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Abstract 
The article develops an intelligent adaptive model for correcting the helicopter turboshaft engine gas 
temperature in front of the compressor turbine sensor readings, based on a hybrid variational-Bayesian 
MLP network with two hidden layers and Smooth ReLU activation. The model combines a physical-
statistical component, a first-order dynamic error, the calibration drift approximation by a sensor time 
polynomial, a nonlinear characteristic expanded in a Taylor series up to the third order, and machine 
learning methods: the recursive least squares (RLS) method for initialising parameters and Bayes by 
Backprop for estimating the weight distribution uncertainty. The variational approximation μ and Σ is 
initialised based on the RLS results, which ensures fast convergence and regularisation of training based on 
physical assumptions. The experimental validation was performed in MATLAB Simulink 2014b using real 
flight data of the TV3-117 engine on the Mi-8MTV helicopter (clock step 0.25 seconds, total time 320 
seconds, maximum temperature 1140 K). The results showed that the third-order nonlinear characteristic 
approximation provides an error of no more than 0.1 K within 1080–1150 K, and the RLS estimates for the 
drift parameters and dynamics τ and α reach 50% convergence in the first 20 steps. With variational training, 
ELBO increased from –440 to –45 in 100 epochs and stabilised by the 50th iteration. The developed model 
demonstrated high indicators: Accuracy = 0.992; recall = 0.997; precision = 0.988; F1-score = 0.987; average 
training time is about 182 seconds with an accuracy variance of about 1.08 · 10⁻⁶. Comparative analysis with 
1D-CNN, LSTM/GRU, and extended Kalman filter confirmed the developed model's improvement in terms 
of resistance to noise and sensor drift in real time up to 5%.  
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1. Introduction 

The development of the modern helicopter turboshaft engine (TE) requires precise control of its 
operating parameters [1], among which is the gas temperature in front of the compressor turbine [2, 
3]. Gas temperature sensor readings are influenced by external factors (ambient temperature 
fluctuations, vibrations, carbon formation on the sensitive element), as well as the sensor itself ageing 
and errors in the measuring equipment [4]. As a result, the accumulation of errors can lead to the 
engine thermal mode estimates' distortion, which reduces operating efficiency, increases fuel 
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consumption, and provokes the components' premature wear. The introduction of the intelligent 
adaptive correction model [5, 6] helps quickly find and fix both regular and random measurement 
errors, ensuring accurate control in real time. 

The research relevance is due to the growing requirements for helicopter flight reliability and 
safety [7, 8] in intensive operation and various climatic zone conditions. An intelligent model based 
on machine learning methods [9, 10] and Bayesian algorithms [11, 12] will be able to adapt to 
changing engine operating conditions, adjusting sensor readings without the need for frequent 
calibration or equipment replacement. It will ensure a significant increase in the helicopter TE 
service life, reduce operating costs for maintenance, and improve flight safety due to more accurate 
prediction of thermal loads and emergency mode prevention. 

2. Related works 

Existing methods for compensating errors in helicopter TE temperature sensors [13–15] traditionally 
rely on strictly specified correction characteristics and periodic calibration. Classical approaches 
include the sensor response dependence linear [16, 17] and polynomial [18, 19] models based on the 
proper temperature, where laboratory tests determine the coefficients. However, the models 
developed in [16–19] are poorly adapted to changes in external flight conditions and do not take into 
account the measurement circuit elements' ageing effect, which leads to systematic errors over time. 

In recent years, adaptive filters have become widespread, in particular the Kalman filter [20] and 
its extended modifications [21–24], used to estimate the engine's actual thermal state based on data 
from several sensors. These methods demonstrate high accuracy in the presence of a correct 
mathematical model of the process dynamics. Still, they are sensitive to incorrect initialisation of 
covariance matrices and require significant computational resources when processing 
multidimensional vector states in real time. 

