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Abstract
Machine  learning  models,  particularly  those  used  in  automatic  speech  recognition  (ASR),  generally  
exhibit diminishing returns when dataset size and resource utilization escalate. This study analyzes the 
performance saturation observed during ASR model training, using the Whisper-Tiny model to illustrate 
this trend. The research identifies key factors contributing to performance limitations,  including dataset 
size, model architecture, and resource utilization. As dataset size exceeds 15,000 samples, improvements 
in Word Error Rate (WER) and Character Error Rate (CER) decline significantly, confirming diminishing 
returns.
The study also examines resource utilization, revealing that training time increases non-linearly with  
dataset  size.  While  GPU memory  usage  remains  relatively  constant,  CPU and  RAM usage  fluctuate, 
indicating potential inefficiencies. To address computational constraints, techniques such as streaming 
data  processing  and  fixed-length  audio  segments  are  implemented  to  enhance  training  efficiency. 
Additionally, evaluation bottlenecks are mitigated by using fixed test dataset sizes, ensuring quicker and 
more consistent assessments.
Efficient  processing  strategies,  including  gradient  accumulation  and  mixed-precision  training,  are 
explored to reduce resource consumption without compromising performance. Visualization techniques, 
such  as  correlation  heatmaps  and  performance  plots,  highlight  the  trade-offs  between dataset  size, 
computational cost, and model accuracy.
The findings emphasize the importance of balancing resource allocation and data volume to optimize 
ASR  training  workflows.  By  acknowledging  and  addressing  performance  saturation,  researchers  can  
develop more scalable and efficient ASR models, making advanced speech recognition technology more 
accessible in resource-constrained environments.
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1. Introduction

Machine learning models typically improve as they are trained with more data and computational 
power. However, at some point, this improvement diminishes or stops altogether.  This 
phenomenon is known as diminishing returns—where further increases in training time, data [1], 
or model complexity result in minimal or no gains in performance [2], [3].

Understanding when and why this happens is crucial for optimizing machine learning 
workflows. Continuing training beyond a model’s performance limits leads to wasted time and 
resources without tangible benefits. This article explores the primary reasons why a model ceases 
to improve, how to recognize these signs, and potential solutions.
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Most  standard  machine  learning  models  improve  with  additional  data  and  computational 
power.  However,  at  some  point,  this  improvement  slows  down  or  stops  altogether.  This 
phenomenon is known as diminishing returns—where extra training time, data,  or model 
complexity leads to only marginal gains. Understanding when and why this happens is crucial for 
optimizing machine learning workflows.  Training beyond a model’s  performance limits  wastes 
time and resources without yielding any meaningful benefits.

This issue is particularly relevant for speech recognition models, as they typically require vast 
amounts of data and computational resources [2],[4]. Advances in Automatic Speech Recognition 
(ASR) have been closely tied to progress in deep learning, particularly through more advanced 
recurrent and convolutional neural networks [3].  These improvements have enabled models to 
better  understand  human speech,  accounting  for  variations  in  accents,  background  noise,  and 
speaking styles, and low-resource languages [5],[6],[7].

However, even state-of-the-art models face performance saturation. Identifying the key factors 
contributing to this limitation—such as dataset size, model architecture, and training strategies—
can help researchers build more efficient training pipelines [8],[9],[10]. This article explores these 
factors,  drawing  insights  from  recent  studies  and  experiments,  and  offers  practical 
recommendations for optimizing ASR workflows.

2. Literature Review or Problem Statement

Training a machine learning model involves teaching it  to recognize patterns in data to make 
accurate predictions or decisions. The process typically includes the following key steps:

Process Process Advantages Disadvantages

Collecting and 
Preparing Data

Datasets  such  as 
LibriSpeech  provide 
spoken  language 
Recordings [11]. 

Captures variations 
in accents, speaking 
styles, and noise 
conditions.

Large  datasets 
require  significant 
storage  and 
processing.

Data Preprocessing Cleaning  noise, 
normalizing  values, 
and converting data 
for Processing [12].

Improves  model 
input  quality  and 
extraction of relevant 
features.

Noise removal may 
inadvertently  lose 
useful information.

Model Selection and 
Architecture

Use  of  RNNs  and 
CNNs for  sequential 
data processing  
in speech recognition 
[13].

Effective in capturing 
sequential 
relationships  in 
speech data.

High computational 
cost and risk of 
overfitting complex 
models.

Model 
Training

Optimization 
algorithms (e.g., 
SGD) iteratively 
minimize prediction 
errors [14].

Allows continuous 
performance 
improvement with 
additional iterations.

Overtraining  may 
lead  to  diminishing 
returns  and 
overfitting.

Evaluation and 
Testing

Metrics like WER 
and  CER  measure 
model  performance 
on unseen Data [15].

