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Abstract 
Assessing the edibility of food based on consumer perception remains an underexplored yet practically 
significant challenge in food safety. This paper presents a novel framework for evaluating food suitability 
using natural language descriptions of sensory experiences, such as odor, appearance, and texture. By 
extracting structured features from unstructured, subjective input, our system leverages a comparator-
based identification approach to infer missing attributes and assess overall edibility. The model aligns 
incomplete descriptions with prototypical instances from labeled data, enabling robust classification even 
under uncertainty. We demonstrate that this method can support nuanced, human-like judgments and serve 
as a foundation for intelligent decision-support tools in consumer and public health contexts. The proposed 
framework opens avenues for integrating qualitative perception with structured inference in critical 
application domains. 
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1. Introduction 

Ensuring the safety and suitability of food products for consumption is a persistent and globally 
relevant challenge. While traditional methods of food safety assessment rely on laboratory analysis, 
expiration labeling, and visual inspection, in everyday settings, consumers often base their decisions 
on informal sensory evaluations - descriptions of smell, texture, taste, and appearance. These 
evaluations are typically articulated in natural language and are inherently subjective, imprecise, 
and often incomplete. Yet, they represent a rich source of information that, if properly structured 
and interpreted, could inform intelligent systems capable of estimating food edibility. 

This paper introduces a conceptual and technical framework for assessing food edibility based on 
free-form user descriptions. The approach rests on modeling these descriptions as partial 
observations of an underlying, structured feature space - comprising attributes such as odor type, 
surface texture, discoloration, moisture level, and taste anomalies. By employing techniques from 
natural language processing, key indicators are extracted and normalized into a set of interpretable 
features. To overcome the limitations of incomplete data, we propose a comparator-based 
identification method, which allows for the inference of missing attributes by aligning observed 
feature subsets with prototypical examples of known edibility status. 

This method situates food products within a latent comparative space, where similarities to 
known spoiled or safe instances provide a probabilistic basis for prediction. Rather than relying 
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solely on absolute rules or fully observed inputs, the system can generalize from experience and 
provide nuanced judgments even in uncertain or borderline cases. The proposed framework not only 
addresses a practical consumer need but also contributes a novel perspective to the modeling of 
qualitative, perception-based descriptions in safety-critical domains. 

The goal of this research is to introduce and evaluate a Comparator Based Identification 
framework that infers food edibility by analyzing free-text sensory descriptions and demonstrate its 
utility as an interpretable decision-support tool in food safety.  

This research addresses the following key questions: 

 How can logical rules for recognizing the edibility of food be formalized as predicate 
structures based on observable characteristics? 

 How effective is the comparator model at classifying food according to their sensory 
characteristics compared to traditional ML models? 

 How interpretable are comparator solutions? 

By answering these questions, we aim to develop Comparator-Based Identification Framework 
including a mapping from subjective natural language inputs (odor, texture, color, etc.) to structured 
feature representations; designing a comparator mechanism and assessing similarity; and 
demonstrating the framework's utility via case studies. 

The task of determining the food edibility based on external features is a typical binary 
classification task. Traditional machine learning methods solve it by training a classifier, but in the 
framework of the comparator identification method [1] the recognition process is formulated as 
identification by comparison. The idea is that a new or unknown food is identified not by direct 
determination of its species, but by comparison with already known samples of edible and dangerous 
ones. The method of comparator identification is based solely on the analysis of physically 
observable features of an object and the identification of patterns in the form of logical conditions.  

In this paper, we consider mushrooms as an example of food to identify their edibility. We 
formalize the mushroom features as sensory descriptions, build a model based on pairwise 
comparisons of mushrooms, describe the comparator structure, present a logical scheme for 
identifying edibility without directly specifying the mushroom species, and show how the decisions 
of the comparator system relate to the binary classification task. 

2. Review of related works 

Recent advances in product classification increasingly leverage human perception and textual 
descriptions by integrating multi-modal learning, personalized recommendation systems, and graph-
based representations. Multi-modal approaches, as demonstrated by combining textual [2] and visual 
features [3] through neural networks and fusion techniques, show superior performance by 
compensating for limitations within individual data modalities. Meanwhile, personalized 
recommendation systems employing models like BERT and nearest neighbor algorithms address 
individual preferences in e-commerce environments, enhancing user satisfaction while tackling 
scalability and cold-start challenges [4]. Simultaneously, text-attributed graphs and frameworks like 
P2TAG enable few-shot classification by fusing raw textual and structural graph information, 
significantly boosting classification accuracy [5]. Thus, these developments highlight the shift 
toward more adaptive, perception-driven classification models that capture nuanced human 
understanding of product categories. 

Research combining food safety and natural language understanding is limited, with most NLP-
for-food work focusing on structured inputs like labels and recipes to predict nutrition or categorize 
products [6, 7]. These approaches show high performance but assume clean, standardized data, not 
subjective or incomplete sensory descriptions. While food safety analytics use NLP for recall tracking 
or risk modeling [8], they rarely treat user-reported sensory input as core data for inference. 



A closer parallel is mushroom edibility classification using structured features like odor and color 
[9], but these models rely on complete attribute sets and lack mechanisms for recovering missing 
data or aligning partial input with prototypes. Some works propose a comparator-based approach 
inspired by prototype/metric learning [10, 11, 12], comparative reasoning in NLP [13], and Bayesian 
Case Models [14], which support inference from partial, subjective text and generate interpretable, 
probabilistic edibility assessments. 

Despite advances in large-scale language models (LLMs), their performance on Named Entity 
Recognition (NER) still lags behind supervised methods due to the intrinsic mismatch—NER is a 
sequence labeling task, while LLMs are optimized for generation. GPT-NER addresses this by 
reframing NER as a generation task using special entity-marking tokens, and incorporates a self-
verification strategy to counter hallucinations common in LLMs [15]. Notably, GPT-NER performs 
comparably to supervised models across five benchmarks and excels in few-shot settings, 
highlighting its potential for real-world, low-resource applications. In parallel, NER plays a key role 
in processing domain-specific information such as aeronautical intelligence, where challenges 
include semantic ambiguity, data-sharing opacity, and lack of standardization. A recent survey 
explores how NER can support this domain, highlighting the roles of aviation-specific ontologies, 
knowledge systems, and thematic databases while identifying future research directions [16]. 

