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Abstract 
This research article explores the integration of a Competency module within the Shift-Left Architecture 
framework tailored for Big Data streaming systems. This study demonstrates that the proposed module 
significantly enhances maintainability, enables early issue detection, and improves risk assessment. 
Leveraging automation, real-time monitoring, and proactive validation, the Competency module 
streamlines configuration management, optimises streaming pipelines and accelerates processing 
efficiency. Key findings reveal its capability to validate source configurations proactively, reconfigure 
processing engines, and propose enhancements, reducing manual intervention and minimising downtime. 
This research contributes a robust framework that strengthens the efficiency, reliability, and scalability of 
Big Data streaming architectures, offering valuable insights for implementing Shift-Left principles 
effectively. 
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1. Introduction 

The evolution of data processing architectures can be categorised into distinct generations, each 
addressing the limitations of its predecessor. 

The Extract-Transform-Load (ETL) model's initial stage entails pulling raw data from on-premises 
databases, processing it with limited storage and computational power, and storing the refined data 
in a data warehouse. Although this method was suitable for its era, it faces notable drawbacks, such 
as limited processing power, inadequate scalability, and challenges in efficiently storing and 
analysing past data [1]. 

In response to these issues, a second-generation architecture emerged, defined by the Extract-
Load-Transform (ELT) model. This method allows raw data to be quickly fed into a scalable, cost-
efficient Data Lake, utilising a cloud-based, multi-tier medallion framework. Data transformation is 
carried out with highly parallelised, cloud-optimised computing resources, offering exceptional 
scalability and performance. The resulting data is channelled to downstream business applications, 
supporting more robust analytics and profound insights [2]. 

Fig. 1 represents the diagram of an ETL and ELT data pipeline. 
Despite its advantages, the ELT paradigm comes with disadvantages that can prevent efficiency 

and data quality [3]: 
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 Processing data in batches often leads to delays and inconsistencies. In micro-batch 
processing, extra steps are needed to align and integrate the data with its current state, 
adding complexity to the workflow. 

 Different teams — such as AI, Data Platform, and Marketing — frequently create independent 
pipelines for the same data sources to support their respective systems. This redundancy 
wastes resources and drives up operational costs. 

 Without comprehensive documentation, "similar-but-slightly-different" pipelines multiply, 
causing inefficiencies and making maintenance more challenging. 

 Reverse ETL, widely used in contemporary setups like data warehouses, Delta Lakes, or Data 
Lakehouses, adds further redundancy and data duplication, amplifying processing 
inefficiencies. 

 
Figure 1: An architecture of ETL/ELT flow  

 
Data has become the most valuable asset in today's business landscape. To thrive in a highly 

competitive environment, organisations require enriched, trustworthy, and contextualised data 
delivered in near real-time to drive decision-making and innovation.  

The Shift-Left Architecture was developed as an innovative solution to tackle these challenges. In 
the context of Big Data streaming, Shift-Left Architecture is a design pattern that repositions data 
processing and governance nearer to the point of data origin, drawing inspiration from Shift-Left 
Testing in software engineering. This approach prioritises real-time data processing as it is 
generated, leveraging tools like Apache Kafka and Apache Flink to create immediate data products 
for Data Warehouses (e.g., Snowflake), Data Lakes, and Data Lakehouses (e.g., Databricks). By 
focusing on enriching, transforming, and constructing data products accurately at the source, Shift-
Left adheres to the "build once, use many times" philosophy. It ensures that data products are 



efficiently prepared and seamlessly reused downstream, minimising redundancy while enhancing 
data quality across the enterprise [4]. 

The Shift-Left Architecture (see Fig. 2) reimagines Big Data workflows by shifting data processing 
and governance closer to the source. Early data cleaning, aggregation, and enrichment guarantee 
that downstream systems — whether analytical platforms like Data Lakes, Data Warehouses, and 
Data Lakehouses or operational systems like microservices—receive well-structured, high-quality 
data. It reduces repetitive processing, shortens time to value, and maximises business impact from 
the outset [5]. 

 
Figure 2: The Shift-Left Architecture 

 
A standout feature of Shift-Left is its alignment with the data mesh paradigm, enabled by real-

time data products. Integrating transactional and analytical workloads using technologies such as 
Apache Kafka, Apache Flink, and Apache Iceberg delivers consistent, high-quality data across the 
organisation. Streaming data can be processed instantly or fed into modern analytics platforms like 
Snowflake, Databricks, or Google BigQuery, creating a cohesive foundation for AI and analytics 
initiatives [4, 5]. 

