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Abstract 
Effective diabetes management requires continuous monitoring and accurate prediction of blood glucose 
levels. This research presents an intelligent, mobile-based glucose prediction system that integrates deep 
learning models, continuous glucose monitoring (CGM) data, and natural language processing (NLP) 
techniques for automated meal and insulin intake logging. The proposed approach employs Long Short-
Term Memory (LSTM) networks to capture temporal dependencies in glucose fluctuations while leveraging 
large language models (LLMs) to process free-form user inputs. The system aggregates CGM sensor 
readings, dietary records, and time-based features to enhance prediction accuracy and personalise forecasts. 
A dedicated mobile application facilitates real-time monitoring and alerts, enabling proactive diabetes 
management. Experimental evaluation of the system demonstrates its capability to minimise data loss, 
enhance prediction precision, and improve usability in real-world scenarios. The results indicate a trend of 
improved accuracy with personalised models, suggesting that integrating AI-driven automation in glucose 
tracking can significantly benefit diabetes care. Future work will focus on expanding feature integration, 
refining meal logging capabilities, and conducting clinical validation to ensure broader applicability and 
regulatory compliance. 
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1. Introduction 

Diabetes management relies on careful monitoring and control of blood glucose levels to prevent 
dangerous hypoglycemia (low blood sugar) or hyperglycemia (high blood sugar). Continuous 
Glucose Monitoring (CGM) devices have transformed this process by providing frequent, automatic 
readings of glucose levels [1]. These CGM readings are typically relayed to smartphone applications, 
giving users real-time information on their glycemic trends [2]. 

The real-time data stream enables not only immediate alerts for high or low values, but also opens 
the door to predicting future glucose levels before critical events occur. Accurate short-term blood 
glucose prediction is increasingly recognised as a key aspect of diabetes care. 

By forecasting where glucose levels are heading in the next  5, 10, or 30 minutes, patients and 
caregivers can take proactive measures (such as adjusting insulin or consuming carbohydrates) to 
maintain glucose in a safe range [3]. 
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A variety of modelling techniques have been applied to CGM data for glucose forecasting. These 
range from classical time-series models like ARIMA and exponential smoothing to advanced 
machine-learning approaches, including recurrent neural networks (LSTM/GRU) and temporal 
convolutional networks. Modern smartphone hardware, especially with the advancements in CPU, 
is powerful enough to run many of these predictive algorithms in real-time, meaning personalised 
prediction models can potentially run on the patient's mobile device [4]. In this article, we review 
the most popular approaches to glucose data aggregation and forecasting, focusing on providing an 
automated and intelligent diabetes management solution from the context of modern mobile devices. 

The goal of this research is to design and develop a personalised glucose prediction system that 
leverages deep learning to enhance real-time diabetes management on mobile devices. By integrating 
historical glucose data, time-based features, and natural language, as well as text and audio 
processing for automated meal and insulin intake logging, the model aims to capture individual 
metabolic responses and improve forecasting accuracy. The study focuses on constructing an LSTM-
based predictive model, structuring spoken meal logs into standardised records using NLP and LLMs, 
and optimising real-time adaptability for both on-device and cloud-based inference. This research 
bridges the gap between AI-driven glucose forecasting and practical diabetes care, making 
monitoring more precise and accessible — all while running on devices the patients already own. 

2. Related works 

Continuous Glucose Monitoring (CGM) systems have revolutionised diabetes management by 
enabling real-time glucose level tracking. These systems, including Dexcom, FreeStyle Libre, and 
Eversense, are typically integrated with mobile applications such as XDrip and Juggluco, providing 
both patients and healthcare professionals with detailed insights into glucose trends. These systems 
track interstitial glucose levels using minimally invasive sensors. The sensors typically record 
glucose readings every 5 minutes (in some cases, every minute), resulting in 288 (or up to 1440) data 
points per day for a single user. 

Applications such as XDrip and Juggluco enhance data visualisation and storage, enabling both 
retrospective analysis and real-time decision-making—an essential component of digital diabetes 
management logs. 