While many studies in NER focus on model architectures and training strategies, comprehensive 
evaluation across genres and entity types remains underexplored. One study conducts extensive 
testing on varied and adversarial test sets to assess the robustness of three state-of-the-art models, 
proposing improved reporting practices to better reflect real-world performance [17]. Another 
growing research area is nested NER, which addresses cases where entities overlap or are embedded 
within each other—issues that standard flat NER models often ignore. A review categorizes nested 
NER models (e.g., rule-based, hypergraph-based) and examines challenges such as error propagation 
and entity dependency, offering guidance for both researchers and practitioners [18]. To support 
multilingual NER development, the Universal NER (UNER) project presents gold-standard datasets 
across 12 languages with consistent annotations, facilitating cross-lingual research and providing 
publicly available baselines and tools [19]. 

While recent advancements in multi-modal learning, personalized recommendation systems, and 
graph-based methods have significantly improved product classification by incorporating human 
perception and textual descriptions, several challenges remain. First, accurately classifying products 
from subjective, incomplete, or noisy descriptions continues to be a critical issue, especially in 
domains like food safety where user sensory narratives are underutilized for inference. Second, 
Named Entity Recognition (NER), despite being a mature NLP task, still faces limitations in handling 
domain-specific data, nested structures, and cross-genre robustness, particularly when adapting 
large language models originally designed for generation tasks. Third, identifying significant 
indicators within product descriptions—especially from partial or sensory-based language—requires 
new methods that can infer missing attributes and align unstructured input with meaningful, 
interpretable prototypes. Addressing these issues will be key to developing robust, user-aware 
systems capable of understanding and classifying products in complex, real-world scenarios. 

3. Materials and Methods 

3.1. Food edibility feature extraction from natural language description  

In real-world applications of food identification – particularly in unstructured settings such as 
foraging or home inspection – users often provide descriptions of food items in natural language, 
rather than structured categorical forms. To integrate such inputs into a comparator-based 
identification framework, it is necessary to extract structured features from textual descriptions. In 
our case, these features represent perceptual and contextual properties relevant to food  
safety – such as color, shape, odor, texture, bruising, and presence of specific anatomical structures 
(e.g., gills or rings in mushrooms). 



We approach this task as a rule-based information extraction problem, mapping linguistic cues 
to categorical variables 𝑥௜ ∈ 𝑋௜ , where each 𝑋௜ is a finite set of permissible values for the  
𝑖-th feature. For instance, the sentence “The cap is flat and smooth with a brownish tint” yields the 
feature assignments 𝑥ୡୟ୮_ୱ୦ୟ୮ୣ = 𝑓𝑙𝑎𝑡, 𝑥ୡୟ୮_ୱ୳୰୤ୟୡୣ = 𝑠𝑚𝑜𝑜𝑡ℎ, and 𝑥ୡୟ୮_ୡ୭୪୭୰ = 𝑏𝑟𝑜𝑤𝑛. Since user 
input may omit features, use synonyms, or express ambiguity, we adopt a tolerant matching 
procedure that: 

 recognizes synonymous terms and paraphrases using a manually constructed mapping 
dictionary; 

 allows partial filling of the feature vector 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥௡); 
 defers decision-making in case of insufficient information. 

Each natural-language description is thus transformed into a partial categorical vector in the 
comparator feature space, suitable for downstream metric-based comparison and classification. This 
allows flexible integration of free-form descriptions into a symbolic decision pipeline without 
requiring full supervision or structured data entry. 

3.2. Comparator-based identification method 

Comparator-based identification is a symbolic classification framework grounded in the notion of 
perceptual similarity between objects. Rather than relying on numerical features or statistical 
models, this method compares an unknown object’s description with previously known instances 
using interpretable, feature-level match predicates. Let the perceptual description of a food item be 
represented as a vector 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥௡), where each 𝑥௜ ∈ 𝑋௜  is a categorical value of the 𝑖-th 
attribute (e.g., shape, color, texture, odor). The space 𝑋 = 𝑋ଵ × 𝑋ଶ × … × 𝑋௡ forms a discrete feature 
space.  

For any pair of objects 𝑥 and 𝑦 we define elementary comparators 𝑃௜(𝑥, 𝑦), which are binary 
predicates indicating whether the two objects agree on the 𝑖-th feature. The comparator similarity 
between two objects is defined as: 

𝐸𝑞(𝑥, 𝑦) = ሥ 𝑃௜(𝑥, 𝑦)

௡

௜ୀଵ

 
(1) 

Classification is based on comparing an unknown object 𝑥 to labeled reference objects from 
known classes (e.g., edible or inedible). 

To improve both interpretability and decision reliability, we adopt a method for identifying 
significant (core) features – a subset of attributes that are most informative for distinguishing 
between classes. We base this step on the structural significance criterion proposed [1], which 
defines a feature 𝑖 as significant if it contributes to class separation within the comparator 
framework. 

Let 𝐸 and 𝑃 denote the sets of known safe and unsafe food items, respectively. Formally, feature 
𝑖 is considered structurally essential if: 

∃𝑥 ∈ 𝐸, 𝑦 ∈ 𝑃 such that 𝑃௝(𝑥, 𝑦) = 1 ∀𝑗 ≠ 𝑖, but 𝑃௜(𝑥, 𝑦) = 0 (2) 

That is, there exist objects from opposite classes that differ only in the 𝑖 -th feature, making it 
decisive for classification in at least one instance. 

The core feature set 𝐶 ⊆ {1, … , 𝑛} is defined as the minimal set for which classification accuracy 
remains unchanged when only features from 𝐶 are used for comparison: 

∀𝑥 ∈ 𝑋, 𝛿஼(𝑥) = 𝛿(𝑥), (3) 

where 𝛿஼(𝑥) is the comparator decision rule restricted to features in 𝐶. This reduction allows 
building simpler, explainable classifiers focused on perceptually relevant attributes. 



By using such comparator-based principles and isolating core features, our method enables 
symbolic, transparent decision-making in safety-critical applications, such as identifying food 
edibility from natural language descriptions. 