Building on these strengths, Shift-Left Architecture emphasises the critical role of early issue 
detection and risk management. By spotting potential problems at the data source, organisations can 
address risks before they cascade into downstream systems, avoiding expensive rework and 
operational setbacks. A specialised Competency Module could be embedded within the Shift-Left 
framework to strengthen this proactive stance, focusing on issue resolution and risk evaluation. This 
module would arm data engineers and analysts with the expertise and tools to detect, assess, and fix 
data quality issues, schema discrepancies, and security risks at the source. Embedding this capability 
early in the data lifecycle would bolster the resilience and effectiveness of the data ecosystem, 
amplifying the transformative impact of the Shift-Left approach. 

2. Related Works 

A significant body of prior research has explored the ETL and ELT methodologies. These 
investigations examined ETL and ELT workflows, identifying obstacles to handling vast amounts of 
real-time data, with efforts aimed at enhancing efficiency, minimising delays, and guaranteeing 
dependability — critical factors for industries like finance, healthcare, manufacturing, and 
telecommunications. 

One of the well-known approaches in big data is ETL (Extract-Transform-Load), which has 
become a standard for some time. Nishanth Reddy Mandala's research, "ETL in Data Lakes vs. Data 
Warehouses" [6], reveals the benefits of the ETL method for Data Lake and Data Warehouse 
architectures. Among strengths, some significant weaknesses include latency, delayed data 
availability, rigid schema, lack of flexibility, and high maintenance and scalability costs. 



The ELT (Extract-Load-Transform) approach was introduced to address the ETL challenges. The 
book "Delta Lake - Deep Dive" [7], written by Nikhil Gupta & Jason Yip, uncovers crucial aspects of 
the Lakehouse paradigm, considering the ELT approach for data pipelines. While ELT overcomes the 
challenges of ETL, this multi-hop architecture still has weaknesses: 

• Delayed Updates – the longer the data pipeline and the more tools involved, the more time 
it takes to refresh the data product. 

• Extended Time-to-Market – development work is duplicated because each business unit 
must repeat identical or similar processing tasks instead of leveraging a centralised, curated 
data product. 

• Higher Expenses – analytics platforms thrive financially on compute usage rather than on 
storage. The increased reliance of business units on tools like DBT boosts profits for analytics 
SaaS providers. 

• Redundant Work – many organisations utilise multiple analytics systems — such as various 
Data Warehouses, Data Lakes, and AI platforms — resulting in repeated processing efforts 
with ELT across these environments. 

• Inconsistent Data – integration methods like Reverse ETL and Zero ETL, among others, 
result in discrepancies between analytical and operational applications. Connecting a real-
time consumer or mobile app API to a batch-processing layer won't deliver uniform 
outcomes. 

Another work, "A reference architecture for serverless big data processing" [8], addresses the 
challenges posed by existing ETL/ELT architectures. It emphasises the importance of reducing time-
to-market for data products by leveraging serverless platforms due to their high scalability. 

Confluent Platform introduces Shift-Left architecture for Big Data to enhance data processing, as 
this approach was initially applied to testing. The article "Shift Left: Headless Data Architecture" [9] 
considers the key advantages of the approach: 

• Enhanced Data Processing Efficiency: Shift-Left reduces the need for extensive data transfers 
by processing data closer to the source, thereby decreasing both the time and costs associated 
with large-scale data movement. 

• Real-Time Over Batch Processing: By enabling real-time or near-real-time data handling 
rather than batch methods, Shift-Left supports applications that rely on current data, such 
as predictive analytics, machine learning systems, and operational decision-making. 

• Better Data Quality: Processing data closer to its origin enables early detection and 
correction of issues, preventing quality problems from spreading downstream and ensuring 
reliable, high-quality data. 

• Integrated Workloads: The Shift-Left approach connects transactional (operational) and 
analytical tasks, facilitating seamless real-time data sharing across applications for use cases 
such as real-time inventory tracking and personalised customer interactions. 

• Faster Innovation and Expansion: This architecture speeds up the delivery of data-driven 
applications to the market, enabling businesses to deploy data products more quickly [9, 10].  

