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Abstract
This  study  presents  an  expert  system  utilizing  fuzzy  logic  to  evaluate  well  completion  quality  in 
geologically  intricate  environments,  exemplified  by  the  diverse  oil  and  gas  resources  of  Azerbaijan.  
Traditional evaluation methods, often dependent on expert judgment and inconsistent field evaluations, 
struggle with confusing and qualitative input data. To address this issue, we developed a fuzzy inference  
model incorporating critical  geological  and operational variables like as perforation density,  reservoir 
pressure  gradient,  completion  fluid  compatibility,  mud  loss  severity,  and  formation  permeability.  To 
establish a fuzzy rule basis derived from field experience and expert knowledge, these characteristics were 
transformed  into  linguistic  variables.  The  Completion  Quality  Index  (CQI)  is  a  quantifiable  and 
interpretable measure of completion efficacy, serving as the model's output. A combination of synthetic  
and empirical field data was employed to evaluate the system, and the findings indicate that the model  
can facilitate decision-making by generating outcomes that are dependable, flexible, and comprehensible 
to people. The proposed technique enhances the reliability of well completion quality evaluation under  
uncertainty, offering engineers a potentially valuable resource under difficult drilling conditions.
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1. Introduction

The caliber of well completion significantly influences the long-term productivity and economic 
feasibility of hydrocarbon wells, especially in geologically intricate formations. These formations 
frequently exhibit significant heterogeneities, encompassing sudden lithological variations, diverse 
stress  regimes,  cracked  zones,  unconsolidated  strata,  and  erratic  pressure  profiles.  These 
complications  provide  considerable  difficulties  in  choosing suitable  completion procedures  that 
guarantee optimal well integrity, minimal formation damage, and maximum reservoir contact.

Historically, completion design has depended on predictable procedures, engineering heuristics, 
and fixed formation assessment models. Nonetheless, these traditional methods frequently prove 
inadequate in scenarios marked by ambiguity, ambiguous data, and several interrelated geological 
and operational factors. In recent decades, advancements in soft computing, notably Fuzzy Logic 
(FL)  and  Fuzzy  Expert  Systems  (FES),  have  provided  potential  options  for  informed  decision-
making in uncertain contexts.
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Fuzzy logic, established by Zadeh (1965), offers a mathematical foundation for describing and 
reasoning with  ambiguous,  incomplete,  or  linguistic  data,  a  frequent  occurrence  in  subsurface 
evaluations.  In  contrast  to  binary  logic  systems,  fuzzy  logic  accommodates  values  in  varying 
degrees, rendering it suitable for representing imprecise characteristics such as "high porosity," 
"moderate pressure drawdown," or "low formation stability." These attributes enable fuzzy logic to 
connect precise numerical models with human thinking, allowing engineers to articulate expert 
knowledge using IF–THEN rules derived from observable patterns and domain expertise. 

In  contemporary  hydrocarbon  exploration  and  production,  optimizing  well  completion  in 
geologically complex formations has emerged as a significant problem. Subsurface heterogeneity, 
fractured zones,  variable  pressure  profiles,  and lithological  discontinuities  provide considerable 
uncertainty in the assessment and decision-making process. Conventional deterministic methods, 
although extensively utilized, may prove inadequate in these circumstances due to their restricted 
ability to manage ambiguous, qualitative, or partial information. 

Fuzzy  logic-based  approaches  have  become  prominent  in  petroleum  engineering  and 
geosciences to solve this issue. Fuzzy logic offers a mathematical framework that reflects human 
reasoning, facilitating the appropriate understanding of language variables like “high permeability” 
or “moderate mud loss.”  Recent investigations have illustrated the efficacy of fuzzy systems in 
intricate  geotechnical  fields,  encompassing  groundwater  site  selection  using  hydro-geoelectric 
characteristics  and GIS technologies [1],  as  well  as  investment  decision-making in oil  and gas 
ventures utilizing hybrid fuzzy-rule systems [2]. Fuzzy logic has been utilized to forecast critical  
drawdown  in  sand-prone  wells,  enhancing  dependability  in  the  management  of  production 
hazards. 

In  geologically  complex  situations,  such  as  fault-prone  basins  or  marginal  subsags,  the 
integration of fuzzy logic with other intelligent systems, such as artificial neural networks, has 
demonstrated enhanced prediction efficacy. Recent study in Eastern China demonstrates that the 
integration  of  fuzzy  reasoning  with  neural  networks  has  markedly  improved  fault  structure 
predictions, particularly under conditions of ambiguity and uncertainty [4]. 

