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Abstract 
This paper presents information technology for semantic segmentation of building objects in high-
resolution aerospace images using a hybrid quantum convolutional neural network (QCNN). Quantitative 
and visual evaluations demonstrate the effectiveness of the proposed approach compared to classical 
segmentation models such as U-Net, CNN, and FCN. The hybrid QCNN model achieved high pixel 
classification accuracy, with a mean accuracy of 0.98 on the training set and 0.97 on the validation set, 
indicating robust object recognition. Loss values reached minimal levels (0.05 training, 0.07 validation), 
confirming efficient training without overfitting. Intersection over Union (IoU) scores were 0.90 and 0.89 
for training and validation sets, respectively, demonstrating precise building contour delineation. Testing 
on diverse urban scenes yielded 100% detection accuracy without false positives or negatives. Training 
dynamics showed rapid convergence, with mean average precision (mAP) increasing to 0.35–0.45 and 
mAP@50:95 reaching 0.20–0.30, stabilizing after 50 epochs. The proposed technology effectively segments 
buildings under varying density, geometric complexity, shadows, and background noise. The hybrid QCNN 
approach enhances segmentation quality and generalization to new images. The results confirm the 
practical applicability of the developed technology for geospatial monitoring, urban planning, and mapping 
based on aerospace imagery. 
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1. Introduction 

The modern availability of very high spatial resolution remote sensing imagery has significantly 
expanded the possibilities for building object segmentation. Segmentation, as a process of dividing 
an image into functional areas, is a key stage for further analysis of the spatial structure of urbanized 
territories. The data obtained as a result of segmentation are used for integration into geographic 
information systems (GIS) [1], maintaining the relevance of cartographic data, assessing damage in 
emergency zones [2], monitoring urban infrastructure, and analyzing land use and urbanization 
processes [3, 4]. However, obtaining such imagery for large areas, particularly cities and urban 
agglomerations, involves significant time and resource expenditures and organizational challenges 
[5, 6]. It limits their regular use in operational monitoring. In addition to aerial imagery, satellite 
remote sensing images have been widely used in monitoring, offering greater area coverage and 
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higher data update frequency. Nevertheless, satellite data are characterized by increased spectral 
variability, caused by different imaging conditions, atmospheric effects, and seasonality [7–9]. As a 
result, the development of universal automated systems for the interpretation and segmentation of 
satellite images remains challenging, especially under conditions of uncertainty and heterogeneity 
of input data. Therefore, developing an information technology capable of integrating heterogeneous 
aerial and satellite imagery data and providing efficient automated segmentation of building objects 
is highly relevant. This approach enables improved accuracy and timeliness in analyzing spatial 
changes in urban areas and supports decision-making in urban planning. 

2. Related works 

Image segmentation is one of the key steps in analyzing and interpreting remote sensing data and 
has been actively studied in recent years. In aerospace image analysis, building object segmentation 
is defined as a semantic segmentation task, which involves classifying each image pixel into one of 
two mutually exclusive categories: 'building' or 'background' [10–12]. A significant number of 
scientific studies are dedicated to developing and improving segmentation methods, covering both 
classical approaches based on thresholding and region growing, as well as modern machine learning 
and deep learning models [13]. 

Traditional segmentation algorithms use pixel-based or object-oriented features, such as spectral 
characteristics, texture, shape, and shadows, applying classical algorithms including support vector 
machines and random forests. They are mainly used for processing relatively small areas due to the 
need for manual feature extraction. However, these methods have significant limitations: a high 
dependence on sensor characteristics, imaging conditions, and regional specifics, which leads to 
reduced stability of the results. 

Considering the limitations of traditional segmentation algorithms, modern research is 
increasingly focused on applying deep learning (DL) methods. DL architectures such as U-Net [14, 
15], SegNet [16, 17], DeepLab [18], Convolutional Neural Networks (CNN) [19], and ConvNext [20] 
have gained popularity. These models automatically extract spatial-contextual features directly from 
high-resolution input images, integrating the feature extraction stage into the classifier training 
process. Among the classical architectures, U-Net is a coder-decoder model initially developed for 
medical imaging that has become particularly popular and effectively adapted for pixel-wise 
classification of satellite images [21]. The authors in [22] proposed an improved architecture 
combining U-Net with self-attention and depthwise separable convolutions, achieving 91% accuracy, 
5% higher than Dense Plus U-Net. 