The next work, "Shift Left. Unifying Operations and Analytics With Data Products" by Adam 
Bellemare [11], explores how the headless data architecture, termed "Shift-Left," bridges the gap 
between operational and analytical data. The text evaluates existing data architectures — Delta Lake, 
Data Warehouse, and Data Lakehouse — highlighting the challenges in transferring data from 
operational to analytical systems. It identifies the key limitations of these architectures: 

• Downstream consumers bear full responsibility for the ETL/ELT process. However, without 
ownership of the source, systems must ensure that data remains relevant, available, and 
consistent. 

• These architectures are expensive, requiring significant data copying and processing power. 
They create redundant processing due to cross-team communication problems, and outages 
or inconsistencies affect all downstream systems. 

• It requires data reconciliation — restoring data quality after applying different quality gates 
after de-formalising, restructuring, and enriching. 



• Curated data is not reusable for operational workloads, as the analytical workloads are 
optimised only for OLAP (online transaction processing systems). 

The author highlights another aspect: processing insufficient data is the weakest part of the Shift-
Left architecture. Due to the architecture's reliance on immutable data streams, where data is 
append-only and cannot be altered once written, handling corrupted data poses a significant 
challenge. Unlike traditional ETL/ELT processes, which employ a "stop-the-world" approach to 
remove, correct, and reprocess insufficient data, ensuring downstream systems receive consistent 
records, streaming architectures lack this flexibility. Corrupted data in streams can lead to severe 
consequences, including financial losses and irreversible business decisions. To mitigate these risks, 
Bellemare proposes several strategies for managing and preventing insufficient data in streams: 

• Prevention Strategy: Emphasising rigorous design, thorough testing, and robust validation 
rules to ensure data integrity from the outset. 

• Issue Correction Event Design: Establishing mechanisms to notify downstream services of 
specific data updates, facilitating corrective actions without altering the original stream. 

• Rewind, Rebuild, and Retry Strategy: When other methods fail, recreate data streams with 
correct data as a last resort. 

Despite these strategies, the Shift-Left architecture remains highly sensitive to insufficient data. 
While Bellemare underscores the importance of prevention, the proposed solutions do not entirely 
address challenges arising from workload fluctuations or provide proactive measures to anticipate 
and prevent potential incidents. A stronger focus on predictive analytics and adaptive workload 
management could further enhance the architecture's resilience. 

Since the approach eliminates multiple stages for processing data and moves data extraction, 
sanity checks, and enrichment closer to the source, incorrect data schemas and improper streaming 
or processing settings can lead to several problems in the early processing stages, including 
performance degradation and data loss. In the next chapter, we propose a new approach to extend 
the existing Shift-Left Architecture with a module that will identify and mitigate potential issues 
nearer to the source. 

3. Competency Module of Shift-Left Architecture 

In Big Data, shift-left architecture refers to processing and governing data closer to its source rather 
than moving it to a centralised location for processing, such as in traditional Extract-Transform-Load 
(ETL) pipelines. This approach aligns with modern data strategies prioritising real-time processing, 
cost efficiency, and data quality. It is particularly relevant in environments leveraging data streaming 
technologies like Apache Kafka and Flink and platforms like Databricks and Snowflake, which 
support decentralised processing [4]. 

The strengths of Shift-Left Architecture are [9]: 
 Data processing efficiency. By processing data near its source, Shift-Left reduces the need 

for large-scale data movement, which is often costly and time-consuming. 
 Real-time processing instead of batch enables real-time or near-real-time data processing, 

which is critical for applications requiring up-to-date information, such as predictive 
analytics, machine learning models, and operational decision-making. 

 Improved data quality. So that issues can be identified and corrected closer to the source. It 
prevents data quality problems from propagating downstream, ensuring only high-quality, 
trustworthy data is used. 

 Unified workloads. Shift-left architecture facilitates the unification of transactional 
(operational) and analytical workloads. It allows for consistent real-time data sharing across 
applications, enabling scenarios like real-time inventory management and personalised 
customer experiences. 

 Innovation and growth. The architecture is designed to speed up the time to market for data-
driven applications, ensuring that data products reach the business more quickly. 



While it has significant strengths, the following weaknesses have been identified through recent 
analyses [12]: 

 Complexity in implementation. Transitioning to Shift-Left Architecture often requires 
significant changes to existing data pipelines and architectures. It can be complex and 
resource-intensive, especially for organisations with legacy systems. Even if a new pipeline 
is designed, some complex logic can be more safely implemented than streaming, as 
streaming pipelines have multiple challenges. 