3.3. Comparator model of mushroom edibility 

The UCI Mushroom Dataset [20] is a well-established benchmark for classification tasks involving 
categorical features. It contains 8,124 labeled observations of mushrooms belonging to the Agaricus 
and Lepiota families. Each observation is described by 22 nominal attributes that capture observable 
features, such as cap shape and color, gill attachment, bruising, odor, ring type, and habitat (see 
Figure 1). The target variable indicates whether the mushroom is edible or poisonous. Because all 
features are categorical and the classes are balanced, this dataset is used to evaluate models that 
handle symbolic data, feature selection strategies, and interpretable decision rules [21]. 

 

Figure 1: Diagram of a Mushroom. (Source [22]). 

We have chosen this dataset for three main reasons. First, the categorical nature of the attributes 
aligns well with the logic-based framework of comparator identification, in which each feature is 
treated as a finite-valued variable and encoded via logical indicators. Second, the availability of 
ground truth class labels allows us to rigorously evaluate the performance of classification rules 
derived from comparator principles. Third, the dataset provides a natural context for demonstrating 
core feature extraction and decision strategies. 

We will describe each mushroom by a set of observable features - a sensory description. In the 
UCI Mushroom dataset, each specimen is assigned such features as cap shape and color, cap surface, 
presence of spots ("bruises"), odor, characteristics of laminae (their attachment, distance, size, color), 
stem shape and structure (presence of a ring, its number and type, thickness/shape of the stem, color 
of the stem above and below the ring), color of spore powder, growing environment and population, 
etc. Formally, each mushroom x is matched with a vector of features: 

𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥௡), (4) 

where 𝑥௜ is the value of the 𝑖-th feature. For each feature a finite set of allowed values of 𝑋௜ is 
defined (e.g., cap color 𝑥ଵ ∈ 𝑋ଵ = {red, brown, white, . . . }. Thus, the space of mushroom 
descriptions can be represented as a Cartesian product of 𝑋 = 𝑋ଵ × 𝑋ଶ × … × 𝑋௡. This space is a 
vector feature space in terms of comparator identification [1]. The vector 𝑥𝜖𝑋 contains all available 
information about the mushroom obtained through the observer's "sensors": sight (color, shape), 
smell (odor), touch (surface texture), and others. It is essential that the sign of edibility is not a direct 
sensory attribute - it cannot be observed directly. It must be established indirectly, by comparing the 



perceptual attributes of an unknown mushroom with those of known edible or poisonous 
mushrooms. 

Each component of the sensory description can be interpreted as a result of measurement or 
perception: e.g., 𝑥ୡ୭୪୭୰ is the color of the cap as registered by sight; 𝑥ୱ୫ୣ୪୪ is the categorical value of 
the odor (almondy, unpleasant, absent, etc.) as perceived by the sense of smell; 𝑥୰୧୬୥ is the 
presence/type of ring on the stalk as determined visually or by touch, etc. Thus, the sensory 
description provides a necessary and sufficient set of inputs for mushroom identification using the 
comparator. 

In the comparator identification method, the key role is played by the operation of comparing 
two objects by their features. Consider two mushrooms with descriptions 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥௡) and 
𝑦 = (𝑦ଵ, 𝑦ଶ, … , 𝑦௡). For each feature 𝑖, let us define an elementary comparator as the feature 
matching predicate: 

𝑃௜(𝑥, 𝑦) = ൜
1, 𝑖𝑓 𝑥௜ = 𝑦௜ ,
0, 𝑖𝑓 𝑥௜ ≠ 𝑦௜ ,

 
(5) 

where 𝑥௜ and 𝑦௜ are the values of the 𝑖-th feature in objects 𝑥 and 𝑦. The predicate 𝑃௜(𝑥, 𝑦) 
indicates whether the objects are comparable in terms of the 𝑖-th feature, i.e., whether the observed 
feature is the same for them. For example, 𝑃ୡ୭୪୭୰(𝑥, 𝑦) = 1 if two mushrooms have the same cap 
color; 𝑃ୱ୫ୣ୪୪(𝑥, 𝑦) = 1 if their smell belongs to the same category; 𝑃୰୧୬୥(𝑥, 𝑦) = 1 if either both have 
a ring of the same type or both do not, etc. In the special case, if 𝑃௜(𝑥, 𝑦) = 1  

∀𝑖 ∈ (1, 𝑛തതതതത), then two mushrooms have identical sensory description (match on all features). 
Not all features are equally informative for determining edibility, so comparisons emphasize those 

traits that correlate with the edible/poisonous class. Some features may be indistinguishable for the 
purpose of identifying edibility. For example, the veil-type attribute in the Data Set takes the same 
value for all mushrooms, so that a comparison based on this attribute does not provide useful 
information (it is always the same and does not influence the decision). At the same time, the odor 
or spore color attributes are extremely important: it is known that certain odor values are found only 
in poisonous mushrooms. Thus, in a comparator analysis of features, we can divide them into: 

 diagnostic attributes that are critical and their difference directly indicates class (e.g., the 
presence of an acrid/chemical odor virtually guarantees poisonousness);  

 minor attributes for which edible and poisonous mushrooms may overlap, and the 
coincidence/difference of these attributes only in combination with other attributes affects 
the inference;  

 neutral attributes that have little influence on the inference of edibility. 

Formalizing a statement of the form "mushroom 𝑥 looks like an edible mushroom", we can 
introduce a similarity measure based on a set of pairwise comparisons. One approach is to count the 
number of matching features between 𝑥 and some known edible mushroom 𝑒. Let's denote by 
𝑠𝑖𝑚 (𝑥, 𝑦) the number of matches: 

𝑠𝑖𝑚 (𝑥, 𝑦) = ෍ 𝑃௜

௡

௜ୀଵ

(𝑥, 𝑦) 
(6) 

where 𝑃௜ is the truth indicator of the matching condition. Then 𝑠𝑖𝑚 (𝑥, 𝑦) = 𝑛 means that the 
descriptions of 𝑥 and 𝑦 completely match. A mushroom 𝑥 can be called "similar" to 𝑦 if 𝑠𝑖𝑚 (𝑥, 𝑦) is 
large, i.e. the objects coincide in most of the key features. By limiting case we can introduce a 
threshold 𝜏: consider 𝑥 similar to 𝑦 if 𝑠𝑖𝑚 (𝑥, 𝑦) ≥ 𝜏. In other words, we introduce a binary similarity 
predicate 𝑆ఛ(𝑥, 𝑦) - "𝑥 is similar to 𝑦 in at least 𝜏 features". This predicate is a composition of 
individual comparisons by attributes: 𝑆ఛ(𝑥, 𝑦) is true if enough individual 𝑃௜(𝑥, 𝑦) for important 𝑖 
are true. For example, the statement "this mushroom is similar to the edible species Agaricus" can be 



interpreted as: this mushroom has the same cap shape, plate color, lack of odor, and presence of a 
ring as some reference edible champignon, i.e., the corresponding 𝑃௜ for these characteristic features 
are satisfied. 