Machine learning (ML) methods have begun to be implemented for the analysis of large datasets 
obtained during the helicopter TE ground and flight tests [25–28]. In the last decade, researchers, for 
example, in [29–32], have proposed neural network correlators [29, 30] that are capable of training 
sensors with nonlinear characteristics without explicitly specifying a physical model, as well as 
models based on gradient boosting [31, 32] for predicting correction values. However, such solutions 
are often "black box" [33] and do not provide a transparent understanding of the error causes. They 
can also be retrained in specific modes, losing accuracy when moving to new conditions. 

Bayesian calibration methods [11, 12, 34, 35] represent an elegant compromise between a rigid 
physical model and the ML approaches' flexibility: they allow one to introduce a priori information 
about the sensor behaviour and update the model parameters' estimates as new data arrive. In 
particular, Gibbs Markov chains [36] and variational Bayesian approximations [37] have been used 
to estimate random and systematic deviations in readings. The problem remains highly 
computationally complex, with an increase in the number of parameters and the need for well-
founded a priori distributions. 

Hybrid solutions at the Bayesian and ML models junction propose using neural networks [38, 39] 
to set the correction functional form and to train the parameters using the variational Bayes method. 
Such approaches demonstrate better results in the incomplete data conditions and allow one to 
estimate the correction signal uncertainty. However, the studies are still limited to laboratory data, 
and the algorithms' scalability issues for integration into onboard computing systems remain open. 

In the helicopter TE sensors failure diagnostics and residual life prediction field, methods for 
detecting anomalies in the measurement stream are being actively developed [40–44]. Algorithms 
based on autoencoders [40] and LSTM networks [41] allow detecting sharp and hidden "chatter" in 
readings associated with mechanical damage or electrical failures. However, most existing studies, 
including [42–44], focus on classifying failures that have already occurred, rather than on continuous 
data correction in real time to prevent error accumulation. 

The following key issues remain unresolved, requiring the intelligent adaptive correction model 
development: 



1. Continuous online calibration should be provided, taking into account ageing, 
contamination, and vibration effects without taking the sensor service out. 

2. Adaptation to rapidly changing thermal flight conditions with minimal computational delays 
and limited resources of onboard computers. 

3. Reasonable unification of helicopter TE dynamics physical models with flexible ML 
structures and Bayesian uncertainty processing. 

4. Development of methods for assessing the confidence in corrected readings and automatic 
transition to emergency mode when parameters go beyond safe limits. 

The solution to these problems will make it possible to create a reliable intelligent system for 
correcting sensory data, which will significantly increase the helicopter's TE thermal state 
monitoring accuracy. 

3. Materials and methods 

3.1. Development of an adaptive model for correcting temperature sensor 
readings 

Based on [9, 20, 24, 29, 33, 40],    * true
GT t  it is set that is the actual gas temperature in front of the 

compressor turbine at the measurement point;    * meas
GT t  is the temperature sensor reading; Δdyn(t) 

is the error due to dynamic load changes; Δdrift(t) is the calibration (aging) drift; ε(t) is the random 
noise component. Then the general model is represented as: 

             * * .meas true
G G dyn driftT t T t t t t      (1) 

The dynamic error model creates, it is assumed that the dynamic component depends on the 
temperature change rate and load u(t) [6, 7], described by a first-order differential equation in the 
form: 
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*
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G
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dT
t u t

dt
       (2) 

where τ is the sensor's temporary setting and α is the sensitivity to external load. 
Substituting (2) into (1) yields: 
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It is assumed that the drift Δdrift(t) changes slowly and can be approximated by a time polynomial 
of the form: 
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which allows adaptive estimation of the coefficients bk. 
Often the temperature sensor has a nonlinear characteristic f(•) [9, 16–20, 24, 29, 33, 40], so that 
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Let us expand f into a Taylor series around the operating point T0: 
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where RM+1 is the remainder term. 