CGM time series data reveals critical glucose dynamics, including trends (gradual glucose 
changes) and anomalies (sudden spikes or drops) [5]. These fluctuations vary among individuals and 
are influenced by diet, stress, and sensor calibration. Analysing these trends and anomalies helps 
develop predictive models for anticipating critical glucose changes and improving personalised 
diabetes management. 

2.1 . CGM data processing 

Modern CGM systems are designed with seamless data transmission to mobile devices via Bluetooth 
connectivity [6]. This integration enhances real-time patient alerts, facilitates trend monitoring, and 
enables advanced analytics generation for better diabetes management. 

Open-source tools, such as Juggluco, have significantly simplified sensor data aggregation, 
making CGM data more accessible to a broader range of users and developers [7]. These tools allow 
users to integrate CGM data from multiple sources into their custom applications or monitoring 
systems, providing greater flexibility and personalisation in glucose tracking. 

However, CGM device manufacturers, such as Freestyle Libre, are continuously strengthening 
data access controls. With each new device iteration, additional authorisation and security 
mechanisms are introduced, restricting third-party applications from directly accessing sensor data. 

While this restrictive approach is often justified by concerns over security and health data privacy 
[8], it simultaneously limits opportunities for innovation in independent software development. 
These barriers make it challenging for developers to create new, AI-powered solutions for glucose 
prediction and personalised diabetes care without official manufacturer support. 



Systems integrated with CGM frequently encounter data gaps, which may arise due to technical 
failures, environmental factors, or human-related issues. Common causes include: 

 Sensor disconnections from the mobile device (some sensors do not support local history 
caching). 

 Battery depletion, leading to data loss during downtime. 
 Intermittent signal transmission failures cause incomplete or missing data points. 

Additionally, behavioural factors contribute to data inconsistencies: 

 Irregular device usage by the user (e.g., removing the sensor periodically). 
 Improper sensor calibration is essential before use [9]. Sensors require a warm-up period and 

initial calibration against a traditional blood glucose meter to ensure accuracy. 

These data gaps present significant challenges for predictive modelling, as missing values can 
lead to reduced model accuracy. Without proper data restoration, glucose prediction models lose 
reliability and fail to capture real trends. 

To ensure data integrity, robust imputation methods are required to effectively recover missing 
glucose readings. Figure 1 [10] illustrates an example of CGM data imputation using linear 
interpolation, a common technique for filling data gaps by estimating missing values based on 
surrounding observations. 

 

Figure 1: CGM data imputation using Linear Interpolation [10]. 

The accuracy of CGM sensors depends on both physiological and technical factors. The dynamics 
of interstitial glucose do not always precisely correspond to blood glucose levels, leading to 
measurement discrepancies. It occurs because glucose diffusion between blood and interstitial fluid 
happens with a delay, affecting real-time readings. Additionally, sensor accuracy decreases over 
time, requiring periodic calibration to ensure correct measurements. 



Another major challenge in CGM data analysis is noise [11], which complicates the identification 
of glucose trends. Fluctuations in glucose levels can result from various influences, including the 
timing and composition of meals, the impact of physical activity on metabolism, external stress 
factors, and sleep patterns, which introduce additional variability. These uncontrolled influences 
make it difficult to extract meaningful trends, necessitating the use of advanced filtering and 
preprocessing techniques in predictive systems. 

2.2. Methods of Glucose Prediction 

Several approaches can be used to predict glucose trends. They vary in complexity, accuracy, 
precision, and scalability, among other factors. Therefore, it is vital to consider and select an 
appropriate prediction method in order to implement an effective glucose management system. 

2.2.1. Autoregressive Integrated Moving Average (ARIMA) 

The Autoregressive Integrated Moving Average (ARIMA) model, a traditional statistical approach, is 
widely used for time series forecasting, especially in identifying short-term glucose level trends. Its 
versatility allows it to handle both stationary and non-stationary data, making it suitable for 
analysing glucose dynamics over short periods. 

Notably, certain studies [12] have introduced an ARIMA model with adaptive order selection, 
which enhances the accuracy of blood glucose concentration predictions and improves the detection 
of hypoglycemia. 