It should be noted that the target "edibility" itself is not part of the sensory description and is not 
directly involved in the comparison - it is the one we want to define. Therefore, a comparator 
conclusion about edibility can only be made indirectly, through comparison of the other attributes 
with already studied mushrooms whose edibility is known. 

The space of descriptions 𝑋 can be endowed with the structure of a metric space for quantifying 
the similarity of mushrooms. One natural variant of the metric is the Hamming metric [23, 24], 
defined as the number of differing features:  

𝑑(𝑥, 𝑦) = ෍(1 − 𝑃௜

௡

௜ୀଵ

(𝑥, 𝑦)) = 𝑛 − 𝑠𝑖𝑚(𝑥, 𝑦) 
(7) 

Such a metric 𝑑(𝑥, 𝑦) is 0 if the mushrooms 𝑥 and 𝑦 have an identical description, and is increased 
by 1 for each feature in which they differ. Proximity (similarity) can be defined through a metric: the 
smaller 𝑑(𝑥, 𝑦) is, the more "similar" the mushrooms are. By introducing a threshold 𝜀 ≥ 0, we can 
define the binary relation: 

𝑅ఌ ⊆ 𝑋 × 𝑋: (𝑥, 𝑦) ∈ 𝑅ఌ ⟺ 𝑑(𝑥, 𝑦) ≤ 𝜀 (8) 

Given 𝜀 = 0 the relation 𝑅଴ expresses exactly the identity of the descriptions. For 𝜀 > 0 the 
relation becomes a relation of 𝜀-similarity: the mushrooms 𝑥 and 𝑦 differ in no more than 𝜀 features. 
It is clear that 𝑅଴ is an equivalence relation on the set of objects (partitioning the space 𝑋 into classes 
of identical descriptions), while 𝑅ఌ may not have transitivity at 𝜀 > 0, but defines a neighborhood 
(clusters) of similar objects. 

In the language of predicates, we can define the corresponding similarity predicates. For example, 
the predicate:  

𝑆ఌ(𝑥, 𝑦) = 1 ⟺ 𝑑(𝑥, 𝑦) ≤ 𝜀 (9) 

In particular, if 𝜀 = 0:  

𝑆଴(𝑥, 𝑦) ⟺ ሥ 𝑃௜(𝑥, 𝑦)

௡

௜ୀଵ

, 
(10) 

i.e., complete matching of descriptions. Similarity predicates allow to formalize statements of the 
form "object 𝑥 belongs to the same class as object 𝑦". In the classical theory of comparator 
identification, this corresponds to the notion of an equivalence predicate of object identity. 

In other words, within the framework of our problem we can say that edible mushrooms form 
one equivalence class (by the relation "having the same edibility status", defined through the 
similarity of key properties), and poisonous mushrooms form another. The identification task boils 
down to determining which of these two equivalence classes the unknown mushroom belongs to. 

The mechanism of decision making in the comparator structure relies on a set of predicates of 
similarity with standard samples (references). Suppose we have a set of known edible mushrooms 
𝐸 = (𝑒ଵ, 𝑒ଶ, … , 𝑒௡೐

) and poisonous mushrooms 𝑃 = (𝑝ଵ, 𝑝ଶ, … , 𝑝௡೛
) (these samples can be 

considered as a training sample or expert knowledge). The unknown mushroom class 𝑥 is decided 
based on analyzing 𝑑൫𝑥, 𝑒௝൯ and 𝑑(𝑥, 𝑝௞) - distances to known benchmarks of both classes. Formally, 
two distance functions can be introduced:  

𝐷ா(𝑥) = min
௘∈ா

𝑑(𝑥, 𝑒) , 𝐷௉(𝑥) = min
௣∈௉

𝑑(𝑥, 𝑝), (11) 

i.e., the distance from 𝑥 to the nearest edible and nearest poisonous specimen, respectively. The 
classification rule is then given as:  



𝛿(𝑥) = ቐ

𝛿ଵ, 𝑖𝑓 𝐷ா(𝑥) < 𝐷௉(𝑥)
𝛿ଶ, 𝑖𝑓 𝐷௉(𝑥) < 𝐷ா(𝑥)

𝛿ଷ, 𝑖𝑓 𝐷ா(𝑥) = 𝐷௉(𝑥)
, 

(12) 

where 𝛿ଵ means “edible”, 𝛿ଶ – “poisonous”, and 𝛿ଷ – “undefined”.  
In the case of equal distances, either a finer criterion can be applied or the decision is postponed 

to request additional features. Thus, the decision is made in favor of the class to which benchmarks 
the mushroom 𝑥 happens to be closer in the feature space. This mechanism is a formalization of the 
principle "an unknown object belongs to the same class as the most similar known object". The 
comparator identification method actually assigns objects to classes based on their similarity to 
representatives of these classes, dividing the set of objects into equivalence classes automatically.   

It is important to emphasize that when 𝜀 = 0 (the requirement of complete coincidence of 
descriptions), the rule is reduced to an exact match with the reference: an unknown mushroom is 
classified as edible if at least one known edible mushroom with an identical set of features is found 
(otherwise, the poisonous one is checked). However, in real conditions, new combinations of features 
that have not been found before are possible. Then we have to rely on 𝜀 > 0, i.e. we have to allow 
partial coincidence. The metric-based decision mechanism naturally takes partial matches into 
account: even if there is no exact analog in memory, the mushroom will be assigned to the class 
whose sample is most similar (minimum distance). This approach is robust to feature variation and 
noise in the data, as it does not require a perfect match, but uses a proximity measure. 