 Dependency on advanced tools. Effective implementation relies on modern tools like data 
streaming platforms (e.g., Apache Kafka, Flink) and cloud-native technologies. Hence, the 
designed applications are unlikely to be cloud-agnostic. 

 Balancing speed and quality. While Shift-Left emphasises real-time processing, ensuring data 
quality remains a challenge. Organisations must embed robust quality checks at the source 
to avoid compromising accuracy in favour of speed. 

Thus, the new architecture brings the following challenges: 
 Source dependence. Since data is processed near its origin, the source system's quality, 

format, and configuration are critical. If the source is poorly configured or ineffective (e.g., 
producing incomplete or erroneous data), it can directly impact the downstream processes. 

 Configuration issues. Misconfigurations at the source and processing engine, such as 
incorrect data schemas and improper streaming or processing settings, can lead to problems 
in the early processing stages. These issues may not be easily mitigated since centralised 
validation or transformation is less likely in modern architectures.  

 The effectiveness of the source system is also crucial. If the source system is slow or 
unreliable, it can bottleneck the entire pipeline, reducing the benefits of real-time processing. 

This section introduces a solution that addresses the existing challenges within Shift-Left 
Architecture. 

 
3.1. Methodology of the Competency Module 

The module incorporates the Holistic Adaptive Optimisation Technique (HAOT), a method 
engineered to overcome the shortcomings of conventional parameter tuning approaches for Delta 
Lake [13]. HAOT offers a thorough and flexible optimisation framework that employs machine 
learning to persistently evaluate and adjust the configurations of sources, streaming engines, and 
sinks dynamically in real-time. In this article, we apply the HAOT technique within Shift-Left 
Architecture. 

HAOT functions by leveraging real-time performance feedback and making adaptive 
configuration adjustments. The method encompasses the following essential steps: 

 Ongoing data collection that tracks performance metrics of the streaming application — such 
as throughput, latency, and resource usage — while also monitoring the configurations of 
sources, streaming engines, and sinks. 

 Employing machine learning algorithms to evaluate the gathered data and uncover 
connections between the configurations of sources, streaming engines, and sinks and their 
effects on application performance, including building a predictive model to assess the 
performance outcomes of different configurations. 

 Using insights from this relational analysis to dynamically tweak the configurations of 
sources, streaming engines, and sinks for enhanced performance, guided by machine 
learning models that forecast optimal settings based on current conditions. 

 Continuously refining the machine learning models with fresh performance data as the 
streaming application operates, enabling the system to adjust to evolving data trends and 
operational environments, thereby maintaining effective and relevant optimisation over 
time. 



We added a Competency module to the existing architecture to address the challenges mentioned 
at the beginning of this section. This module offers the key benefits mentioned in Table 1. 

 

Table 1 
Key Features of a Competency Module in Shift-Left Architecture 

Area of 
Enhancements 

How the Competency Module 
Contributes 

Supporting Mechanisms/Examples 

Maintainability 
Automates validation, suggests 
enhancements, and 
standardises processes 

Automated configuration checks, 
performance analytics, and best practices 
enforcement 

Early Issue 
Detection 

Proactively validates monitors 
in real time. 

Real-time metrics tracking (e.g., 
Prometheus), dead-letter queues, and early 
anomaly detection 

Risk Assessment 
Implements data quality checks 
to identify risks early 

Schema validation, versioning strategies, 
and continuous monitoring for bottlenecks 

 
3.2. Implementation Details of the Competency Module 

The new design brings the following components to the existing Shift-Left architecture (Fig. 3): 
 Streaming sources represent the starting points of data streams, encompassing diverse real-

time data producers like IoT devices, social media updates, log files, or sensors. These sources 
generate a steady flow of data fed into the streaming pipeline, which delivers data into the 
system in real-time or near real-time. 

 After collecting data from streaming sources, a streaming processing cluster manages it. This 
cluster comprises distributed computing resources designed to handle large data volumes in 
real-time. It performs various functions, including filtering, aggregating, transforming, and 
analysing the streaming data. Operating continuously, the cluster frequently employs 
parallel processing and fault-tolerant techniques to manage high data throughput and ensure 
data accuracy. It is built to scale effectively to accommodate fluctuating volumes of incoming 
data streams. 

