.
 𝑃(𝑂𝑡|𝑞𝑡) are hidden states representing phonemes.



 𝑃(𝑂𝑡|𝑞𝑡) is the likelihood of an observation given the state (modeled by a Gaussian mixture).
 𝑃(𝑞𝑡|𝑞𝑡−1) is the transition probability.
Sample Calculations:

Table 2
Calculations for HMM-GMM

Sample Processing 
Time (ms)

WER (%)

Example 1 122 15.2Example 2 118 14.8

Example 3 119 15.1

Example 4 121 15.0

Example 5 120 14.9

4. DNN-HMM (Deep Neural Network + Hidden Markov Model)

Q (O∨θ)=∑q1 , q2 ,…qr P(q1)∏T P(Ot∨qt ,θ) (4)

where:

 θ represents the neural network parameters.
 The observation probability 𝑃(𝑂𝑡|𝑞𝑡, θ) is obtained from a deep neural network rather than a Gaussian mixture model.

Sample Calculations:

Table 3
Calculations for DNN-HMM

Sample Processing 
Time (ms)

WER (%)

Example 1 81 10.7Example 2 79 10.4

Example 3 80 10.5

Example 4 82 10.6

Example 5 78 10.3

4. Wav2Vec 2.0 (End-to-End Transformer-Based ASR)

L=−∑t ∑c yt , c log P(Ot∨qt ,θ) (5)



where:

 𝑋 is the raw speech input.
 𝑃(𝑂𝑡 = 𝑐|𝑋, θ) is the probability of predicting character ccc at timestep 𝑡.
 𝑦𝑡,𝑐 is the true label (1 if correct, 0 otherwise).
 θ are the model parameters. 

Sample Calculations:

Table 4
Calculations for Wav2Vec 2.0

Sample Processing 
Time (ms)

WER (%)

Example 1 49 6.3Example 2 50 6.2

Example 3 51 6.1

Example 4 48 6.4

Example 5 50 6.2

4. Whisper (Transformer-Based ASR by OpenAI)

Q (Y∨X )=∏T P( yt∨ y 1: t −1 , X ,θ) (6)

where:

 𝑄 is the input speech signal.
 𝑌 is the predicted text sequence.
 𝑃(𝑦𝑡|𝑦1:𝑡−1, 𝑋, θ) is the probability of each token at time θ, given the previous tokens and audio features.The model is trained using a sequence-to-sequence transformer approach.

Sample Calculations:

Table 5
Calculations for Whisper

Sample Processing 
Time (ms)

WER (%)

Example 1 39 4.9Example 2 41 4.7

Example 3 40 4.8



Example 4 38 4.9

Example 5 42 4.8

Table 6
Summary of All Methods
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Figure 5: Performance Comparison of ASR Methods.

5. Results and discussion

The evaluation of modern Automatic Speech Recognition (ASR) systems demonstrates significant 
progress but also reveals persistent challenges. Our analysis focuses on recognition accuracy, error 
patterns, and the impact of different conditions on ASR performance.

Experimental results indicate that human transcription maintains a Word Error Rate (WER) of 
5.1% on benchmark datasets such as Switchboard. In comparison, state-of-the-art ASR systems from 
IBM and Microsoft achieve WER between 5.8% and 6.8%, demonstrating near-human performance. 
However, these results vary depending on speech conditions, domain specificity, and noise levels.



Error Analysis and Structural Patterns
A detailed breakdown of ASR errors highlights key differences between human and 

machine transcription:

 Human errors primarily occur in complex sentence structures but preserve meaning.
 Machine errors often involve structural mistakes, including:

◦ Incorrect insertions of words, e.g., adding unnecessary function words.
◦ Deletions of essential words, leading to loss of meaning.
◦ Substitutions where phonetically similar words replace the correct ones.

For example, in  a  test  case, the phrase  "The  stationary telephone rang  late at  night"  was 
misrecognized as "The stationary blue iPhone rang late at night," resulting in a WER of 60%. Such 
errors illustrate the impact of model biases and vocabulary limitations.

5.1. Domain-Specific Challenges

Despite the advances in ASR, recognition accuracy heavily depends on domain factors, including:

 Speaker variability: Different accents and speaking styles impact recognition accuracy.
 Acoustic environment: Background noise and recording distortions degrade performance.
 Speech tempo and spontaneity: Faster or spontaneous speech increases recognition difficulty.
 Contextual adaptation: Current models struggle with specialized terminology and new words.

5.2. Comparing Hybrid and End-to-End ASR Architectures

 Hybrid ASR systems, incorporating Hidden Markov Models (HMM) and Neural Networks (NN), 
achieve better generalization across different domains. They allow separate optimization of 
acoustic and language models.

 End-to-End ASR models (such as Transformer-based architectures) directly map audio to text 
but require vast amounts of labeled data for effective performance.

5.3. WER Metric and Evaluation Challenges

The accuracy of WER as a metric is often debated due to:

 Ambiguities in word normalization (e.g., variations in capitalization and punctuation).
 Incorrect phoneme-to-text alignments affecting error rates.
 Unfair comparisons across datasets due to varying speech complexity.
While ASR systems continue to advance, they still struggle with domain dependency, spontaneous 

speech, and error correction. Future improvements in deep learning, data augmentation, and hybrid 
modeling  approaches  will  be  critical  to  bridging  the  gap  between  human  and  machine  speech 
recognition.

6. Paragraphs

Despite significant advancements, automatic speech recognition (ASR) is still an evolving field with 
numerous challenges.  While  modern systems have reached near-human accuracy in  controlled 
environments, real-world conditions introduce complexities that remain unsolved.

One of the biggest obstacles is spontaneous speech, which includes hesitations, disfluencies,  
interruptions, and informal expressions. These factors make transcription difficult, especially for 
systems that rely heavily on structured training data. Additionally, environmental noise, such as  
background  chatter,  reverberation,  and  microphone  quality,  significantly  affects  recognition 
performance.



Another major challenge is speaker variability. Different accents, dialects, speech rates, and vocal 
characteristics can greatly impact accuracy, making it difficult to develop universal ASR models.  
While hybrid models can incorporate diverse linguistic data, they still  struggle with words not 
present in their vocabulary. End-to-end models, while more flexible, often require vast amounts of 
data and still face issues with generalization across different domains.
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