The above mechanism can also be described as a logical scheme based on comparison predicates. 
The logical model of identification represents the solution as inference based on sets of conditions. 
In the simplest case, for 𝜀 = 0, we can write the logical expression for the mushroom 𝑥 belonging to 
the edible class as a disjunction of conjunctions reflecting the match with each edible reference:  

𝜑௘ௗ௜௕௟௘(𝑥) = ሧ ൭ሥ 𝐺௘(𝑥௜, 𝑒௜)

௡

௜ୀଵ

൱

௘∈ா

, 
(13) 

where each 𝐺௘(𝑥௜, 𝑒௜) means "mushroom 𝑥 matches in feature 𝑖 with known edible mushroom 𝑒":  

𝐺௘(𝑥௜, 𝑒௜) = ൜
1, 𝑖𝑓 𝑥௜ = 𝑒௜ 
0, 𝑖𝑓 𝑥௜ ≠ 𝑒௜

 
(14) 

Similarly, we can define the formula 𝜑௣௢௜௦௢௡௢௨௦(𝑥) in terms of known poisonous mushrooms. If 
𝜑௘ௗ௜௕௟௘(𝑥) = 1, the mushroom is identified as edible; if 𝜑௣௢௜௦௢௡௢௨௦(𝑥) = 1, it is identified as 
poisonous. In the case when none of the formulas is reach to 1 (i.e., there is no complete match with 
any of the benchmark), a fuzzy or stepwise logical solution is used. For example, it is possible to 
check conditions in descending order of their diagnostic significance: 

Step 1: Check for signs clearly indicating poisonousness. If feature 𝑖 is found, the values of which 
never occur in edible mushrooms (but do occur in poisonous ones), and 𝑥௜ has just such a value - 
immediately classify the mushroom as poisonous (a decision without further doubt). For example, if 
𝑥௢ௗ௢௥ = "pungent" or 𝑥௢ௗ௢௥ = "fishy", then the mushroom is definitely poisonous (in the UCI 
Mushroom dataset, all mushrooms with a pungent or fishy odor are poisonous). 

Step 2: If no obvious poisonous features are found, check for characteristic combinations of 
features of edible mushrooms. For example, for some edible mushrooms, the following combination 
may be typical 𝑃ୡୟ୮ିୱ୦ୟ୮ୣ(𝑥, 𝑒) ∧ 𝑃୰୧୬୥ି୲୷୮ (𝑥, 𝑒) ∧ 𝑃୭ୢ୭୰(𝑥, 𝑒) for some reference 𝑒. In other 
words, if a mushroom 𝑥 satisfies most of the conditions characteristic of a certain edible species (or 
group of species), then a reasonable conclusion can be drawn about its edibility. 

Step 3: If doubts remain (there are both edible traits and uncharacteristic abnormalities), a more 
refined analysis is performed: comparison with the closest edible and poisonous references (e.g. by 
the 𝑑(𝑥, 𝑦) metric as described above) and analysis of which differences prevent unambiguous 
identification. Additional information or an expert may need to be brought in at this step. In logical 



terms, step 3 corresponds to evaluating the truth of similarity predicates at some 𝜀 > 0 and selecting 
a class based on the maximum number of fulfilled predicates 𝑃௜ with the benchmarks of each class. 

The logic scheme is thus reduced to a set of rules of the form "IF <conditions of comparison>, THEN 
<resolution>". These rules can be extracted from comparisons with the benchmarks and knowledge 
about the diagnostic value of the features. The advantage of comparator identification is that such a 
scheme is human verifiable: the decision is justified by explicitly stating with which known 
mushrooms and on which features a given specimen matches or diverges. In fact, the method fixes 
the course of reasoning of an expert mushroom grower: for example, "if the mushroom has white 
plates and a ring on the stalk, and there is no unpleasant odor, then it looks like a champignon (edible) 
and does not look like a pale grebe (which has green plates and volva)". All of this reasoning can be 
precisely expressed through the predicates 𝑃௜ and their logical combinations. 

4. Results and discussion 

This section looks at an example of how to apply the proposed approach based on the comparator 
model. 
equation 

Let 𝑥 = (𝑥ଵଵ, 𝑥ଵଶ, … , 𝑥௜௝ , … , 𝑥ଶଶ,௠మమ
) be the binary indicator vector that encodes every categorical 

attribute of a mushroom specimen in the UCI data set (Table1). For each attribute 𝑖 = (1,2, … ,22) and 
for each of its 𝑚௜ admissible categories, a component: 

𝑥௜௝ = ൜
1, 𝑖𝑓 the 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 exhibits the 𝑗 − th category of the 𝑖 − th attribute,

0, otherwise,
, 

𝑗 = (1, , … , 𝑚௜), 

(15) 

is introduced. Hence, a specimen is mapped to a 111-dimensional binary vector (the sum of all 
𝑚௜). The notation 𝑥௜ without a second index will be reserved for the whole block of components that 
belong to attribute 𝑖: 𝑥௜ = (𝑥௜ଵ, 𝑥௜ଶ, … , 𝑥௜,௠೔

). 

 
 
Table 1 
Attribute values encoding (based on data set description in [20]) 

Attribute 
i 

Attribute name 
(according to UCI 

data set) 

Attribute values and their notations 

1 cap-shape 𝑥1,1: bell, 𝑥1,2: conical, 𝑥1,3: convex, 𝑥1,4: flat, 𝑥1,5: knobbed, 

𝑥1,6: sunken 
2 cap-surface 𝑥2,1: fibrous, 𝑥2,2: grooves, 𝑥2,3: scaly, 𝑥2,4: smooth 
3 cap-color 𝑥3,1: brown, 𝑥3,2: buff, 𝑥3,3: cinnamon, 𝑥3,4: gray, 𝑥3,5: green, 

𝑥3,6: pink, 𝑥3,7: purple, 𝑥3,8: red, 𝑥3,9: white, 𝑥3,10: yellow 
4 bruises 𝑥4,1: true, 𝑥4,2: false 
5 odor 𝑥5,1: almond, 𝑥5,2: anise, 𝑥5,3: creosote, 𝑥5,4: fishy, 𝑥5,5: foul, 

𝑥5,6: musty, 𝑥5,7: none, 𝑥5,8: pungent, 𝑥5,9: spicy 
6 gill-attachment 𝑥6,1: attached, 𝑥6,2: descending, 𝑥6,3: free, 𝑥6,4: notched 
7 gill-spacing 𝑥7,1: close, 𝑥7,2: crowded, 𝑥7,3: distant 
8 gill-size 𝑥8,1: broad, 𝑥8,2: narrow 
9 gill-color 𝑥9,1: black, 𝑥9,2: brown, 𝑥9,3: buff, 𝑥9,4: chocolate, 𝑥9,5: gray, 