The authors in work [23] proposed a method combining CNN with a pyramid pooling mechanism 
for multi-scale feature extraction, significantly improving the recognition of semantic content in 
aerial photographs. The SegNet model in work [24] was applied for multi-class segmentation of UAV 
photogrammetric images, resulting in a substantial increase in building detection accuracy. The 
paper [25] investigated similar semantic segmentation tasks in related fields. The method presented 
in [26] combines object-oriented and pixel-based analysis for the automatic detection of new 
constructions, changes, or demolition of buildings, achieving an accuracy of 84–88% and a Kappa 
statistic of 89–96% based on VHR images in the RGB and NIR ranges. CNN-based models are widely 
used to improve spatial resolution, among which SRCNN is one of the first networks for image super-
resolution [27]. Further improvements include RCAN (Residual Channel Attention Network) with 
channel attention, which enhances essential features and provides more precise detail in the 
reconstructed images [28]. 

In recent years, a promising research direction has been applying quantum neural network 
models, particularly Quantum Convolutional Neural Networks, which combine the advantages of 
quantum parallelism and classical convolutional data processing mechanisms. In [29], a 
comprehensive comparison of QCNN with classical CNN and Artificial Neural Networks was 
presented, demonstrating the effectiveness of quantum computing for object classification tasks. The 
authors noted that QCNN models exhibit potentially higher accuracy and efficiency than classical 



counterparts, especially as the size of input data and training batches increases, opening up new 
possibilities for their application in large-scale data environments. In [30], the advantages of applying 
QCNN for improving modeling efficiency in cases of high-dimensional input data were 
substantiated, where classical CNNs lose efficiency due to computational resource limitations. 

Based on the analysis of existing approaches to building object segmentation, modern methods 
demonstrate significant progress in addressing semantic segmentation tasks. However, these 
methods have some limitations when working with remote sensing images that cover large areas, 
characterized by diverse imaging conditions and complex object structures. In particular, low 
contrast between buildings and the surrounding environment and the complexity of background 
elements that vary across space and time significantly complicate accurate segmentation [31]. 
Typical issues related to local obstructions (e.g., shadows, vegetation, technical structures) and 
heterogeneous lighting negatively affect the accuracy of building contour delineation. Moreover, 
many existing methods focus only on extracting the upper parts of buildings, complicating the 
analysis of complex roof structures and silhouettes in remote sensing imagery. Due to the limitations 
of traditional segmentation algorithms, this study aims to develop an information technology for 
semantic segmentation of building objects based on a hybrid Quantum Convolutional Neural 
Network, considering the spatial characteristics of aerospace images. The proposed technology is 
focused on improving the accuracy of building object segmentation by accounting for spatial-spectral 
characteristics and interference variability. 

3. Materials and methods 

The proposed information technology for building object segmentation on aerospace images is based 
on combining quantum and classical neural computations within a hybrid quantum-classical 
convolutional neural network. The structural scheme of the developed technology is presented in 
Figure 1 and consists of four steps: preprocessing of input data; quantum encoding and feature 
extraction; classical decoding; and obtaining the final result in the form of a semantically segmented 
image of building objects. 

At the first step, the aerospace image is loaded and preprocessed. The image is normalized to the 
range [0, 1], then divided into local patches of size 2×2 pixels, each serving as an element of the input 
dataset for the quantum neural network. This approach allows for extracting local spatial features 
while maintaining computational efficiency. 

The second step involves using a Quantum Convolutional Neural Network (QCNN) for deep 
feature extraction [30, 32]. The input normalized patch values {𝑥0,𝑥1,𝑥2,𝑥3} are transformed into 
quantum space using a Data Embedding block. For this purpose, each qubit qj is subjected to a 
Hadamard (H) gate to create a superposition state, followed by a parameterized Ry(xi) rotation that 
encodes the pixel intensity value into the qubit’s rotation angle. A qubit qj, initialized in the ∣0⟩ state, 
is transformed into: 

|𝜓௝ൿ = 𝑅௬ ቀ
𝑞௝𝜋

2
ቁ 𝐻|0⟩, (1) 

where H is the Hadamard gate that creates a superposition state; 𝑅௬(𝜃) is the rotation gate around 
the y-axis by an angle 𝜃. 

After this step, a set of N=4 input qubits representing an image patch will be in an initial 
superposition state. At the same time, entanglement between them will be introduced at the 
subsequent steps using CNOT gates within the convolutional layers. 

 



 

Figure 1: Scheme of the information technology for building object segmentation based on QCNN. 
 