This method consists of two key stages. First, the data undergo differentiation to make them 
stationary, effectively removing trends and stabilising statistical properties. After this 
transformation, the model forecasts values by combining the autoregressive (AR) component and 
the Moving Average (MA) component, which utilises past random errors. 

The ARIMA model adaptively incorporates past trends and errors, making it highly effective in 
forecasting glucose levels even in complex and dynamic conditions. However, it faces certain 
limitations, particularly in handling nonlinear and high-frequency glucose fluctuations [13]. These 
challenges often require additional preprocessing steps, such as differentiation and seasonal 
decomposition, to enhance predictive accuracy. 

2.2.2. Exponential Smoothing 

Exponential smoothing is a statistical method used to smooth discrete time series data, such as blood 
glucose levels measured at regular intervals. This approach is simple yet effective, capable of 
adapting to changes in data dynamics while maintaining reasonable accuracy [14]. Its effectiveness 
lies in the weighted averaging of past observations, where more recent values are assigned greater 
weight. 

Exponential smoothing is particularly useful for continuous glucose monitoring (CGM) systems, 
where glucose levels are recorded at intervals of 5 to 15 minutes. This method helps filter out noise 
and irregularities in the data caused by external factors, such as food intake, physical activity, or 
sensor errors. 

Higher values of the parameter 𝛼 increase the model's sensitivity to recent data changes, whereas 
lower values contribute to the formation of more stable and smoothed forecasts, emphasising long-
term trends. The exponential smoothing method helps to reduce noise in the data while preserving 
key trends, making it widely applicable for short-term forecasting. 

2.2.3. Long Short-Term Memory (LSTM) 

To understand the architecture and capabilities of LSTM over other methods, it is essential to 
introduce some fundamental concepts first. As with any basic neural network, the architecture [15] 
consists of three main layers: 



 Input layer — determines the number of features in the dataset. 
 Hidden layers — process data using weighted connections, known as synapses, and activation 

functions such as sigmoid or tanh. 
 Output layer — produces the final prediction while minimising the error between expected 

and actual values. 

The learning process occurs through an iterative optimisation technique called backpropagation 
[16], which repeatedly adjusts the weights until an optimal accuracy level is achieved. 

A Recurrent Neural Network (RNN) is a type of neural network designed explicitly for sequence 
prediction [17]. In this task, each output depends on the steps taken at the previous time. The hidden 
layers in an RNN function as a memory, retaining information from earlier steps. It allows the 
network to identify temporal patterns and trends. However, traditional RNNs face a challenge in 
maintaining long-term dependencies. It is because of a phenomenon known as vanishing or 
exploding gradients. During backpropagation, gradients become excessively small or large, which 
makes learning inefficient. 

To overcome this limitation, LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) 
were developed as advanced types of RNNs. These models introduce gates that regulate the flow of 
information into and out of the hidden state, allowing the network to learn what to remember and 
what to forget. 

Thus, LSTM is an enhanced version of RNN that is capable of storing long sequences of data. By 
integrating memory gates, LSTM effectively retains crucial information, leading to more accurate 
predictions [18]. 

2.2.4. Temporal Convolutional Networks (TCN) 

The Temporal Convolutional Network (TCN) architecture is a powerful tool for glucose level 
prediction, offering the ability to integrate multiple data sources, such as CGM readings, insulin 
doses, and carbohydrate intake. The key advantage of TCNs lies in their ability to analyse time series 
data while capturing both short-term and long-term dependencies [19]. 

Unlike traditional recurrent architectures, TCNs utilise dilated convolutional layers, which allow 
the model to cover long temporal intervals without losing computational efficiency. This structure 
enables TCNs to process multi-dimensional data streams as a single time series, effectively 
identifying patterns across different time scales. 

By integrating contextual data such as physical activity, stress levels, and heart rate, TCNs can be 
used to build personalised glucose prediction models that adapt to individual physiological 
characteristics, ultimately enhancing model accuracy [20]. 

It is important to note that typically, TCN does not replace LSTM but rather complements it, 
adding layer for processing multi-dimensional input data. 