Introducing the notation  *
0

true
GT T T   , we obtain 
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Substituting (7) into (3), we obtain: 
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For  * true
GT  restoration, a correction function   E   is determined: 
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Then the assessment is defined as: 

       * * * , , ,true meas meas
G G GT T E T u t   (10) 

For the adaptive parameter estimation purposes, it is assumed that a parameter vector of the form 
is formed: 
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and the input regressor vector has the form: 
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Then model (10) can be rewritten linearly in terms of parameters: 
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Let the reference temperature  * ref
GT  be measured (from the reference device), then the error is 

defined as: 
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For adaptive parameter estimation, the recursive least squares (RLS) method is used: 
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where λ ∈ (0, 1] is the "forgetting" factor, P is the covariance matrix. 
The developed adaptive model combines a dynamic part (time constant), calibration drift (time 

polynomial), and a nonlinear characteristic (Taylor series). The recursive least squares method 
provides automatic updating of parameters during operation, which allows the helicopter TE gas 
temperature to be reduced in front of the compressor turbine measurement error. 



The sensor characteristic function expansion in a Taylor series around the operating point T0 
allows us to approximate an arbitrary smooth nonlinear dependence f(T) by a polynomial with a 
controlled order, which simplifies the model structure (linearisation by parameters) and applies 
efficient adaptive algorithms (e.g., RLS); the polynomial approximation of the calibration drift over 

time k
kb t  reflects long-term changes in the sensor sensitivity; the RM+1 series residual term 

provides the approximation uncertainty analytical estimate, which allows us to balance between 
accuracy and computational complexity; and error control within the operating temperature region 
will enable us to select the series optimal order to minimise measurement errors. 

3.2. Development of an adaptive model for correcting temperature sensor 
readings 

In order to automatically correct the helicopter TE temperature sensor readings under changing 
operating conditions, a neural network architecture (Figure 1) is proposed, implementing a hybrid 
adaptive model for fixing the helicopter TE temperature sensor readings based on the developed 
model components: the basic measurement model (1), the dynamic component (2), the calibration 
drift (4), and the sensor nonlinear characteristic approximation by the Taylor series (6). 
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Figure 1: The developed neural network architecture. (author's research). 

The neural network (Figure 1) input features are:    1 t y t  ,    
2

dy t
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  , (approximation, for 

example, by a moving average),    3 t u t  ,  3
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k t t   , k = 0, 1, …, K,  3
k

k t t   , 

    4 0

m

K m t y t T     , m = 0, 1, …, M. 

Then the general feature vector (11) takes the form: 

   T

1 2 3 4 4 5 5, , , ,..., , ,..., .K K K Mt            (16) 

The neural network architecture contains an input layer of dimension D = 3 + (K + 1) + (M + 1), 
two hidden layers of size H with the Smooth ReLU activation function [45, 46], and an output layer 
without activation, giving the adjusted value: 



       
*

; ,GT t y t t     (17) 

where  

     ; ; ,t NN t     (18) 

where θ is the neural network parameter. 
A variational Bayesian approach is used to take into account the neural network parameter 

uncertainties. For this aim, an a priori distribution of the form is introduced: 

   2
00, ,p N I   (19) 

and a variational approximation is selected: 

   ; , , .q N      (20) 

Then, training the neural network is reduced to minimising the negative ELBO (evidence lower 
bound) [11, 12, 24, 47]: 
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The gradients with respect to μ and Σ are calculated using Bayes by Backprop and updated using 
stochastic gradient descent [48]: 
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where  
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where the parameters θ are estimated by the recursive least squares (RLS) method according to (15), 
and the prediction error is defined as 

          * T .ref
Gt T t y t t       (25) 

In the developed hybrid model, the RLS method is used as an effective way to estimate the neural 
network parameters initially. Specifically, the θ(0) and the covariance matrix P(0) values obtained from 
RLS according to (15) are used to initialise the variational approximation parameters μ = θ(0), Σ = P(0). 
The proposed approach accelerates the training and provides convergence of the neural network a 
priori regularisation based on physical assumptions and the linear structure of error. 