Notwithstanding  these  advancements,  the  utilization  of  fuzzy  expert  systems  specifically 
designed  to  assess  well  completion  quality  is  nonetheless  immature.  Previous  studies  have 
concentrated on either  discrete  operational  factors  or  zone selection,  lacking a  complete fuzzy 
framework that amalgamates several geological and operational inputs into a singular Completion 
Quality Index (CQI).  This paper offers a  fuzzy expert  system aimed at  addressing this  gap by 
systematically evaluating completion quality using characteristics like perforation density, pressure 
gradients, formation permeability, and mud loss severity. Leveraging domain expertise and prior 
fuzzy logic applications [5, 6], this approach aims to enhance decision consistency and mitigate the 
effects of uncertainty in completion planning. 

Notwithstanding  these  breakthroughs,  a  significant  study  gap  persists  in  the  creation  of 
specialized fuzzy expert systems that assess and enhance well completion quality under intricate 
geological settings. Most current models concentrate either on selection or screening (e.g., whether  
to complete or not) or on particular elements such as stimulation design; nevertheless, few systems 
offer a comprehensive evaluation of  completion "quality"  and its  optimization under uncertain 
subsurface circumstances. 

This  work  seeks  to  address  that  deficiency  by  creating  a  Fuzzy  Expert  System  (FES)  that 
methodically  evaluates  completion  quality  based  on  geological,  petrophysical,  and  operational 
characteristics  pertinent  to  wells  in  structurally  and  lithologically  complex  formations.  The 
suggested  system  would  deliver  expert-level  advice  on  finishing  approaches  and  assess  the 
"quality" of a given design utilizing fuzzy metrics. Parameters like wellbore stability, skin factor, 
productivity  index,  completion  efficiency,  and  risk  level  will  be  amalgamated  into  a  cohesive 
inference engine designed to provide actionable information. 

The system aims to function as an effective decision-support tool  for engineers engaged in 
planning  and  optimizing  well  completions  in  complex  reservoirs  by  utilizing  the  synergistic 
advantages  of  fuzzy  rule-based  logic,  modular  knowledge  representation,  and  expert-driven 



heuristics.  It  also  seeks  to  be  adaptable  and  expandable  for  future  incorporation  of  machine 
learning  modules,  real-time  data  streams,  and  field  case  validation,  eventually  enhancing 
intelligent, data-informed petroleum operations. 

2. Case Study

Following professional consultation, literature review, and field data analysis from intricate wells 
in  the  South  Caspian  Basin,  five  critical  factors  were  identified  as  inputs.  Each  parameter  is 
delineated  using  fuzzy  linguistic  sets  (Table  1)  and  membership  functions  that  represent 
operational uncertainty and variability. 

Table 1
Input variables which has effect on CQI and their linguistic terms

Input Variable Linguistic Terms

Formation Permeability Low, Medium, High

Mud Loss Severity None, Moderate, Severe

Fluid Compatibility Poor, Fair, Good

Perforation Density Sparse, Moderate, Dense

Pressure Gradient Low, Medium, High

To deploy the fuzzy expert system, actual or synthetically produced field data must be linked to 
the established fuzzy sets. Data from ten wells situated in geologically intricate reservoirs were 
selected  for  this  purpose  (Table  2).  These  wells  demonstrate  differing  levels  of  formation 
permeability, operational fluid loss, perforation techniques, and pressure dynamics. The intricacy 
of  these  wells  encompasses  factors  such  as  fractured  carbonates,  heterogeneous  sandstone 
reservoirs,  and  areas  with  elevated  differential  pressures,  all  of  which  substantially  affect  the 
results of completion operations.

Table 2
Input parameters for wells in complex geological conditions

To implement fuzzy logic, each precise input value for the chosen wells must be converted into 
fuzzy  language  concepts.  The  procedure  termed  fuzzification  translates  numerical  data  into 
language states through established membership functions. Triangular membership functions were 

Well ID
Formation 
Permeability (mD)

Mud  Loss 
Severity (0–10)

Fluid 
Compatibility (0–
10)

Perforation 
Density (%)

Pressure 
Gradient (0–
1)