Temporal Convolutional Networks (TCNs) provide a robust and efficient alternative to traditional 
recurrent neural networks (RNNs). However, it's worth noting that the effectiveness and 
predictiveness of TCN architecture performance heavily depend on the amount of data available for 
training. These models may underperform when dealing with smaller datasets. 

3. Methods and Materials 

A crucial aspect of diabetes technology today is the integration of predictive algorithms with mobile 
platforms for real-time use. CGM systems like the Dexcom G6/G7, Medtronic Guardian, or Abbott 
FreeStyle Libre stream glucose readings to smartphones or dedicated receivers at intervals as 
frequent as every 1–5 minutes. The smartphone acts as a data hub and user interface, aggregating 
the incoming glucose data and often other relevant inputs (for example, manually-entered meal 
information or insulin doses). Mobile diabetes apps can thus serve as data aggregators, compiling 
information from multiple devices into one place for analysis. For instance, platforms like Tidepool 



or Nightscout allow users to see data from their CGM, insulin pump, blood glucose meter, and 
manual notes all on a unified timeline [21]. This holistic view is very valuable if one wants to feed 
multiple data streams into a predictive model. However, many current smartphone apps focus on 
CGM data alone and use simpler trend analysis to issue alerts (such as rate-of-change-based alarms 
indicating "falling fast" or "rising fast").  

The rise of on-device neural networks means that more sophisticated predictions can now happen 
locally on the phone. From a technical standpoint, implementing neural networks on mobile devices 
has become feasible through optimised libraries and frameworks. Tools like TensorFlow Lite and 
Core ML allow a trained model (e.g. an LSTM or TCN) to be converted into a format that runs 
efficiently on the limited resources of a phone [22]. 

3.1. Top-level system architecture 

The proposed GluComp Android app acts as the central interface, collecting health data, providing 
real-time predictions, and generating alerts. Its modular design ensures an intuitive user experience, 
offline functionality, and advanced data visualisation. The backend infrastructure handles data 
aggregation, trains personalised neural models, and facilitates secure data sharing while ensuring 
compliance with privacy regulations. 

 

Figure 2: Top-level system architecture. 



3.2. Neural network architecture 

The proposed model employs deep learning techniques to predict glucose levels based on historical 
data and contextual time features. By using Long Short-Term Memory (LSTM) networks, the 
architecture effectively captures temporal dependencies in glucose fluctuations, making it well-
suited for personalised predictions. 

 
Figure 3: Structure of an LSTM cell [23] 

This diagram illustrates the key processes occurring inside an LSTM cell. The input data, along 
with the previous hidden state and memory cell state, enter the LSTM unit. 

The forget gate determines which parts of the previous memory state should be retained or 
discarded. Functions as a filter, selecting relevant information for the next step. 

The input gate processes new information by deciding which input values should be added to the 
memory cell. The new memory state is formed by combining retained old information and new data 
added via the input gate. 

The output gate uses the updated memory state to compute the final output signal. Determines 
which part of the memory state should be passed to the hidden state, which is then used for 
forecasting or forwarded to the next LSTM cell. 

We chose LSTM over GRU at this stage, as the model is being created on the backend, where 
resources are not constrained. 

Our model processes two primary inputs. The first input consists of 30 previous glucose values, 
providing a historical context for trend analysis. The second input incorporates time-based features, 
such as hour and minute, enabling the model to recognise daily glucose patterns and circadian 
variations. 

The first stage of computation involves an LSTM layer, which learns temporal dependencies from 
the sequence of past glucose values. Simultaneously, time-based features are encoded using an 
integer lookup as a multi-hot encoder layer, ensuring that categorical time-related inputs are 
represented efficiently. 



Following these transformations, the outputs from both pathways are concatenated into a unified 
representation, enabling the model to learn interactions between historical glucose levels and time-
dependent variations. 

To enhance generalisation and prevent overfitting, a dropout layer is applied before passing the 
processed features through two hidden layers. These layers refine the learned representations, 
extracting meaningful patterns that contribute to accurate glucose forecasting. 