The QCNN encoder consists of a sequence of quantum convolutional (U_c) and quantum pooling 

(U_p) layers (Figure 2). These layers automatically extract essential features from the quantum-
encoded data. 

 

 
Figure 2: Structural scheme of Quantum Feature Extraction. 

 
The quantum convolutional layers U_c (Kernel 1.1, Kernel 1.2, Kernel 2.1) are analogous to 

classical convolutional filters. They consist of parameterized single-qubit rotations and two-qubit 
entangling CNOT gates between neighboring qubits: 

𝑈௖ = 𝑅௭(𝜃ସ)௤ೕ
𝑅௬(𝜃ଷ)௤ೕ

𝐶𝑁𝑂𝑇௤ೕ,௤ೕ
𝑅௬(𝜃ଶ)௤೔

𝑅௭(𝜃ଵ)௤೔
, (2) 

where 𝜃 is a vector of trainable parameters; 𝑅௭ is the rotation gate around the z-axis; 𝐶𝑁𝑂𝑇௜,௝ is 
a controlled-NOT gate, where qi is the control qubit and qj is the target qubit. 



The output state after the convolutional layer is [32]: 
|𝜓௢௨௧⟩ = 𝑈௖(𝜃)𝜓௜௡ . (3) 

The quantum pooling layers U_p (QCNN L1 Pooling, QCNN L2 Pooling) are designed to reduce 
data dimensionality, which decreases computational complexity and retains only the most significant 
features necessary for further classification. For a 2×2 patch, after the first pooling layer, the 
dimensionality is reduced to two qubits through partial measurement. After the second pooling layer, 
the quantum state is passed to the final measurement layer. Unlike classical pooling, which performs 
pixel subsampling, quantum pooling uses conditional quantum rotations to aggregate information 
[32]: 

|𝜓⟩ = ෍ 𝑐௜,௝|𝑞௜

௜,௝

, 𝑞௝ൿ, 
(4) 

𝑈௣ = 𝑅𝑌൫𝜃 ∙ 𝑓(𝑚)൯, (5) 

𝑈௣(𝑚)௤௝ = ൜
𝑈஺ 𝑖𝑓 𝑚 = 0
𝑈஻  𝑖𝑓 𝑚 = 1 

 (6) 

where 𝑚 is the measurement result of one of the qubits, which serves as a conditional operator 
for the remaining quantum system; UA and UB are different parameterized unitary operations 
(combinations of Ry ,Rz ,CNOT gates) applied to qubit qj depending on the value of m. 
This approach effectively reduces the number of active qubits, since the informational contribution 
of the measured qubit has already been transferred to the state of the remaining quantum system, 
and the measured qubit itself is excluded from further quantum computation. 

The final step of the quantum part of the proposed model is the quantum measurement layer, 
which transforms the quantum state into the classical feature vector space: 

𝑝௜ = 〈𝑖|𝜙〉〈𝜙|𝑖〉, (7) 

where 𝑖=0,…,2𝑛−1. The obtained probabilities are used as output features for further processing 
in the classical part of the neural network to perform segmentation. 

In the proposed information technology, the classical decoder takes the measured classical 
features obtained from quantum processing as input and is implemented as a traditional neural 
network. The decoder architecture includes fully connected layers for further nonlinear feature 
transformation, Dropout layers that provide regularization and prevent overfitting, and upsampling 
layers that restore the spatial structure of features using transposed convolutions or bilinear 
interpolation. The output layer with a Softmax activation function forms the segmented image, 
where each pixel is classified as belonging to building objects or background. 

Training of the hybrid quantum-classical neural network is performed jointly for the parameters 
of the quantum gates and the weights of the classical decoder. Optimization is carried out by gradient 
descent, where the parameter-shift rule is applied to compute gradients of quantum parameters. This 
method allows efficient calculation of the derivative of the expected value of the Hamiltonian 
operator ⟨H⟩: 

𝜕〈𝐻〉

𝜕𝜃
=

1

2
[〈𝐻〉(𝜃 + 𝑠) − 〈𝐻〉(𝜃 − 𝑠)], (8) 

where s is a fixed parameter shift angle characteristic of the quantum gate structure, this approach 
ensures integrated training of both quantum and classical components of the network, improving 
the accuracy of building object segmentation on aerospace images. 