W1 120 6.5 4.2 45 0.75
W2 450 2 7.8 85 0.82
W3 80 7 3 35 0.65
W4 300 5.5 6 70 0.6
W5 180 3 5.5 60 0.4
W6 280 7.5 6.5 75 0.85
W7 600 1 8.5 90 0.95
W8 90 6.8 2.2 30 0.5
W9 350 4.5 7 80 0.7
W10 220 6 3.5 50 0.55



selected  for  their  simplicity,  computing  efficiency,  and  appropriateness  for  systems  reliant  on 
engineering  judgment.  Each  linguistic  phrase  (e.g.,  low,  medium,  high)  is  characterized  by  a 
triangle delineated by three parameters:  a (lower bound), b (peak),  and c (upper bound). These 
triangles ascertain the extent to which a specific input value is associated with a particular fuzzy 
category [7]:

μ( x )={
0 x ≤aor  x ≥ c
x−a
b−a

a<x ≤b

c−x
c−b

b<x<c

                                                            (1)

Where μ(x) is the degree of membership (from 0 to 1).

To  illustrate  this  process,  three  wells  (W1,  W3,  and W6)  were  chosen from the  dataset  as 
exemplars of low, medium, and high-quality completion scenarios amid unpredictable and intricate 
geological conditions (Table 3).

Table 3
     Membership triangles function’s recap of parameters

Their  input  data  will  be  fuzzified  utilising  the  membership  functions  established  for  each 
parameter. The outcomes will produce membership degrees within the fuzzy sets, which will serve 
as input for the fuzzy inference system that finally computes the Completion Quality Index (CQI). 

Let us compute instances for wells W1, W3, and W6.

Well W1 Calculations:
1. Formation Permeability = 120
Low (0–100–250): x=120>100⇒μ=(250−120)/(250−100)=130/150=0.867
Medium (150–300–500): x=120<a=150⇒μ=0 
High: x=120<a=400⇒μ=0
Low = 0.867, Medium = 0, High = 0
2. Mud Loss = 6.5

Fuzzy Set a b c

Formation Permeability 
(mD)

Low 0 100 250
Medium 150 300 500

High 400 600 800

Mud Loss Severity (0–10)
None 0 1 2

Moderate 1 5 7
Severe 6 8 10

Fluid Compatibility (0–10)
Poor 0 2 4
Fair 3 5 7

Good 6 8 10

Perforation Density (%)
Sparse 0 25 40

Moderate 30 50 70
Dense 60 80 100

Pressure Gradient (0–1)
Low 0 0.2 0.4

Medium 0.3 0.5 0.7
High 0.6 0.8 1



Moderate (1–5–7): 5<x=6.5<7⇒μ=(7−6.5)/(7−5)=0.25
Severe (6–8–10): 6<x=6.5<8⇒μ=(6.5−6)/(8−6)=0.25
Moderate = 0.25, Severe = 0.25
3. Fluid Compatibility = 4.2
Poor (0–2–4): x=4.2>c=4⇒μ=0
Fair (3–5–7): 3<x=4.2<5⇒μ=(4.2−3)/(5−3)=1.2/2=0.6
Poor = 0, Fair = 0.6
4. Perforation Density = 45
Sparse (0–25–40): x=45>c=40⇒μ=0
Moderate (30–50–70): 30<x=45<50⇒μ=(45−30)/(50−30)=0.75
Sparse = 0, Moderate = 0.75
5. Pressure Gradient = 0.75
Medium (0.3–0.5–0.7): x=0.75>c=0.7⇒μ=0
High (0.6–0.8–1.0): 0.6<x=0.75<0.8⇒μ=(0.75−0.6)/(0.8−0.6)=0.75
Medium = 0, High = 0.75

Well W3 Calculations:
1. Permeability = 80
Low (0–100–250): 0<x=80<100⇒μ=(80−0)/(100−0)=0.8
Low = 0.8, Medium = 0, High = 0
2. Mud Loss = 7.0
Moderate (1–5–7): x=7.0⇒μ=7−77−5=0
Severe (6–8–10): μ=(7.0−6)/(8−6)=0.5
Moderate = 0, Severe = 0.5
3. Fluid Compatibility = 3.0
Poor (0–2–4): 2<x=3.0<4⇒μ=(4−3)/(4−2)=0.5
Fair (3–5–7): x=3.0=a⇒μ=0
Poor = 0.5, Fair = 0
4. Perforation Density = 35
Sparse (0–25–40): 25<x=35<40⇒μ=(40−35)/(40−25)=0.33
Moderate (30–50–70): 30<x=35<50⇒μ=(35−30)/(50−30)=0.25
Sparse = 0.33, Moderate = 0.25
5. Pressure Gradient = 0.65
Medium (0.3–0.5–0.7): 0.5<x=0.65<0.7⇒μ=(0.7−0.65)/(0.7−0.5)=0.25
High (0.6–0.8–1.0): μ=(0.65−0.6)/(0.8−0.6)=0.25
Medium = 0.25, High = 0.25