The final step of the architecture is the output layer, which generates the predicted glucose value. 
By learning from both sequential trends and time-based influences, the model adapts to individual 
metabolic patterns, improving the reliability of its forecasts. 

 

Figure 4: Neural network architecture for predicting glucose values 5 and 10 minutes into the future. 
 

MSE (Mean Squared Error) will be used to evaluate the model's performance.  
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where 𝑛 — is the total number of observations; 
𝑦௜ — is the actual (true) value of the data point; 
𝑦ො௜ — is the predicted value of the data point; 
 
Additionally, MAE (Mean Absolute Error) is used to further measure the model's performance. 
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where n — the total number of observations; 
𝑦௜ — the actual (true) value of the data point; 
𝑦ො௜ — the predicted value of the data point; 
 
These functions will be used after new batches of patient data arrive for further model 

personalisation. 

3.3. Audio and Text Processing for Meal and Insulin Logging 

Accurate tracking of food consumption and insulin intake is essential for glucose level prediction 
and personalised diabetes management. However, manual data entry can be time-consuming and 
prone to errors. To address this, we propose an automated logging system that leverages natural 
language processing (NLP) and large language models (LLMs) to process free-form voice recordings 
[24]. 

The system can enable users to record an audio log of their meals and insulin intake in a natural 
and unstructured manner. The audio can then be converted into text on-device and transmitted to 
the backend for processing, where a combination of NLP techniques and LLM-powered inference 
extracts and refines the relevant details. In the future, a computer vision approach can be further 
integrated [25] to simplify the process even more by allowing the user to submit photos of their meal 
instead of text or audio. It would also mean additional text recognition [26] integrations for 
understanding insulin packaging labels and doses [27]. 

 

Figure 5: Proposed sequence diagram for automated meal and insulin logging using NLP.  



The recorded audio is first transcribed into text using an automatic speech recognition (ASR) 
system. This step ensures that free-form spoken input is transformed into analysable textual data. 
The transcribed text undergoes NLP-based entity recognition, extracting key components such as 
food items, portion sizes, insulin dosage, and meal timing. Context-aware dependency parsing and 
named entity recognition (NER) help identify structured elements from conversational input. Since 
users may provide incomplete descriptions (e.g., "I had a bowl of soup"), an LLM-powered inference 
mechanism is employed to estimate missing nutritional details such as calories, macronutrient 
composition, and glycemic index. This step ensures that the structured record is both complete and 
meaningful for future analysis. The processed meal and insulin intake data are then structured into 
standardised records, categorising each entry with quantified attributes (e.g., meal type, estimated 
carbohydrate content, insulin dosage). The user can then review and confirm the entries before they 
are logged into their diabetes management profile. Once verified, the structured nutritional and 
insulin intake data are fed into the personalised glucose prediction model. By including historical 
meal and medication patterns, the model continuously adapts to individual metabolic responses, 
improving long-term predictive accuracy. 

As a result, this automated logging system enhances usability, prediction accuracy, and long-term 
glucose monitoring by reducing manual input efforts while ensuring comprehensive data tracking. 
Future improvements may include adding projection predicates [28] to support future explainable 
AI developments, apart from that, personalised LLM fine-tuning to accommodate individual dietary 
habits and metabolic variations, further optimising prediction outcomes. 

4. Experiment 

To validate the feasibility of the GluComp system, an experiment was conducted to evaluate the 
end-to-end functionality of its mobile and backend components [29]. This comprehensive integration 
test ensured that all subsystems work as intended: 

 Sensor connectivity, 
 Authentication, 
 Data aggregation, 
 Cloud synchronisation, 
 Prediction precision trends. 

The primary objective was to confirm the system's ability to collect glucose data securely, upload 
it to the cloud, receive machine learning predictions, and present actionable insights to users. 

The experiment was split into three separate stages. 

4.1. Stage 1: Libre 2 with Juggluco 

Stage 1 included 2 weeks of wearing the FreeStyle Libre 2 sensor paired with the Juggluco app v. 
8.0.5 transmitting to the GluComp Android application running on Android 15.  