Thus, the hybridity of the proposed information technology lies in the combination of quantum 
and classical neural computations within a single segmentation of architecture. In particular, the 
quantum part of the model, the Quantum Convolutional Neural Network, is responsible for encoding 
input images into quantum space and deep feature extraction using parameterized quantum gates 



and entanglement mechanisms. These quantum computations enable the model to effectively 
recognize complex nonlinear dependencies and interactions within local image patches that are 
difficult to implement with classical methods. Following the quantum layer is the classical decoder. 
This traditional neural network takes the classical features obtained from the quantum state 
measurement as input and performs feature transformation and spatial reconstruction to form the 
segmented image. Joint training of the quantum and classical component parameters ensures 
effective operation coordination, which promotes increased accuracy and robustness of 
segmentation on aerospace images. 

4. Experimental results 

4.1. Input aerospace data  

To validate the effectiveness of the proposed information technology for building object 
segmentation, high spatial resolution aerospace images were used (350 pixels per inch both 
horizontally and vertically), obtained using a SONY DSC-WX220 camera. The images have a frame 
size of 4896 × 3672 pixels, a color depth of 24 bits, an sRGB color space, and a 3 bits per pixel 
compression rate. Shooting parameters include an aperture of f/3.3, shutter speed of 1/800 s, ISO 100, 
no exposure compensation, a focal length of 4 mm, a maximum aperture of 3.45, and matrix metering 
mode for exposure measurement; geographic coordinates (latitude 44° 20' 20.21'', longitude 72° 44' 
57.68'', altitude 273.44 m above sea level), which allows for territorial referencing of the results. 

4.2. Dataset preparation 

To ensure the representativeness of the sample and an objective assessment of the developed neural 
network's effectiveness, a dataset consisting of 376 aerospace images was compiled. The sample 
covers a variety of spatial conditions and types of building structures, allowing the model to be tested 
in different scenarios. Each image was preprocessed by manual annotation with the creation of 
binary masks. In every image, buildings were separated from the background at the pixel level. The 
availability of high-quality annotations ensures the precise formation of the training sample for 
semantic segmentation tasks and enables quantitative validation of the model's results. For training, 
validation, and testing, the dataset was divided into three subsets with proportions that provide 
sufficient data for training and proper evaluation of the network's generalization ability: training set 
– 266 images (approximately 70%); validation set – 55 images (approximately 15%); test set – 55 
images (approximately 15%). Before being fed into the neural network, all images undergo 
preprocessing, including normalizing pixel values and splitting images into patches, as described in 
Section 3. The utilized dataset provides sufficient variability in building types and shooting 
conditions to verify the effectiveness of the hybrid QCNN model for aerospace image segmentation 
tasks. 

4.3. Performance analysis of the QCNN segmentation model 

The effectiveness of the proposed neural segmentation model for building objects was evaluated 
based on the analysis of key accuracy metrics and loss functions during model training on the 
prepared set of aerospace images. During training, a steady increase in mean Average Precision 
(mAP), a fundamental indicator of building object segmentation quality, was observed. In particular, 
the mAP@0.5 metric showed rapid growth during the first 50 epochs, followed by stabilization 
within the range of 0.35–0.45. It indicates effective model formation for detecting building objects at 
the baseline IoU threshold 0.5. The mAP@0.5:0.95 metric, which accounts for precision across 
multiple overlap thresholds, stabilized at 0.2–0.3, confirming the model’s ability to correctly localize 
objects under stricter accuracy criteria (Fig. 3). 
 



 
Figure 3: Graph of mean Average Precision (mAP and mAP@0.5:0.95) metrics during model training 
over 300 epochs. 

 
Additionally, an analysis of the components of the model’s total loss function was conducted (Fig. 

4). The Box Loss, which reflects the accuracy of bounding box localization, gradually decreases and 
stabilizes within the range of 1.7–1.8, demonstrating the model’s consistent ability to delineate 
building object boundaries accurately. The Class Loss, characterizing classification correctness, 
decreases to 2.2–2.4, indicating practical training of the model to recognize object categories. The 
Object Loss, responsible for the reliability of object detection, reaches stable values within 1.4–1.5, 
confirming the model’s effectiveness in distinguishing building objects from the background. 

 

 
Figure 4: Loss function graphs of the model (Box Loss, Class Loss, Object Loss) during the training 
phase. 

5. Discussion 

5.1. Visual analysis of building object segmentation results 

To comprehensively evaluate the effectiveness of the proposed information technology for building 
object segmentation, a visual assessment of the results was performed on aerospace images 
representing various types and densities of building structures. Figure 5 presents segmentation 
results for an area characterized by dense urban development.  