Well W6 Calculations:
1. Permeability = 280
Medium (150–300–500): μ=(280−150)/(300−150)=130/150=0.867
Medium = 0.867
2. Mud Loss = 7.5
Severe (6–8–10): μ=(7.5−6)/(8−6)=0.75
Severe = 0.75
3. Fluid Comp. = 6.5
Fair (3–5–7): 5<x=6.5<7⇒μ=(7−6.5)/(7−5)=0.25
Good (6–8–10): μ=(6.5−6)/(8−6)=0.25
Fair = 0.25, Good = 0.25
4. Perforation Density = 75
Dense (60–80–100): μ=(75−60)/(80−60)=15/20=0.75
Dense = 0.75
5. Pressure Gradient = 0.85



High (0.6–0.8–1.0): μ=(0.85−0.8)/(1−0.8)=0.25
High = 0.25

Fuzzification was conducted for three exemplary wells chosen from intricate geological settings, 
in  accordance with the previously stated triangular  membership functions.  Each distinct  input 
parameter was associated with one or more fuzzy sets, and the relevant degrees of membership 
were calculated (Table 4).

Table 4 

Fuzzified Values of Parameters for Selected Wells

Well Parameter Linguistic 
Term

Membership 
Value (μ)

W1

Formation Permeability (120)
Low 0.867

Medium 0

Mud Loss Severity (6.5)
Moderate 0.25

Severe 0.25
Fluid Compatibility (4.2) Fair 0.6
Perforation Density (45) Moderate 0.75
Pressure Gradient (0.75) High 0.75

W3

Formation Permeability (80) Low 0.8
Mud Loss Severity (7.0) Severe 0.5
Fluid Compatibility (3.0) Poor 0.5

Perforation Density (35)
Sparse 0.33

Moderate 0.25

Pressure Gradient (0.65)
Medium 0.25

High 0.25

W6

Formation Permeability (280) Medium 0.867
Mud Loss Severity (7.5) Severe 0.75

Fluid Compatibility (6.5)
Fair 0.25

Good 0.25
Perforation Density (75) Dense 0.75
Pressure Gradient (0.85) High 0.25

Table 4 encapsulates the outcomes of the fuzzification procedure. For each input parameter, the 
pertinent  fuzzy  term(s)  with  non-zero  membership  values  are  presented  alongside  their 
corresponding membership scores. 

This fuzzification phase allows the fuzzy inference engine to handle ambiguous, overlapping, 
and expert-derived information while assessing the Completion Quality Index (CQI).  Well  W1, 
characterised  by  moderate  permeability  and  substantial  mud  loss,  demonstrated  considerable 
intersections in the “Moderate” and “Severe” mud loss classifications, whereas Well W6 displayed 
pronounced affiliation with the “Medium” permeability and “Dense” perforation categories. These 
findings illustrate the diversity and uncertainty inherent in real-world completion design, hence 
validating the application of fuzzy modelling techniques in quality evaluation.

The computation of the Completion Quality Index (CQI) for certain wells drilled in intricate 
geological  settings,  particularly  Well  W6,  is  required  through  the  application  of  fuzzy  logic 
principles. The study employs a systematic decision-making framework to manage uncertainty, 
imprecision,  and  expert  evaluations  characteristic  in  petroleum  engineering  operations.  The 
methodology comprises four essential steps: 



1. Employing previously fuzzified input parameters such as formation permeability, mud loss 
severity, fluid compatibility, perforation density, and pressure gradient; 

2. Implementing a systematic collection of fuzzy IF–THEN rules, based on engineering expertise 
and practical experience; 

3. Processing the ambiguous input data using a Mamdani-type fuzzy inference model, which 
emulates human reasoning by consolidating rule-based decisions; and 4. Generating a measurable  
output through the centroid defuzzification method, which converts fuzzy results into a singular,  
interpretable CQI value on a continuous scale. 

This  methodology  aims  to  offer  a  versatile,  transparent,  and  mathematically  rigorous 
instrument for assessing the quality of well completions amidst uncertainty, enabling engineers to  
make better informed and consistent judgements in geologically intricate settings.  The foundation 
of  fuzzy rules,  determined by the quantity of  membership functions for each input,  comprises 
35=243 rules. Table 5 presents examples of fuzzy rules.