The goal was to verify the stability of data transmission from Juggluco to GluComp with a target 
of < 1% data loss. Key observation points included app performance during night charging periods, 
where Android process kills occur most often. It was measured by comparing the data entries 
received by the primary CGM communicator app (Juggluco) and the ones received within GluComp. 

Another test point was manual Bluetooth disconnection to simulate physical signal loss with the 
sensor, where the aim was to verify data recall and re-transmission when the signal appeared again. 

4.2. Stage 2: Libre 2 with xDrip+ 

Stage 2 included 2 weeks of wearing the FreeStyle Libre 2 sensor paired with the xDrip+ app v. 
dfcbe80-2024.09.17 transmitting to the GluComp Android application running on Android 15. The 



goal was to verify the stability of data transmission from xDrip+ to GluComp with the same target 
of < 1% data loss. The observation points from stage 1 apply here as well. 

The key difference between Juggluco and xDrip+ in terms of integration is the way they publish 
data for other applications. Where Juggluco uses a local HTTP server for everything, xDrip+ uses a 
similar HTTP server for historical queries, and an Android Broadcast system is used to notify about 
new glucose records in real-time. 

It is crucial to test both data transfer technologies (broadcasts and local server), as Android poses 
certain restrictions on inter-app communication, where, under specific circumstances, the broadcasts 
may not be delivered.  

In a health data aggregator app, data transfer errors should be minimised, as they directly impact 
health-related decisions. 

 

Figure 6: Screenshot from xDrip+ that showcases the settings used for inter-app communication. 

Since the method of communication is different, the main goal was to compare the results from 
this stage with those from stage 1. 

4.3. Stage 3: Libre 3 with Juggluco and predictions enabled 

Stage 3 included another 2 weeks of wearing the upgraded FreeStyle Libre 3 sensor paired with the 
Juggluco app v. 8.0.5 transmitting to the GluComp Android application running on Android 15. 

The model training service was set to retrain the model every day at 00:00:00 UTC. The goal was 
to verify that every incoming data point from the CGM resulted in two prediction records being 
generated (2:1 ratio) with a target of 0% data loss. The additional focus point included calculating the 
dynamics of the personalised model accuracy and precision. The expectation was that the model 



accuracy would improve every day during the Stage 3 experiment. The overall accuracy of the 
predictions was not a concern at this stage, as it requires forming datasets for future experiments. 

5. Results 

The three stages of the experiment resulted in the following results for the data loss point of interest 
(see Table 1). 

Table 1 
Data loss evaluation results 

Stage Sensor Integration 
name 

Experiment 
duration (min) 

Integration 
records 

Received 
records 

Prediction 
records 

1 Libre 2 Juggluco 20080 6675 6659 N/A 
2 Libre 2 xDrip+ 20080 3249 3226 N/A 
3 Libre 3 Juggluco 20080 19875 19745 36725 

 

The resulting transmission loss is 0.23% for Stage 1, 0.7% for Stage 2 and 0.65% for Stage 3. The 
resulting prediction loss for Stage 3 is 7%. 

The performance trend of the personalised prediction model was compared to that of a general 
glucose prediction model trained on an open dataset to evaluate the performance trend. The 
personalised prediction model was additionally trained on 6639 patient records, and the remaining 
36 records were used to calculate MSE (Mean Squared Error) and MAE (Mean Absolute Error) [30]. 

Table 2 
MSE and MAE for the general and personalised models 

 Mean Squared Error Mean Absolute Error 
General model 681.814 19.065 

Personalised model 555.498 16.179 

 
During the experiment, the user interface was also recorded periodically to determine the 

correctness of the displayed data. 
Figure 7 shows the integration screen, where the user can enable the available glucose integration. 

As seen on the XDrip+ integration section, the "Last update" reveals an issue with the transmission, 
which was later identified to be the battery optimisation restriction blocking the GluComp service 
from collecting the CGM data. 

The result of the main screen displaying the current and predicted glucose levels can be seen in 
Figure 8. This screen contains the current glucose value, as well as the historical chart with 
predictions. The first part of the image shows the Juggluco data source selected, and the second part 
demonstrates the CGM emulator, resulting in a steady stream of data and predictions. The images 
reveal the ability to support dark and light themes, as well as different screen sizes. 