The analysis showed that the developed hybrid QCNN model (Fig. 5b) provides more accurate 
reproduction of building geometry, correctly delineating their contours even under complex urban 
conditions. Images in Fig. 5c, Fig. 5d, and Fig. 5e exhibit false positive errors (background identified 
as building and highlighted with a yellow contour), which are almost absent in Fig. 5b. 

Figure 6 shows results for an area with low-density development, typical of suburban and rural 
territories. The results demonstrate that the proposed hybrid QCNN model maintains high 
segmentation accuracy under variable background conditions, including green vegetation and road 
infrastructure. Classical architectures such as U-Net (Fig. 6c), CNN (Fig. 6d), and FCN (Fig. 6e) show 
a higher number of false positive detections, specifically, parts of roads or shadowed areas were 
incorrectly classified as buildings and highlighted with yellow contours in the images. The proposed 
technology demonstrated an improved ability to distinguish buildings against a complex background 
and reduced the risk of confusing natural and artificial objects. 
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Figure 5: Experiment 1 – a) original aerial image; b) proposed hybrid QCNN; c) U-Net d) CNN; e) 
FCN. 
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Figure 6: Experiment 2 – a) original aerial image; b) proposed hybrid QCNN; c) U-Net d) CNN; e) 
FCN. 

Figure 7 shows an example of a test area with complex building morphology, characterized by 
various interfering factors, including shadow zones, dense vegetation, and small-scale technical 
structures. The proposed QCNN model (Fig. 7b) ensures high accuracy of spatial localization of 
buildings even under significant structural heterogeneity of the scene. When using alternative 
models (Fig. 7c, d, e), partial merging of buildings with shadow areas, loss of detection of individual 
small objects, and false positive detections are observed, manifested as erroneous segmented areas 
marked with yellow boxes in the resulting images. The visual analysis confirms the advantage of the 



proposed hybrid QCNN model in accurately segmenting buildings with complex geometry and its 
increased robustness to background variability. 

All three experiments demonstrated the advantages of the proposed technology over classical 
approaches in terms of the spatial localization of buildings, the accuracy of building object 
segmentation on aerospace images, and the minimization of segmentation errors. The results 
confirm the QCNN model's capability to perform effectively in densely built-up urban areas and in 
conditions of sparse or complex building structures. 

 

 
a) b) c) 

d) 
 

e) 

 

Figure 7: Experiment 3 – a) original aerial image; b) proposed hybrid QCNN; c) U-Net d) CNN; e) 
FCN. 

5.2. Quantitative analysis of building object segmentation results  

A quantitative analysis of building object segmentation results was performed under three 
experimental scenarios with varying building density and structural complexity to compare the 
effectiveness of existing neural network segmentation models. The comparison was conducted using 
three key metrics: the number of correctly detected objects (True Positives, TP), the number of false 
detections (False Positives, FP), and the number of missed objects (False Negatives, FN) [33]. The 
results are presented in Table 1. 

The results of the quantitative analysis are consistent with the conclusions of the visual 
assessment (Section 5.1) and confirm the advantage of the proposed hybrid QCNN model over 
classical segmentation architectures. In particular, the developed model demonstrated consistently 
high accuracy across all experimental cases, achieving complete detection of all building objects (TP 
= 100%) without false positives (FP) or false negatives (FN). In contrast, the U-Net and CNN models 
showed many missed objects, especially in complex or sparse building structures. For example, in 
the second experiment, U-Net identified only 5 out of 16 objects (FN = 11), and CNN identified 6 out 
of 16 (FN = 10), indicating insufficient sensitivity of these models to objects with complex geometry 
or visual characteristics. The FCN model showed better detection completeness in the first and third 
experiments (TP = 100%), but its effectiveness was reduced due to many false detections. Specifically, 
in the second and third experiments, the number of FP cases were 5 and 6, respectively, leading to 
excessive detection of background objects as buildings. The analysis of results in Figures 5–7 



confirmed that these errors mainly occurred due to the misclassification of cars, roads, and 
vegetation. 