Provides insight into 
model accuracy and  
generalization 
capabilities.

Evaluation may not 
capture  all  real-
world  speech 
conditions.

Visualizing  the Tools  like Enables visualization Requires  additional 



Learning Process TensorBoard  track 
model  performance 
over time [16], [17].

of  metrics  and 
training  dynamics 
for better insights.

resources  and  time 
for  visualization 
setup.

This Figure 2.1 – Correlation heatmap provides key insights into the relationships between 
different  training  metrics,  helping  to  understand  diminishing  returns  in  model  improvement. 
Strong positive correlations (e.g., between Train WER and Train CER, and between Test WER and 
Test CER) confirm that these error metrics behave similarly. The inverse  correlation between 
Samples and Test WER (-0.92) suggests that increasing training data leads to better generalization, 
but diminishing gains are evident as correlation weakens for Valid WER. Notably, Training Time 
and RAM Usage exhibit high positive correlation (0.79), showing the growing computational cost  
with  more  samples.  Meanwhile,  Batch  Processing  Time  does  not  always scale linearly with 
Samples, hinting at potential inefficiencies [6]. These findings support the argument that beyond a 
certain point, additional training data  increases computational  cost  disproportionately  to 
performance gains.

Figure 2.1: Correlation between metrics.

The  heatmap  in  Figure  2.1  presents  the  correlation  between  various  performance  and 
computational  metrics used in evaluating the Whisper-Tiny model.  The correlation coefficients 
range from  -1 to 1, where  positive values  indicate a direct relationship, and  negative values 
indicate an inverse relationship.

3. Methodology

3.1. Performance Saturation Analysis

As  the  dataset  size  increases  from  5,000  to  50,000  samples,  a  pattern  of  diminishing  returns  
becomes evident. Initially, with 5,000 samples, the test Character Error Rate (CER) is relatively 



high, reflecting the model's struggle with limited training data. For instance, at this stage, the test  
Word Error Rate (WER) is 0.5300, indicating that the model misinterprets over 50% of words.

With an increase in sample size, the CER gradually decreases, demonstrating that the model 
benefits  from additional  training  data.  However,  beyond a  certain  threshold,  roughly  between 
30,000 and 40,000 samples,  improvements  in performance become marginal.  This suggests that 
while adding more data helps in the earlier stages, the model reaches a saturation point where 
additional samples contribute little to further reducing the error rate.

The persistent gap between the test and training CER values suggests that the model may still 
be overfitting, learning patterns specific to the training set while struggling with generalization. 
Potential strategies to address this issue include refining the model architecture,  optimizing 
hyperparameters, or incorporating regularization techniques. Furthermore, improvements in data 
quality, rather than sheer quantity, might yield better gains in accuracy at this stage:

TestWER5000=0.5300

TestWER5000=0.4559
(1)

Beyond 15,000 samples, improvements slow significantly.

WER= 𝑆 +𝐷 + 𝐼
N

= 𝑆 +𝐷 + 𝐼
𝑆 +𝐷 +𝐶

(2)

where S – is the number of substitutions,  D – is the number of deletions,  I – is the number of 
insertions,  C – is the number of correct  words,  N – is  the number of words in  the reference 
(N=S+D+C)

CER=[ 𝑖 +𝑠 +𝑑
𝑛

]∗ 100 (3)

3.2. Training Time Scaling

Training time increases non-linearly with dataset size:

T 5000=818.23 seconds

T 50500=2644.48 seconds
(4)

as:

samples per second= effective batch sizе× steps per second
gradient accumulation steps

(5)

where:
effective_batch_size = per_device_train_batch_size * num_devices  (In  your  case,  8  *  1  =  8, 

assuming 1 GPU) 
steps_per_second = number of training steps completed per second (This depends on hardware, 

model size, and optimizations) 
gradient_accumulation_steps = number of steps before updating weights (In your case, 1, so it 

doesn’t change the formula)



3.3. Resource Usage

 GPU memory usage remains roughly constant.
 CPU and RAM usage fluctuates without a clear trend.

3.4. Model Performance Stability

Training  loss  decreases  initially  but  levels  off after 15,000  samples,  confirming  performance 
saturation. The plots illustrate the trade-offs in training a speech recognition model with increasing 
dataset size. While test WER and CER show improvement as more samples are added, training and 
validation metrics fluctuate, suggesting inconsistencies in generalization. Resource usage metrics 
(GPU, CPU, RAM) indicate increasing computational costs, with training time and batch processing 
time rising significantly beyond 30,000 samples. This demonstrates that scaling dataset size alone is 
not always optimal and reinforces the importance of balancing data volume with model efficiency. 
You should place this analysis in the section discussing the diminishing returns of increasing data 
in research, supporting the argument that more data is not always the  best  solution  and 
computational constraints must be considered.