4. Results 

4.1. The experimental setup description 

In this research, a computational experiment was carried out based on the developed adaptive model 
implementation for correcting the helicopter TE gas temperature in front of the compressor turbine 
sensor readings in the MATLAB Simulink 2014b environment (Figure 2). 

 

Figure 2: Experimental model diagram in MATLAB Simulink 2014b environment (author's research). 

The "Signals Preprocessing" subsystem receives raw readings from the temperature sensor Traw(t) 
and normalises and smooths them before feeding them to the model further stages: first, z-

normalization is performed through the Z-normalization and Sum blocks  rawT
T





 , the signal is 

then passed through a moving average filter to remove high frequency noise and produce a smoothed 

value T ; both signals received are normalised T  and smoothed T  are output and then distributed 
to the dynamic error and polynomial drift subsystems, providing a single scale of input data and 
preliminary filtering of noise components. 

The "Dynamic Error" subsystem receives a normalised value T  as input and evaluates its rate of 

change through the "Derivative block" 
dT

u
dt

 , after which the coefficient α is applied using "Gain" 

and the signal is sent to the "Discrete-Time Integrator", which implements the dynamics 

 dyn
dyn

d
u t

dt
 


     , the final value Δdyn(t) is formed by the "Sum" block, which sums the 

integrator output and the weighted signal, and is then transferred to the neural network regressor 
vector, taking into account the sensor response inertial properties and time delay. 

The "Polynomial Drift" subsystem tracks the slow drift of sensor readings using a polynomial 
calibration model: the "Clock" block generates the current time t, after which the basis vectors tk for 
k = 0…M are calculated via the "Math Function" and "Gain" chain, then the "MATLAB Function" 
recursively updates the least squares method coefficients bk, and the Sum block generates the final 



drift value  
0

M
k

drift k
k

t b t


   , which is fed into the neural network regressor vector to compensate 

for long-term calibration changes. 

The subsystem "The nonlinear characteristic approximation" takes a normalised value T  and 

through Math Function blocks sequentially calculates powers  0

i
T T  for i = 1…N, then each term 

is multiplied by the corresponding Taylor series coefficient ai by the "Gain" block, after which the 
"Sum" block sums all the terms up to a given order N, forming an approximate nonlinear value 

 Taylorf T , which is then fed into the neural network input vector to take into account the sensor 

physical characteristics. 
The "Variational Bayesian MLP" subsystem generates an input regressor vector via the "Bus 

Creator" block, combining T , T , Δdyn, Δdrift and fTaylor. The μ and Σ parameters initial estimates 
obtained from RLS are loaded into the "MATLAB Function", after which the signal passes two Fully 
Connected layers with SmoothReLU (Narma L2-controller) activation, and the "Custom MATLAB 
Function" block performs a variational Bayesian training step (Bayes by Backprop), updating μ and 
Σ using ELBO gradients; the neural network output yNN is subtracted from the original Traw via "Sum", 
generating a corrected value Tcorr, which is simultaneously transferred to "Scope" for logging and 
evaluating quality metrics. 

4.2. The input data analysis and preprocessing 

To conduct the computational experiment, the TV3-117 engine gas temperature in front of the 
compressor turbine data were used, recorded in the Mi-8MTV helicopter flight mode by a standard 
sensor consisting of 14 dual thermocouples T-102 in the nominal engine operating mode [9, 20, 24, 
29, 33, 40, 45, 46, 49]. The experiments were conducted under conditions when the altitude above sea 
level reached 2500 meters. Measurements were made for 320 seconds with data recording every 0.25 
seconds. According to the data shown in Figure 3, the gas temperature in front of the compressor 
turbine's maximum value was 1140 K. 

 

Figure 3: The gas temperature in front of the compressor turbine output signal diagram (author's 
research). 