𝑥9,6: green, 𝑥9,7: orange, 𝑥9,8: pink, 𝑥9,9: purple, 𝑥9,10: red, 𝑥9,11: 

white, 𝑥9,12: yellow 



10 stalk-shape 𝑥10,1: enlarging, 𝑥10,2: tapering 
11 stalk-root 𝑥11,1: bulbous, 𝑥11,2: club, 𝑥11,3: cup, 𝑥11,4: equal, 𝑥11,5: 

rhizomorphs, 𝑥11,6: rooted, 𝑥11,7: missing 
12 stalk-surface-

above-ring 
𝑥12,1: fibrous, 𝑥12,2: scaly, 𝑥12,3: silky, 𝑥12,4: smooth 

13 stalk-surface-
below-ring 

𝑥13,1: fibrous, 𝑥13,2: scaly, 𝑥13,3: silky, 𝑥13,4: smooth 

14 stalk-color-above-
ring 

𝑥14,1: brown, 𝑥14,2: buff, 𝑥14,3: cinnamon, 𝑥14,4: gray, 𝑥14,5: 

orange, 𝑥14,6: pink, 𝑥14,7: red, 𝑥14,8: white, 𝑥14,9: yellow 
15 stalk-color-below-

ring 
𝑥15,1: brown, 𝑥15,2: buff, 𝑥15,3: cinnamon, 𝑥15,4: gray, 𝑥15,5: 

orange, 𝑥15,6: pink, 𝑥15,7: red, 𝑥15,8: white, 𝑥15,9: yellow 
16 veil-type 𝑥16,1: partial, 𝑥16,2: universal (note: in the data set only partial 

occurs) 
17 veil-color 𝑥17,1: brown, 𝑥17,2: orange, 𝑥17,3: white, 𝑥17,4: yellow 
18 ring-number 𝑥18,1: none, 𝑥18,2: one, 𝑥18,3: two 
19 ring-type 𝑥19,1: cobwebby, 𝑥19,2: evanescent, 𝑥19,3: flaring, 𝑥19,4: large, 

𝑥19,5: none, 𝑥19,6: pendant, 𝑥19,7: sheathing, 𝑥19,8: zone 
20 spore-print-color 𝑥20,1: black, 𝑥20,2: brown, 𝑥20,3: buff, 𝑥20,4: chocolate, 𝑥20,5: 

green, 𝑥20,6: orange, 𝑥20,7: purple, 𝑥20,8: white, 𝑥20,9: yellow 
21 population 𝑥21,1: abundant, 𝑥21,2: clustered, 𝑥21,3: numerous, 𝑥21,4: 

scattered, 𝑥21,5: several, 𝑥21,6: solitary 
22 habitat 𝑥22,1: grasses, 𝑥22,2: leaves, 𝑥22,3: meadows, 𝑥22,4: paths, x𝑥22,5: 

urban, 𝑥22,6: waste, 𝑥22,7: woods 

 

Let's consider the typical process of analyzing product descriptions using a comparator model. As 
mentioned above, we will use the UCI Mushroom dataset and determine the edibility of a mushroom 
based on its description. We assume the user is describing the mushrooms directly in front of them 
and is indicating all their sensory perceptions (appearance, color, smell, etc.). The comparator then 
returns one of the 12 defined classes as the answer. We interpret the comparator's response as 
"mushroom X is similar to edible" (if the delta response is 1) based on the coincidence of the following 
features, for which (5) is true. First, we generate various descriptions that a user could provide and 
demonstrate which features can be extracted from them. 

Below are seven sample descriptions. They are all phrased differently, with some attributes named 
explicitly, some hinted at, and some left unspecified – exactly the variety you would face in practice. 

Example 1: “The cap is flat and smooth, light-brown in color; the gills underneath are crowded 
and white. I don’t notice any smell at all. There’s one thin pendant ring on the stalk, which tapers 
slightly and is white both above and below the ring. No blue bruising when I press it.” 

There are core attributes extracted: cap-shape – “flat”, cap-surface – “smooth”, cap-color – 
“brown”, bruises – “false”, odor – “none”, gill-spacing – “crowded”, gill-color – “white”, stalk-shape – 
“tapering”, stalk-color-above-ring – “white”, stalk-color-below-ring – “white”, ring-number – “one”, 
ring-type – “pendant”. Other values are undefined. 

Example 2: “Tiny purple-red buttons pushing up through grassy soil - the caps look convex and 
a bit scaly. When I scratch the flesh it bruises blue-green, and there’s a strong, almost chemical odor. 
Can’t see any skirt or ring yet.” 

There are core attributes extracted: cap-shape – “convex”, cap-surface – “scaly”, cap-color – 
“purple” or “red”, bruises – “true”, odor-“creosote”, ring-number – “none observed”, ring-type – “none”, 
and habitat – “grasses”. Other values are undefined. 



Example 3: “It grows alone on a fallen log in the woods. The top is bell-shaped, kind of cinnamon-
colored, and the stalk widens at the base. The air around it smells spicy – like cloves. I didn’t notice 
any spore dust.” 

There are core attributes extracted: cap-shape – “bell-shaped”, cap-color – “cinnamon”, stalk-
shape – “enlarging”, odor – “spicy”, population – “solitary”, and habitat – “woods”. Other values are 
undefined. 

Example 4: “These mushrooms form tight clusters on leaf litter. Caps are sunken in the middle, 
with a yellow surface that feels fibrous. Gills seem distant and pale gray. The stalk is silky above a 
single ring and orangey below. When sliced, nothing turns blue.” 

There are core attributes extracted: population – “clustered”, habitat – “leaves”, cap-shape – 
“sunken”, cap-surface – “fibrous”, cap-color – “yellow”, gill-spacing – “distant”, gill-color – “gray”, 
bruises – “none”, ring-number – “one”, stalk-surface-above-ring – “silky”, and stalk-color-below-ring 
– “orange”. Other values are undefined. 

Example 5: “Cap surface is smooth, pale pink; no scales or grooves. There’s definitely no ring, and 
the stem stays the same thickness top to bottom. I get a musty cellar smell but can’t decide if it 
bruises— pressing didn’t change the color. Not sure about spore-print yet.” 