 Data Collection Service is tasked with retrieving and structuring data from diverse sources 
for optimisation purposes, utilising connectors. The data may encompass performance 
metrics, system logs, environmental factors, and other relevant information, depending on 
the specific streaming pipeline. The Data Collection Service ensures that data is gathered 
consistently, efficiently, and securely while preprocessing it — through actions like cleaning, 
normalising, and transforming — to prepare it for analysis and modelling. This service is 
vital, as the quality and applicability directly influence the optimisation process's success. 

 The ML Model for Parameter Tuning is the central feature of the proposed HAOT 
implementation. The model is engineered to analyse collected data, uncovering patterns, 
correlations, and trends that might be missed during human observation. It can leverage a 
range of algorithms — such as regression, classification, clustering, or deep learning — 
tailored to the specific challenge. Trained on historical data, the model predicts outcomes, 
enhances processes or delivers insights. As additional data is gathered and conditions evolve, 
the model can be retrained or fine-tuned, allowing it to adapt to emerging patterns and boost 
its precision and utility over time. For this service, we will implement a Long Short-Term 
Memory (LSTM) model for parameter tuning due to the time-series nature of streaming data 
[14]. 

 ML Model for Risk Assessment is a new component of the HAOT implementation proposed 
by the Competency Module framework. This model analyses collected metrics, identifying 
potential risks, anomalies, and vulnerabilities that may not be readily noticeable to human 



analysts. It utilises various algorithms — such as anomaly detection, classification, time-
series forecasting, and deep learning — customised to tackle specific risk-related challenges 
in streaming pipelines. This module will be trained on historical data that includes 
performance metrics, error logs, and configuration states, and the model will predict risk 
probabilities, flag potential issues, and provide actionable mitigation insights [15, 16]. The 
implementation of this module is beyond the scope of this article. 

 The ML Model for Issue Detection is also a new component for HAOT implementation 
provided by the Competency module, which is designed to evaluate and enhance data 
pipelines within the Shift-Left Architecture for Big Data streaming. This model 
incrementally analyses pipeline performance data to pinpoint inefficiencies, bottlenecks, and 
areas for improvement that might otherwise go unnoticed. It employs diverse algorithms — 
such as clustering, anomaly detection, regression, or reinforcement learning — tailored to 
detect issues and recommend optimisations across the pipeline [15, 16]. As a previous 
component, this also will be trained on historical and real-time data; the model identifies 
suboptimal configurations, suggests alternative source setups (e.g., adjusting Kafka 
partitions), proposes different processing engines (e.g., switching from Flink to Spark 
Streaming), and even recommends architectural adjustments (e.g., adding redundancy). 
Implementing this module is also out of the scope of this paperwork. 

 The Control Module functions as the central decision-maker in this framework. It leverages 
the insights and suggestions provided by the ML model to make choices or modifications to 
the system or process under optimisation. It includes tweaking parameters or refining 
strategies as needed. The module is engineered to execute these adjustments in a deliberate, 
trackable, and reversible way, facilitating ongoing monitoring and fine-tuning based on 
performance feedback and shifting conditions. It acts as the bridge connecting the analytical 
outputs of the ML model with the system's operational elements, ensuring seamless and 
effective optimisation. By maintaining a structured approach, the Control Module guarantees 
that changes enhance efficiency while preserving system stability. It is pivotal in translating 
data-driven recommendations into practical, impactful actions [13]. 

 The Control Centre is a critical component of the proposed Competency Module within the 
HAOT implementation, designed explicitly for Shift-Left Architecture in Big Data streaming. 
This web-based interface serves as the centralised hub where users can access and analyse 
the outputs of the ML Model for Risk Assessment and Issue Detection. It provides actionable 
insights that are intuitively and visually appealing, including identified risks (e.g., potential 
bottlenecks or data quality issues) and detected inefficiencies (e.g., suboptimal source 
configurations or processing engine recommendations). Designed for real-time interaction, 
the Control Centre enables users to monitor pipeline health, review suggested optimisations, 
and assess risk probabilities through dashboards, charts, and alerts. It helps users make 
informed decisions by consolidating complex analytical results into clear, actionable 
recommendations, bridging the gap between machine learning outputs and operational 
responses. The interface also accommodates user feedback, allowing adjustments to be 
flagged for the Control Module to implement, ensuring seamless integration with the broader 
HAOT framework. Ultimately, the Control Centre enhances visibility and control, aligning 
with the Shift-Left paradigm's emphasis on proactive management and early intervention in 
streaming pipelines. 