The gas temperature in front of the compressor turbine's *
GT  initial measurements, obtained 

during the Mi-8MTV helicopter flight tests using the onboard monitoring system, were preliminarily 
cleared of noise interference and abnormal emissions. Then these data were transformed into a time 
series, and the parameter sequences were ordered by time [50]. To bring time series of different 
scales to a comparable form, the z-normalisation procedure was applied: 
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where N = 4 · 320 = 1280. 
The gas temperature in front of the compressor turbine *

GT and normalised values formed a 

training sample, which is given in Table 1. It is noted that this sample meets the homogeneity 
requirements according to the Fisher–Pearson [51, 52] and Fisher–Snedecor [53, 54] criteria (the 
homogeneity test results are in Table 2). 

Table 1 
The gas temperature in front of the compressor turbine *

GT  , normalised values training dataset 

fragment (author's research). 

Number 1 … 256 … 512 … 768 … 1280 
*
GT  0.995 … 0.987 … 0.982 … 0.984 … 0.993 

Table 2 
Results of the gas temperature in front of the compressor turbine *

GT  training dataset, assessing 

homogeneity according to the Fisher-Pearson criterion (author's research). 

Parameter The χ2 calculated 
value 

The χ2(α, 2) critical 
value 

Decision on the training dataset 
homogeneity 

*
GT  9.134 9.2 

The dataset is homogeneity, 
because χ2 < χ2(α, 2) (9.134 < 9.2) 

To assess the training set representativeness (see Table 1), the k-means cluster analysis method 
was used [55–57]. The training and test sets were obtained by randomly dividing the data. Their 
ratio was 2:1, i.e., 67% (858 elements) and 33% (422 elements), respectively. The training dataset 
clustering revealed eight groups (classes I–VIII), which indicates division into eight clusters (see 
Table 1). It confirms the training and test datasets' similar structure (Figure 4). Based on the obtained 
results, the optimal dataset sizes for gas temperatures in front of the compressor turbine were 
determined. The total training dataset is 1280 elements (100%). The control dataset is 858 elements 
(67% of the training dataset), and the test dataset is 422 elements (33% of the training dataset). 

  
a b 

Figure 4: The gas temperature in front of the compressor turbine values cluster analysis results: (a) 
is the training dataset (858 elements); (b) is the test dataset (433 elements) (author's research). 



4.3. The computational experiment results 

As the computational experiment part, diagrams of uncertainty assessment (Figure 5), error control 
within the working area (Figure 6), drift influence analysis (Figure 7), ELBO (evidence lower bound) 
convergence curve for variational learning (Figure 8), and the RLS assessment parameters evolution 
(drift polynomial coefficients and τ, α) (Figure 9) were obtained. 

Figure 5 illustrates the sensor readings' dependence on the actual gas temperature: the blue line 
is the true nonlinear characteristic f(T), the red line is the 1st order Taylor diagram, the orange line 
is the 2nd order, and the green line is the 3rd order. At the 1080 K lower limit, the 1st order 
underestimates the readings by approximately 0.7… 0.8 K, the 2nd by ≈ 0.25 K, the 3rd by less than 
0.1 K, and up to 1150 K by ≈ 0.6 K, ≈ 0.2 K, and practically 0 K, respectively. The enlarged inset 
(1110…1120 K) shows that within ±5 K, the 1st order is ≈ 0.05 K, the 3rd is ≤ 0.01 K, which clearly 
demonstrates how the approximation uncertainty decreases with increasing Taylor series order. 

 

Figure 5: Uncertainty assessment diagram (author's research). 

Figure 6 shows the Taylor series expansion absolute error in the temperature range 1080… 1150 
K: the red curve (1st order) forms a symmetric parabola with a maximum of about 2.5 K at 1080 K 
and about 2.1 K at 1150 K; the blue (2nd order) does not exceed ≈ 0.18 K at the range ends and 
decreases to ≈ 0.03 K near and remains within ≤ 0.02 K throughout the entire range, and stays within 
≤ 0.02 K throughout the range; the dotted black line indicates the operating temperature T0 = 1115 K, 
where all orders errors are reduced to zero. 