There are core attributes extracted: cap-surface – “smooth”, cap-color – “pink”, ring-number – 
“none”, ring-type – “none”, odor – “musty”, and bruises – “none”. Other values are undefined. 

Example 6: “Mature mushrooms with broad pink gills and a pleasant almond scent. The overnight 
spore print is deep brown. A thin pendant ring encircles the stalk, and the tissue below the ring is perfectly 
smooth.” 

There are core attributes extracted: odor – “almond”, spore-print-color – “brown”, gill-color – 
“pink”, ring-type – “pendant”, and stalk-surface-below-ring – “smooth”. Other values are undefined. 

Example 7: “A cluster of slick white caps gives off a distinctly fishy smell. The gills are white and the 
spore print is also white. A skirt-like pendant ring hangs from the stalk, which feels smooth below the 
ring”.  

The core attributes extracted are: odor – “fishy”, spore-print-color – “white”, gill-color – “white”, 
ring-type – “pendant”, and stalk-surface-below-ring – “smooth”. Other values are undefined. 

Let 𝑥௜௝ = 1 denote that the mushroom exhibits the 𝑗-th value of the 𝑖-th attribute (as numbered 
above), and 𝑥௜௝ = 0 otherwise. For every description we write a conjunctive clause Φ௞(𝑥) that fixes 
only the attribute–value pairs explicitly inferable from the text; all other indicators remain free. 

Φଵ(𝑥) = 𝑥ଵ,ସ ∧ 𝑥ଶ,ସ ∧ 𝑥ଷ,ଵ ∧ 𝑥ସ,ଶ ∧ 𝑥ହ,଻ ∧ 𝑥଻,ଶ ∧ 𝑥ଽ,ଵଵ ∧ 𝑥ଵ଴,ଶ ∧ 𝑥ଵସ,଼ ∧ 𝑥ଵହ,଼ ∧ 𝑥ଵ଼,ଶ ∧ 𝑥ଵଽ,଺, 
Φଶ(𝑥) = 𝑥ଵ,ଷ ∧ 𝑥ଶ,ଷ ∧ (𝑥ଷ,଻ ∨ 𝑥ଷ,଼) ∧ 𝑥ସ,ଵ ∧ 𝑥ହ,ଷ ∧ 𝑥ଵ଼,ଵ ∧ 𝑥ଵଽ,ହ ∧ 𝑥ଶଶ,ଵ, 
Φଷ(𝑥) = 𝑥ଵ,ଵ ∧ 𝑥ଷ,ଷ ∧ 𝑥ହ,ଽ ∧ 𝑥ଵ଴,ଵ ∧ 𝑥ଶଵ,଺ ∧ 𝑥ଶଶ,଻, 
Φସ(𝑥) = 𝑥ଵ,଺ ∧ 𝑥ଶ,ଵ ∧ 𝑥ଷ,ଵ଴ ∧ 𝑥ସ,ଶ ∧ 𝑥଻,ଷ ∧ 𝑥ଽ,ହ ∧ 𝑥ଵଶ,ଷ ∧ 𝑥ଵହ,ହ ∧ 𝑥ଵ଼,ଶ ∧ 𝑥ଶଵ,ଶ ∧ 𝑥ଶଶ,ଶ, 
Φହ(𝑥) = 𝑥ଶ,ସ ∧ 𝑥ଷ,଺ ∧ 𝑥ସ,ଶ ∧ 𝑥ହ,଺ ∧ 𝑥ଵ଼,ଵ ∧ 𝑥ଵଽ,ହ, 
Φ଺(𝑥) = 𝑥ହ,ଵ ∧ 𝑥ଽ,଼ ∧ 𝑥ଵଷ,ସ ∧ 𝑥ଵଽ,଺ ∧ 𝑥ଶ଴,ଶ, 
Φ଻(𝑥) = 𝑥ହ,ସ ∧ 𝑥ଽ,ଵଵ ∧ 𝑥ଵଷ,ସ ∧ 𝑥ଵଽ,଺ ∧ 𝑥ଶ଴,଼. 
We will complete the identification task in two stages. First, we will evaluate the edibility of the 

mushroom based on a core set of characteristics. Then, we will refine the results using a full set of 
characteristics. The core set of characteristics will be based on the values available in the training 
dataset. To do this, we take the conjunction of all true predicates for each reference class of edible 
mushrooms. 

Φା = ሧ

௘∈ா

ሥ 𝑒௜௝

௜,௝∈௘

, (16) 

where 𝑒௜௝ represents the attributes of each edible specimen. 
Similarly, we determine the class of poisonous mushrooms. 



Φି = ሧ

௣∈௉

ሥ 𝑝௜௝

௜,௝∈௣

 (17) 

Then the entire training set can be described by the formula 

Φ = Φା ∨ ¬Φି (18) 

Next, we sequentially apply the method of extracting essential features, as proposed in [1]. The 
resulting core, based on the solution of equation (18), contains only the features whose values allow 
us to distinguish between edible and poisonous mushrooms. This core ensures the equivalence of 
the original and reduced comparator classifiers. For this dataset, the following kernel was obtained: 
spore print color, gill color, ring type, stalk-surface-below-ring, i.e. 

𝐶 = {𝑥ଽ, 𝑥ଵଷ, 𝑥ଵଽ, 𝑥ଶ଴} 
Let's simplify the equations that describe unknown instances of mushrooms. We obtain: 
Φଵ(𝑥) = 𝑥ଽ,ଵଵ ∧ 𝑥ଵଽ,଺, 
Φଶ(𝑥) = 𝑥ଵଽ,ହ, 
Φସ(𝑥) = 𝑥ଽ,ହ, 
Φହ(𝑥) = 𝑥ଵଽ,ହ, 
Φ଺(𝑥) = 𝑥ଽ,଼ ∧ 𝑥ଵଷ,ସ ∧ 𝑥ଵଽ,଺ ∧ 𝑥ଶ଴,ଶ, 
Φ଻(𝑥) = 𝑥ଽ,ଵଵ ∧ 𝑥ଵଷ,ସ ∧ 𝑥ଵଽ,଺ ∧ 𝑥ଶ଴,଼. 
It is clear that for examples 1-5, the information obtained is insufficient to assign these samples 

to one of the classes. However, for examples 6 and 7, it is possible to determine their proximity to 
one of the classes based on the core features. For these examples, we calculate the distances (11) and 
apply the classification rule (12). We obtain: 