Figure 3.1: Models’ characteristics over training dataset size.

following formula:

numepochs=min(6 , max steps×batch sizе×gradient accumulation steps
num samples

)
(6)

where:
 num_samples = total number of training samples,
 batch_size = per_device_train_batch_size (8 in your case),
 gradient_accumulation_steps (1 in your case),
 max_steps = 3000.



4. Experiments and Results

4.1. Efficient Processing Strategies

The Whisper-Tiny model was selected primarily to minimize computational costs while achieving 
faster  convergence.  As  a  lightweight  version  of  the  Whisper  architecture,  it  enables  efficient 
training and inference without requiring extensive hardware resources. By using a smaller model, 
the risk of overfitting is reduced, allowing for a more generalized learning process even with a 
moderate dataset size. Additionally, the smaller model size facilitates quicker saturation, meaning 
that  improvements  in  performance diminish at  an  earlier  stage  compared to  larger  models.  A 
Whisper-Tiny  model  was  chosen  to  reduce  computational  costs  and  reach  saturation  faster. 
Streaming Dataset  Approach:  Uses  IterableDataset  to  dynamically  load and process  small  data 
batches.  Librosa-Based  Audio  Processing:  Keeps  only  essential  audio  fragments  in  memory. 
Padding & Truncation: Audio samples standardized to 10-second segments.

Robust Model Evaluation: 
WER: Measures incorrect transcriptions at the word level.
CER: Provides a finer, character-level evaluation.
The  bar  plot  shows  how Figure  4.1  –  Word  Error  Rate  (WER)  decreases  as  training  data 

increases,  confirming  that  more  data  initially  improves  model  performance.  However,  beyond 
15,000–20,000  samples,  the  improvement  slows  significantly,  demonstrating  performance 
saturation. The training set (blue bars) shows steady WER reduction, but validation (gray) and test 
(red) sets maintain a gap, highlighting limited generalization.

Figure 4.1: Word Error Rate (WER).

This supports the claim that simply adding data is not always effective and suggests the need for 
alternative  optimizations  like  better  architecture  or  regularization.  Visualization  reinforces  that 
increasing dataset size beyond a threshold has diminishing returns, making computational efficiency a 
key consideration.



Figure 4.2: Char error rate.

The chart in Figure 4.2 represents the Character Error Rate (CER) distribution over different sample 
sizes for training, validation, and test datasets.

5. Discussion

One of the largest challenges was Out-of-Memory (OOM) errors. Initially, attempting to load the 
entire dataset into RAM caused system crashes. To resolve this, an IterableDataset was 
implemented, enabling data to be streamed in small chunks instead of being loaded all at once. 
Another major issue was inefficiency in audio processing. The dataset contained large, variable- 
length audio files, which led to batching problems during training. This was addressed by 
segmenting the audio into uniform 10-second chunks, ensuring consistency across batches.

Training instability also emerged as a challenge, primarily due to prolonged training on limited 
hardware, which led to overfitting. To mitigate this, several strategies were applied: the maximum 
number of training steps was capped at 3,000, and a small batch size of 8 was used in combination 
with gradient accumulation to optimize resource utilization.

Finally, evaluation bottlenecks slowed down development.  Processing the entire dataset was 
time-consuming, making evaluations inefficient. To streamline this process, the test dataset size 
was fixed at  5,000 samples,  allowing for  faster evaluations without significantly compromising 
accuracy.

6. Conclusion

This  study  optimizes  Whisper-Tiny  for  low-resource  training  by  leveraging  streaming  data 
processing, mixed-precision training, and efficient memory batching. The pipeline is designed to 
accommodate real-world constraints, making ASR model training both scalable and efficient in 
resource-limited environments.

The  research  underscores  the  concept  of  performance  saturation  in  deep  learning  models.  
Initially,  as  the  number  of  training  samples  increases,  the  Word  Error  Rate  (WER)  decreases, 
reflecting  improved  model  performance.  However,  beyond  a  certain  threshold  (around  15,000 
samples),  the  rate  of  improvement  slows  significantly,  demonstrating  the  phenomenon of 
diminishing returns. This aligns with the study’s findings, highlighting that while  expanding 
dataset size and computational resources can enhance model performance, there is a limit beyond 
which further investments yield minimal gains.

Recognizing this saturation point is essential for optimizing machine learning workflows, 
especially in resource-constrained settings. This reinforces the importance of strategies like the 
Whisper-Tiny model and streaming dataset approaches, which promote faster convergence and 



efficient  resource  utilization.  The  findings  in  this  section  support  the  broader  discussion  on 
effective processing techniques and model performance stability in machine learning.

Special thanks to Diana Baranovskaya for generously providing a computing machine for model 
training. 
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