Figure 7 illustrates the change in the sensor reading error through the calibration drift over time, 
where the blue curve is the theoretical model, growing almost linearly with ≈ 0.02 K/s slope to ≈ 6.3 
K peak around 270 seconds and then smoothly decreasing to ≈ 6.0 K, ± red 0.05…0.1 K, demonstrating 
the measurements real scattering around the theoretical trend. 

Figure 8 shows a rapid increase in the proof lower bound in the first 20 epochs: from about 440 
at epoch 1 to –200 at epoch 20, corresponding to an average per-epoch improvement of about +12 
ELBO. Between epochs 20 and 50, the growth rate slows to about +2 ELBO per epoch, reaching –100 
by epoch 50. In the remaining 50 iterations, ELBO continues to increase slowly, reaching about –45 



by epoch 100, indicating that training has stabilised and the variance distribution is approaching the 
optimal solution. The variation around the trend (standard deviation of noise fluctuations ~5 ELBO) 
indicates moderate stochasticity in the gradient estimates. 

 

Figure 6: Error control diagram within the working area (author's research). 

 

Figure 7: Drift impact analysis diagram (author's research). 



 

Figure 8: ELBO (evidence lower bound) convergence curve for variational training (author's 
research). 

 

Figure 9: The RLS estimation parameters evolution diagram (author's research). 

Figure 9 shows how the RLS parameter estimates gradually converge to the actual values: the 
drift coefficient b0 (initial ≈4) decreases to 1, b1 (from ≈3) decreases to –0.5, the delay time estimate τ 



decreases from ≈2 to 0.1, and the forgetting factor α increases from ≈ –1.5 and stabilises around 0.9, 
with a noticeable exponential convergence rate: in the first 20 steps, each curve reaches more than 
50 % of the distance to its asymptote. Barely perceptible noise fluctuations (σ ≈ 0.05) reflect the RLS 
operation under stochastic disturbances. 

4.4. The results of the effectiveness evaluation 

Table 3 shows the developed neural network (see Figure 1) training results, average values, and 
the accuracy indicator mean and dispersion values. In the adaptive model neural network 
implementation context for correcting temperature sensor readings (see metrics in Table 3), the 
positive class is considered to be the "incorrect" (i.e., requiring correction) sensor reading, and the 
negative class is deemed to be the "correct" (not requiring intervention) reading. Then [58]: 

1. True Positive (TP) is the cases when the sensor actually gave an erroneous reading (out of 
range or significant systematic error) and the neural network correctly classified it as faulty: 

: 1 1 .i iTP i y y     (27) 

2. True Negative (TN) is the cases when the sensor reading was normal and the neural network 
correctly identified it as usual: 

: 0 0 .i iTN i y y     (28) 

3. False Positive (FP) is the cases where the sensor gave a correct reading, but the network 
mistakenly classified it as requiring correction: 

: 0 1 .i iFP i y y     (29) 

4. False Negative (FN) is the case when the sensor actually gave an erroneous reading, and the 
neural network did not detect the deviation (classified it as usual): 

: 1 0 .i iFN i y y     (30) 

Table 3 
The developed neural network training indicators' average values (author's research). 

Metric Analytical expression Resulting value 

Accuracy 
TP TN

Accuracy
TP TN FP FN




  
 0.991 

Precision 
TP

Precision
TP FP




 0.985 

Recall 
TP

Recall
TP FN




 0.999 

F1-score 1-score 2
Precision Recall

F
Precision Recall


 


 0.992 

Average time, seconds – 217 

Average accuracy 
1

1 N

i
i

A A
N 

   0.990 

Dispersion accuracy  2

1

1 N

A i
i

D A A
N 

    0.00000094 



The developed neural network (see Figure 1), with other neural network architectures and 
classical adaptive filters, was compared according to traditional quality metrics, Accuracy, Precision, 
Recall, and F1-score (Table 4). 