𝐷ா(𝑥଺) = 1, 𝐷௉(𝑥଺) = 3, 𝐷ா(𝑥଻) = 3, 𝐷௉(𝑥଼) = 1, 
i.e. sample 6 is closed to edible prototype and sample 7 is closed to poisonous prototype. Then, 

analyze those examples using the full attribute space. For the example 1 we have 
Φଵ(𝑥) = 𝑥ଵ,ସ ∧ 𝑥ଶ,ସ ∧ 𝑥ଷ,ଵ ∧ 𝑥ସ,ଶ ∧ 𝑥ହ,଻ ∧ 𝑥଻,ଶ ∧ 𝑥ଽ,ଵଵ ∧ 𝑥ଵ଴,ଶ ∧ 𝑥ଵସ,଼ ∧ 𝑥ଵହ,଼ ∧ 𝑥ଵ଼,ଶ ∧ 𝑥ଵଽ,଺, 
and the closest edible and poisonous prototypes are described as 
Eଵ(𝑥) = 𝑥ଵ,ଷ ∧ 𝑥ଶ,ସ ∧ 𝑥ଷ,ଵ ∧ 𝑥ସ,ଵ ∧ 𝑥ହ,଻ ∧ 𝑥଻,ଵ ∧ 𝑥ଽ,଼ ∧ 𝑥ଵ଴,ଶ ∧ 𝑥ଵସ,଼ ∧ 𝑥ଵହ,଼ ∧ 𝑥ଵ଼,ଶ ∧ 𝑥ଵଽ,଺, 
Pଵ(𝑥) = 𝑥ଵ,ଷ ∧ 𝑥ଶ,ସ ∧ 𝑥ଷ,ଵ ∧ 𝑥ସ,ଶ ∧ 𝑥ହ,଻ ∧ 𝑥଻,ଵ ∧ 𝑥ଽ,ଵଵ ∧ 𝑥ଵ଴,ଶ ∧ 𝑥ଵସ,଼ ∧ 𝑥ଵହ,଼ ∧ 𝑥ଵ଼,ଶ ∧ 𝑥ଵଽ,଺, 
and 𝐷ா(𝑥ଵ) = 4, 𝐷௉(𝑥ଵ) = 2. Because 𝐷௉(𝑥ଵ) < 𝐷ா(𝑥ଵ) the specimen is closer to the poisonous 

prototype when every available attribute is considered. 
Thus, the combination “no bruises + white gills + crowded gills + pendant ring + odor none” 

matches key traits of Amanita phalloides more than of common edible Agaricus; without spore-print 
color or chemical tests, the safer classification is poisonous, i.e. avoid consumption. Hence, from a 
comparator perspective, Example 1 should be flagged unsafe unless further evidence pushes it toward 
the edible region. 

Therefore, the comparator identification method applied to the edibility/poisoning task, in fact, 
implements binary classification, albeit in a different paradigm. That is to say, it establishes 
equivalence or similarity with samples. The classification of a set of objects is determined through a 
comparative analysis with representatives of these established classes. From a formal point of view, 
the result of the comparator scheme is a function, which takes on two values (e.g., 1 for edible and 0 
for poisonous mushrooms). That is to say, it corresponds to the target variable in the classification 
task. However, the internal logic of decision-making processes differs from, for example, the 
decision-making processes of a tree or a neural network. The comparator model does not directly 
derive the formula for this function through the features. Rather, it computes a value through 
comparisons with reference objects. 

It is evident that the rule, based on (11), is a variation of the nearest neighbor method in feature 
space. That is to say, the class of a new object is determined by the class of the nearest neighbor 
among the training data. The distinction in emphasis is as follows: comparator identification 
accentuates the explicability and logical structure of such a solution. While the K-nearest neighbor 



algorithm does not explicitly provide the class label, the comparator scheme can provide a rationale 
for the classification. For instance, it can be explained that the closest was a mushroom classified as 
edible with a distance of 2; however, the closest poisonous one had a distance of 4. Therefore, the 
classification of this instance as edible is supported by these data. Furthermore, the method enables 
the incorporation of a priori rules, thereby aligning classification with the characteristics of an expert 
system. Consequently, comparator solutions are directly associated with the outcomes of binary 
classification, while concurrently offering an interpretation through resemblance to recognized 
patterns. The veracity of classification is contingent upon the assumption that the feature space 
adequately differentiates edible species from poisonous ones. This is a prerequisite for the 
applicability of comparator identification. 

In summary, the application of the comparator identification method to the task of mushroom 
edibility demonstrates an alternative, human-understandable approach to binary classification. 

5. Conclusion 

In this work, we have demonstrated a framework for identifying food edibility grounded in 
comparator-based predicate logic. To answer the first research question, we have shown how logical 
rules for edibility can be formalized as predicate structures based on observable sensory 
characteristics. Each perceptual feature – such as cap shape, odor, texture, and color – is encoded as 
a finite-valued predicate or an indicator variable. We have also developed a core-extraction 
procedure to isolate the minimal subset of features. This yields a compact, human-readable core 
feature set that drives the comparator decision rule. To evaluate the second research question, which 
concerns the effectiveness of the comparator model versus traditional machine learning approaches, 
we conducted experiments on the canonical UCI Mushroom dataset. 

Thus, we have formally described the process by which sensory attributes are converted into a 
system of comparisons, the manner in which a metric and logical structure for decision making is 
built on this basis, and the manner in which the final verdict ("edible" or "poisonous") is obtained as 
a consequence of comparison with already known samples. This approach establishes a connection 
between a rigorous mathematical model, characterized by predicates and metrics, and practical 
interpretability. This interpretability is particularly valuable in the critical domain of poisonous 
mushroom identification. 

A key contribution of this study is the interpretability of comparator solutions. Unlike "black-
box" models, comparator rules provide logical explanations – for each edibility verdict, one can trace 
exactly which features matched which reference specimens and which predicate failures tipped the 
decision. The core-extraction method ensures that only features with genuine discriminative power 
appear in the final rule, which simplifies the explanation further. In user-facing scenarios (e.g., 
mobile identification apps), this transparency allows users to understand and trust the model's 
verdicts and supply targeted follow-up descriptions when the model is uncertain. 
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