Table 1 
Quantitative Analysis of Building Object Segmentation Performance 

Model / Class Experiment 1 (4 
objects) 

Experiment 2  
(16 objects) 

Experiment 3  
(10 objects) 

U-Net 
Buildings Detected 

(TP) 1 5 7 
False Positives (FP) 0 0 1 

Missed Buildings (FN) 3 11 3 
CNN 

Buildings Detected 
(TP) 2 6 7 

False Positives (FP) 0 0 0 
Missed Buildings (FN) 2 10 3 

FCN 
Buildings Detected 

(TP) 
4 13 10 

False Positives (FP) 1  5 6 
Missed Buildings (FN) 0 3 0 

Proposed Hybrid QCNN 
Buildings Detected 

(TP) 4 (100%) 16 (100%) 10 (100%) 
False Positives (FP) 0 0 0 

Missed Buildings (FN) 0 0 0 

 
Thus, the obtained quantitative results demonstrate the high accuracy, sensitivity, and specificity 

of the proposed hybrid QCNN model. Its ability to minimize missed detections and false positives 
indicates effective adaptation to aerospace images' variable spatial and spectral characteristics. It 
highlights the feasibility of its application for high-precision geospatial research and building 
monitoring tasks under various types of urbanization. 

Table 2 presents the results of the quantitative analysis of the segmentation models' performance 
based on key efficiency metrics for both the training and validation datasets. The study of the 
obtained results confirms the significant advantage of the proposed hybrid QCNN model compared 
to classical architectures such as U-Net, CNN, and FCN. The hybrid model demonstrates the best 
performance across all key indicators, including classification accuracy, loss function, and 
Intersection over Union (IoU). 

Table 2 
Performance Metrics Summary 

Metric U-Net CNN FCN Proposed 
Hybrid QCNN 

Training Accuracy 0.88 0.89 0.92 0.98 
Validation 
Accuracy 

0.85 0.86 0.89 0.97 

Training Loss 0.25 0.22 0.18 0.05 
Validation Loss 0.28 0.26 0.21 0.07 

Training IoU 0.70 0.72 0.78 0.90 
Validation IoU 0.67 0.69 0.75 0.89 



 
In particular, the model's accuracy on the training set for QCNN reaches 0.98 and 0.97 on the 

validation set, exceeding the corresponding values of the classical models, which range from 0.85 to 
0.92. It indicates the proposed model's ability to classify pixels with minimal errors accurately. The 
loss function values (Loss) for QCNN are the lowest among all models—0.05 on the training set and 
0.07 on the validation set, demonstrating the stability of the training process and the model's ability 
to closely approximate segmentation masks to the real data. The IoU index values further confirm 
the superiority of the proposed model in the accuracy of building object segmentation. For the hybrid 
QCNN, the IoU reaches 0.90 on the training set and 0.88 on the validation set, indicating high 
precision in spatial delineation of building contours. In contrast, classical models show lower IoU 
values (0.67–0.75), suggesting more segmentation inaccuracies, including partial omission of objects 
or inclusion of background areas.  

The overall analysis of the obtained metrics confirms the high efficiency of the proposed 
information technology based on the hybrid QCNN model for building object segmentation on 
aerospace images. The results demonstrate superior generalization ability, training stability, and 
reduced error rates under challenging image variability conditions.  

6. Conclusions 

In this study, an information technology for semantic segmentation of building objects on high 
spatial resolution aerospace images was developed and experimentally validated using a hybrid 
quantum convolutional neural network. The quantitative analysis and visual assessment results 
confirm the proposed approach's effectiveness compared to classical segmentation models, including 
U-Net, CNN, and FCN. The proposed hybrid QCNN model achieved higher pixel classification 
accuracy: the average accuracy on the training dataset reached 0.98 and 0.97 on the validation set, 
demonstrating the model's stable ability to recognize building objects accurately. The loss function 
values reached minimum levels of 0.05 on the training set and 0.07 on the validation set, indicating 
efficient model training without signs of overfitting. The Intersection over Union metrics confirmed 
the model's ability to delineate building contours accurately: the IoU value was 0.90 on the training 
set and 0.89 on the validation set. While testing images with various building types, the model 
consistently identified all building objects with 100% detection accuracy, without any false positives 
or negatives. Analysis of the training process dynamics showed a rapid increase in mAP to 0.35–0.45 
and mAP@50:95 to 0.20–0.30, with subsequent stabilization after the first 50 epochs, indicating 
efficient model convergence. 

The proposed Hybrid quantum CNN-based information technology for building semantic 
segmentation in aerial imagery demonstrated improved segmentation accuracy of buildings under 
varying building density conditions, complex geometric forms, shadow effects, and background 
interference. Applying the hybrid QCNN-based approach improved the quality of building object 
extraction and enhanced the model’s generalization ability on new images. The results confirm the 
feasibility of using the developed technology for geospatial monitoring, urban planning, and 
mapping tasks based on aerospace imagery. 
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