The proposed Competency Module within the HAOT framework for Shift-Left Architecture in 
Big Data streaming integrates a comprehensive set of components to enhance pipeline optimisation. 
The Data Collection Service ensures high-quality, preprocessed data as the foundation for analysis, 
directly impacting the effectiveness of subsequent processes. The ML Model for Parameter Tuning, 
using an LSTM approach, facilitates dynamic configuration optimisation by uncovering patterns in 
time-series data. Meanwhile, the ML Models for Risk Assessment and Issue Detection improve the 
framework by proactively identifying risks and inefficiencies while offering tailored 
recommendations for enhancement. The Control Module connects these analytical insights to 



actionable outcomes, adjusting in a controlled and adaptive manner. Together, these components 
create a cohesive system that boosts maintainability, encourages early issue detection, and fortifies 
risk management, paving the way for efficient and reliable streaming pipelines. Although the 
implementation details of the Risk Assessment and Issue Detection models exceed the scope of this 
article, their conceptual integration emphasises the framework's potential for comprehensive 
optimisation. 

 
Figure 2: Competency Module in Shift-Left Architecture 

 

4. Experiment 

This article examines the proposed Competency Module, which implements HAOT specifically for 
Shift-Left architecture. The key components of the experiment include the ML Model for Parameter 
Tuning, the Data Collection Service, and the Control Module. 

To evaluate the approach, we apply the following parameter-tuning statement. It can be defined 
as finding optimal options using the arguments of the maxima (argmax) approach [17, 18]. Given the 
pipeline job 𝑗 that processes an input data stream 𝑠 over cluster resources 𝑟 and loads data to the 
sink 𝑡, the parameter tuning can be considered as evaluating an optimal configuration 𝑐௢௣௧, that 
maximises performance metric function 𝐹 over configuration space 𝑆: 

 
𝑐௢௣௧ = argmax

௖∈ௌ
𝐹(𝑗, 𝑠, 𝑡, 𝑟, 𝑐). (1) 

 
To assess the implementation, we chose data streaming pipelines designed using the Shift-Left 

approach with the following technology stack: 
• Sources: Confluent Kafka. 
• Processing Engine: Kafka Streams on a Kubernetes Cluster. 
• Sink: Confluent Kafka 



These pipelines operated for one month, generating comprehensive logs and metrics that enabled 
us to select parameters using the machine learning model. Given the wide range of parameters these 
technologies involve, training the model with every possible variable is currently unfeasible. 
However, the main goal of this study is to assess whether this method is viable. The parameters 
selected for the experiment are outlined in Table 1. 

Table 2 
Parameters of the Tested Distributed Data Streaming Pipeline 

Technology Component Parameter Description 
Confluent 
Kafka 

Source/Target partitions Defines several partitions of a Kafka topic. 
Ideally, this parameter would be fine-
tuned by the control module, but we will 
bypass this step for now since it involves a 
challenging task [19]. 

  cleanUpPolicy Determines how log segments are 
managed for a topic. The two main options 
are "delete," which removes old log 
segments after a retention period, and 
"compact," which retains the latest value 
for each key by removing older duplicates, 
ensuring efficient storage use [19]. 

  retention Refers to the duration or size limit for 
which messages are stored in a topic's log 
before being eligible for deletion or 
compaction, as defined by the CleanUp 
policy [19]. 

  min.insync.replicas Specifies the minimum number of in-sync 
replicas that must acknowledge a write to 
succeed. In Kafka Streams, it affects the 
durability of data written to output and 
internal topics, ensuring consistency 
based on the underlying Kafka topic 
configuration [19]. 

Kafka 
Streams 

Processing 
Engine 

linger.ms Sets the maximum time (in milliseconds) 
the internal producer buffers data before 
sending it to output topics, balancing 
latency and throughput. The value is zero 
by default, meaning records are sent 
immediately [20]. 

  compression.type Specifies the compression codec for data 
written to output topics. It controls the 
internal producer's compression, with 
possible values: none, gzip, snappy, lz4, or 
zstd. The default value is none (no 
compression) [20]. 

  fetch.max.bytes Sets the maximum data size (in bytes) the 
internal consumer fetches from input 
topics in a single request. The default is 50 
MB [20]. 

  max.poll.records Sets the maximum number of records the 
internal consumer fetches from input 
topics in a single poll() call. The default is 
1 [20]. 

  request.timeout.ms Sets the maximum time (in milliseconds) 
for the internal producer or consumer to 



wait for a response from the broker before 
timing out. The default is 30 seconds [20]. 

  max.poll.interval.ms Sets the maximum time (in milliseconds) 
for the internal consumer to block 
between poll() calls before being 
considered failed. The default value is 5 
minutes [20]. 