The application was seen to momentarily adapt to changes in data sources — switching between 
Juggluco and xDrip+ did not produce additional glucose record gaps, apart from the ones where the 
sensor was physically disconnected from the device and did not manage to recover upon 
reconnection. 



 

Figure 7: An example of the integration malfunction being displayed due to a connection loss issue. 

 

Figure 8: Displaying the current and predicted glucose levels in different UI modes. 



6. Discussions 

The GluComp Android app integrates with CGM sensors, securely collects and stores glucose data, 
and provides real-time predictions. The backend processes data, generates predictions and ensures 
data security and compliance. 

The experiment's results showcased the system's full functionality as a glucose monitoring and 
prediction platform. The successful integration of mobile and backend components validates its 
potential for real-world deployment and further improvements. 

As seen from the results, although integrating both Juggluco and xDrip+ has resulted in data loss, 
it is kept below 1%. In order to fully mitigate data loss, additional measures need to be taken, such as 
bypassing battery optimisation settings for GluComp on Android 14+. Moreover, different 
smartphone manufacturers can set different constraints that can further affect inter-app 
communication, process-killing policies, and, therefore, data loss. These anomalies should be 
investigated further. 

As for the prediction mechanism, we see quite a stable record generation process, with an output 
of ~1.86:1 (generated records for every incoming CGM record). The data loss here (compared to the 
expected 2:1 ratio) is explained by one instance of a failure to export a TensorFlow model to 
TensorFlow Lite. The resulting exported model produced a day of failures during inference due to a 
false output structure. Open tickets on TesorFlow GitHub further support this conclusion regarding 
the incorrect export behaviour. The workaround we will be employing is additional structure 
verification after export to ensure the resulting .tflite model is correct. 

We also see a prediction performance improvement trend when comparing a general model to a 
personalised model. We anticipate much higher prediction accuracy with the availability of 
additional data sets and after incorporating extra features in our neural network architecture. 
Therefore, the next phase involves conducting a closed beta test with real patients to further evaluate 
the accuracy of the personalised prediction models and introduce additional model features, such as 
sleep patterns, insulin, and food intake (using automated NLP logging). 

7. Conclusion 

Neural network-powered glucose prediction on mobile devices represents a convergence of 
biomedical engineering and personal computing that has great promise for improving diabetes care. 
Traditional time-series methods like ARIMA and exponential smoothing laid the groundwork for 
understanding glucose dynamics and are still helpful for quick baseline predictions. Still, they 
struggle with the complex, nonlinear nature of human metabolism. Advanced models such as LSTMs 
and GRUs bring memory and learning capabilities that can adapt to individual patient patterns. At 
the same time, TCNs and other architectures leverage convolutional approaches to model long-term 
dependencies efficiently. With the advent of robust mobile hardware and software toolkits, these 
algorithms can be deployed in smartphones or wearables, delivering real-time forecasts to users 
anytime and anywhere. It enables a shift toward proactive diabetes management – instead of just 
reacting to current glucose values, patients can get a glimpse into the future and act to prevent 
excursions before they happen. 

We designed, built, and tested our health data aggregator solution, where we focused on 
minimising data transmission loss from the CGM to our application. Although at this stage, our 
neural network architecture does not yet support additional features (such as heart rate, diet, or 
medication timing), we have achieved a positive improvement in prediction accuracy. Integrating 
natural language processing, computer vision, and LLMs into the system will allow us to achieve 
seamless insulin and meal intake logging to further improve the model accuracy in the future. 

Lastly, regulatory approval and rigorous clinical validation will be essential to ensure both 
patients and clinicians trust these tools. Current limitations include the need for larger, more diverse 
patient datasets and long-term studies to confirm real-world effectiveness and safety. Despite these 
challenges, the trajectory is clear: intelligent mobile systems empowered by neural networks and 



driven by advances in mobile CPU and GPU technologies are becoming an integral part of diabetes 
management. These systems promise to help users stay one step ahead of their glucose levels in a 
way that is both convenient and increasingly effective. 
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