Table 5
 Fuzzy base rules method and its implementation on CQI

Rule No. Conditions (IF...) THEN 
CQI

R1 Permeability is Low AND Mud Loss is Severe Poor

R2 Permeability is Medium AND Mud Loss is 
Moderate AND Fluid Compatibility is Fair

Good

R3 Perforation is Dense AND Pressure Gradient is 
High

Excellent

R4 Permeability is Low AND Fluid Compatibility is 
Poor

Poor

R5 Permeability is Medium AND Perforation is 
Dense AND Fluid Compatibility is Good

Excellent

R6 Mud Loss is Severe AND Fluid Compatibility is 
Fair AND Pressure Gradient is High

Fair

R7
Permeability is Medium AND Mud Loss is 

Severe AND Perforation is Dense AND Pressure 
Gradient High

Good

The suggested fuzzy expert system is especially implemented for Well W6 as a representative 
example.  The  objective  is  to  calculate  its  CQI  by  amalgamating  empirical  input  values  with 
linguistic  evaluations and analysing the conversion of  expert-defined criteria  into a conclusive 
quality score. This not only corroborates the model but also demonstrates its practical utility in  
facilitating well completion decisions (Table 6).



Table 6
Membership values recap for Well 6

Parameter Linguistic Term µ
Formation Permeability Medium 0.867

Mud Loss Severe 0.75

Fluid Compatibility Fair 0.25
Fluid Compatibility Good 0.25
Perforation Density Dense 0.75
Pressure Gradient High 0.25

In a fuzzy expert system, rule assessment is a pivotal process wherein the system assesses the 

degree  to  which  each  rule  influences  the  final  output.  Every  rule  structured  as  an  IF–THEN 

statement links fuzzy input conditions (antecedents) to a fuzzy output (consequent).  The intensity  

or level of activation of a fuzzy rule is determined by the lowest membership value among its input 

conditions. This approach embodies the notion that a rule's efficacy is contingent upon its least 

robust contributing element. When many rules are concurrently active, their effects are combined 

in the output fuzzy set.

The  output  of  the  proposed  fuzzy  expert  system  is  assessed  using  a  triangle  membership 

function (Table 7).

Table 7 

Output membership functions

CQI Grade Range (Triangular)
Representative 
Crisp Value 

(center)

Poor [0–20–40] 20
Fair [30–50–70] 50

Good [60–75–90] 75
Excellent [85–95–100] 95

The Mamdani process is employed to derive the fuzzy inference of the suggested expert system.  

This mechanism is founded on the mini-max composition of fuzzy rules and the centroid method 

for deriving the system output. Table 8 illustrates the CQI outcomes for Wells W1, W3, and W6.

Table 8 

 CQI values for wells

Well CQI 
(Defuzzified)

Linguistic 
Grade

W1 ≈ 60.00 Good
W3 ≈ 45.00 Fair
W6 ≈ 73.33 Good



Conclusion 

The fuzzy expert system was utilised to assess the Completion Quality Index (CQI) for three wells 
(W1, W3, and W6) situated in intricate geological environments. The selection of these wells was 
based on variability in critical factors, including formation permeability, mud loss severity, fluid 
compatibility,  perforation  density,  and  pressure  gradient,  all  of  which  were  fuzzified  utilising 
triangle membership functions.
The Mamdani inference model utilised a structured array of fuzzy IF–THEN rules to process the  
fuzzified input for each well. The rules were assessed utilising the minimum membership method, 
with  several  rules  activating  concurrently  in  instances  of  overlapping  criteria.  The  centroid 
defuzzification method was utilised to generate a precise CQI value for each instance.
     The findings indicated that well  W6 attained the highest CQI value of 73.33, signifying a  
commendable completion quality.  This indicates significant permeability and dense perforation, 
despite mild difficulties with fluid compatibility and pressure gradients. W1 achieved a score of  
60.00, classified as good, yet marginally less favourable owing to a more moderate performance 
across parameters. Well W3, with a CQI of 45.00, was classified as fair, mainly due to reduced 
permeability and inadequate fluid interaction conditions. 
The  results  validate  that  the  fuzzy  expert  system  can  proficiently  amalgamate  ambiguous, 
linguistic, and numerical inputs to generate an interpretable index that facilitates decision-making. 
The model facilitates comparative performance evaluation among wells, rendering it an effective 
instrument for optimising completion procedures in geologically intricate settings.
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