Kubernetes Compute 
Environment 

minReplicas Specifies the minimum number of pod 
replicas running for a given workload. It 
ensures the application maintains at least 
this many instances, even under low load, 
for availability and resilience [21]. 

  maxReplicas Specifies the maximum number of pod 
replicas created for a workload. It sets an 
upper limit on scaling to prevent excessive 
resource usage under high load. [21] 

 
In the experiment, the following options were unchanged. The Kafka topic had 12 partitions (as 

this parameter is not flexible yet in Kafka Architecture), and cleanUpPolicy was Delete (as the change 
of this field requires recreating the topic). The ML model set the other options – the min/max number 
of pod replica (minReplicas, maxReplicas), topic retention period,  compression codec for records 
(compression.type), the max size of bytes to fetch data from the source (fetch.max.bytes), max 
number of records an individual consumer can pull from Kafka (max.poll.records), timeout of waiting 
a response from broker (for consumer and producer, request.timeout.ms), the timeout of pulling 
block of data from a topic (request.timeout.ms) and the max time for buffering data before sending 
downstream (linger.ms). 

The input dataset had the characteristics mentioned in Table 3. 

Table 3 
Input Dataset Characteristics 

Property Value 
Size 100 million 
Record Data Type Avro using Confluent serialiser 
Average Record Size (In Kafka) 274 bytes – the value is low as the Avro format uses compact 

binary encoding to reduce the size of the serialised data 
Total Dataset Size (In Kafka) 24 GB 

 
The Kubernetes cluster had 16 CPU cores and 64 GB of memory in total. The performance metrics 

were taken from the Confluent Control Centre, and application logs were used with Loki and 
Grafana. Table 4 has the list of metrics and their destination [22, 23, 24]. 

Table 4 
Application Metrics 

Metric Source Destination 
CPU Utilisation Application Pod Extracted from Kubernetes, collected in Grafana 
Memory Utilisation Application Pod Extracted from Kubernetes, collected in Grafana 
Network Utilisation Application Pod Extracted from Kubernetes, collected in Grafana 
Kafka Lag Kafka Dashboard in Confluent Control Centre  

 
The experiment setup: 
 Base. The first part of the experiment involved running the pipeline with metrics collection 

and parameter tuning activated solely for Kaka Streams. It served as the baseline for 
performance metrics, where only the internal components of Spark Streaming were 



optimised based on available data without external influences from other pipeline 
components. 

 HAOT Applied. In the second part, the experiment extended metrics collection and 
parameter tuning to include the processing engine Kafka Streams and Kafka parameters as 
a Source and Target (mentioned in Table 2). This approach represents the holistic application 
of HAOT, where the optimisation technique is applied across the entire data pipeline rather 
than in isolated segments. 

5. Results 

The runs for the first experiment were with default values for configurations (Table 5). 

Table 5 
Parameters of the run "Base" 

Technology Component Parameter Value 
Confluent Kafka Source partitions 12 (Static) 
Confluent Kafka Source and Parget cleanUpPolicy Delete (Static) 
Confluent Kafka Source and Parget retention 7 days (default) 
Kafka Streams Processing Engine linger.ms 0 (default) 
  compression.type None (default) 
  fetch.max.bytes 50 MB (default) 
  max.poll.records 1 (default)   

request.timeout.ms 30 seconds (default) 
  max.poll.interval.ms 5 minutes (static) 
Kubernetes Processing Environment minReplicas 1 instance 
  maxReplicas 3 instances 

 
 
For the second experiment, we applied HAOT, where the ML model provided different 

parameters, as mentioned in Table 6. 

Table 6 
Parameters of the run "HAOT Applied." 

Technology Component Parameter Value 
Confluent 
Kafka 

Source partitions 6 (Static) 

Confluent 
Kafka 

Source and 
Parget 

cleanUpPolicy Delete (Static) 

Confluent 
Kafka 

Source and 
Parget 

retention 3 days (min allowed) 

Kafka 
Streams 

Processing 
Engine 

linger.ms 500 milliseconds (max allowed) 

  compression.type Snappy 
  fetch.max.bytes 512 MB (max allowed) 
  max.poll.records 724   

request.timeout.ms 120 seconds (max allowed) 
  max.poll.interval.ms 15 minutes (max allowed) 
Kubernetes Processing 

Environment 
minReplicas 3 instances 

  maxReplicas 10 instances (max allowed) 
 
 
The results of average metric values of the two runs ("Base" and "HAOT Applied") are presented 

in Table 7. 



Table 7 
Experiment Results 

Metric Description The Base 
Run 

HAOT 
Applied 

Difference 

CPU Utilisation (per 
instance) 

The bigger, the better 15% 91% 76% 

Memory Utilisation (per 
instance) 

The lower, the better 1476 MB 1684 MB -14% 

Network Utilisation in 
MB per second 

The lower, the better 22.8 MB 18 MB 21% 

Kafka Lag per second The lower, the better 28616 805 97% 
 

6. Discussion 

In the experiment, CPU utilisation metrics increased, indicating that compute resources were used 
more effectively. This improvement in computing power utilisation suggests that the system 
manages workloads more efficiently under the modified configuration. Memory utilisation rose by 
14%, a change due to adjustments in specific Kafka consumer parameters: linger.ms, fetch.max.bytes, 
and max.poll.records. The increase in linger.ms likely allowed the producer to buffer more data 
before sending, optimising throughput at the expense of higher memory usage. Similarly, raising 
fetch.max.bytes enabled the consumer to retrieve larger data batches per fetch request while 
increasing max.poll.records allowed more records to be processed per poll, collectively contributing 
to greater memory demand. 

A significant outcome was the 97% reduction in Kafka lag per second, driven by an enhanced 
record-pulling mechanism. This improvement resulted from tuning fetch.max.bytes and 
max.poll.records, which enabled the consumer to retrieve more data in fewer, more extensive 
requests, thereby reducing the frequency of polls and minimising lag. Additionally, adjustments to 
request.timeout.ms and max.poll.interval.ms played a crucial role in mitigating network-related 
issues. By extending the timeout thresholds, these parameters offered greater resilience against 
delays caused by an overloaded Kafka broker, ensuring the consumer could wait longer for responses 
without failing, thus stabilising performance under high load. 

The ML model guiding the experiment recommended higher values for several parameters, but 
these values were limited: linger.ms, fetch.max.bytes, request.timeout.ms, max.poll.interval.ms, and 
maxReplicas (from Kubernetes). For instance, a higher linger.ms improved batching efficiency while 
increasing fetch.max.bytes and max.poll.interval.ms optimised data retrieval and processing 
intervals. While these elevated values significantly boosted overall system performance—evidenced 
by reduced lag and better resource utilisation—they also introduced a trade-off: the processing delay 
for individual records increased. This latency resulted because larger batches (via linger.ms and 
fetch.max.bytes) and extended timeouts (via request.timeout.ms and max.poll.interval.ms) prioritised 
throughput over per-record responsiveness, potentially causing single-record processing to wait 
longer in the pipeline. In the Kubernetes context, setting a higher maxReplicas in the 
HorizontalPodAutoscaler (HPA) enabled the system to scale to more pod instances under peak 
demand, enhancing throughput and fault tolerance. 

The experiment markedly improved Kafka consumer efficiency and system scalability, with CPU 
and memory resources better utilised and Kafka lag nearly eliminated. However, the configuration's 
focus on batch optimisation and network resilience, combined with increased replica scaling, 
suggests a design favouring high-throughput workloads over low-latency, single-record processing. 

7. Conclusions 

In summary, integrating a Competency module into the Shift Left architecture has significantly 
enhanced service performance and stability, underscoring its value as a crucial improvement. This 



enhancement enables earlier detection and improves the system's overall reliability. However, 
challenges remain, particularly in achieving scalability, managing the complexity of machine 
learning models, and maintaining an appropriate balance between optimisation frequency and 
system stability. Looking ahead, efforts will focus on refining this approach to tackle these 
challenges, enhancing the efficiency of the machine learning algorithms, and broadening its 
application to a broader range of streaming platforms and use cases. These advancements are 
expected to further augment the benefits of the Competency module within the Shift Left framework. 
Furthermore, we will examine the second part of the Competency module — Risk Assessment and 
Issue Resolution — to strengthen the framework. These developments are expected to further solidify 
the Competency module's advantages within the Shift Left architecture. 

Declaration on Generative AI 

The authors have not employed any Generative AI tools. 
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