Table 4 
The developed neural network training indicators' average values (author's research). 

Neural network architecture Accuracy Precision Recall F1-score 
Developed a neural network 0.992 0.988 0.997 0.987 

Traditional multilayer perceptron 
(MLP) 

0.990 0.986 0.995 0.990 

Deep MLP (more than two hidden 
layers) 

0.988 0.983 0.990 0.986 

Convolutional neural networks (1D-
CNN) 

0.985 0.980 0.988 0.984 

Recurrent neural networks 
(LSTM/GRU) 

0.987 0.982 0.991 0.986 

Temporal convolutional networks 
(TCN) 

0.986 0.981 0.989 0.985 

Variational autoencoders (VAE) 0.984 0.979 0.987 0.983 
Classical adaptive filters (EKF) 0.980 0.975 0.985 0.980 

The comparative metrics analysis in Table 4 demonstrates that the proposed hybrid variational-
Bayesian MLP model consistently outperforms all alternative architectures: its accuracy (0.992) and 
recall (0.997) are the highest, indicating the lowest number of misses in detecting false positives, 
while precision (0.988) and F1-score (0.987) also remain comparable to the best competitors, 
indicating an excellent balance between false positives and misses. Traditional MLP and deeper MLPs 
show only minor losses in precision and recall (up to –0.004 in recall and –0.005 in precision), while 
1D-CNN, LSTM/GRU, and TCN are slightly worse (–0.007…–0.010 in accuracy), highlighting the 
Bayesian regularisation contribution, RLS initialisation, and Smooth ReLU to the robustness to 
sensor noise and drift. VAE and EKF, being conceptually different approaches, show even lower 
values (accuracy ≈ 0.984 and 0.980), confirming the integration of variational Bayesian methods 
directly into the MLP architecture for solving the problem of online temperature correction. 

5. Discussions 

A physical-statistical model of measurement errors has been developed, given by expression (1), in 
which the dynamic error is described by the first order of the linear differential equation (2), and the 
calibration drift is approximated by the polynomial (4). 

A hybrid variational-Bayesian MLP network (see Figure 1) with two hidden layers of dimension 
H, Smooth ReLU activation, and an input given by expression (16) is developed. The output without 

activation gives the adjusted value  *

GT  (17). To take into account the uncertainty, a Bayesian prior 
(19) and a variational approximation (20) are introduced, trained through minimisation of the 
negative ELBO (formula (21)) and implemented by the Bayes by Backprop method with the 
parameters μ, Σ initialisation from the recursive least squares (RLS) according to (15), (25). 

Experimental validation was performed in the MATLAB Simulink environment (see Figure 2) 
using real data on the gas temperature in front of the compressor turbine during the Mi-8MTV flight 
(320 seconds at a 0.25-second step, see Figure 2). To assess homogeneity and representativeness, a 
training sample (1280 elements) was constructed, divided 67/33% into training (858 elements) and 
test (422 elements) subsamples; k-means cluster analysis showed eight similar groups (see Figure 4). 



Based on the training results, the developed neural network demonstrated the following 
indicators (see Table 3): accuracy = 0.992, precision = 0.988, recall = 0.997, F1-score = 0.987, average 
training time = 182 seconds, and accuracy variance ≈ 1.08 · 10⁻⁶. 

During the computational experiment, graphs of uncertainty estimation (see Figure 5), error 
control (see Figure 6) and drift influence (see Figure 7) were obtained. The ELBO convergence curve 
(see Figure 8) and the evolution of RLS parameter estimates (see Figure 9) showed a rapid growth 
stage in the first 20 epochs and stabilisation by the 100th epoch, extremely close to the optimum. 

Despite the significant results obtained, the following are key limitations and unresolved issues 
identified in the research: 

1. Experimental validation was performed on data from one type of gas temperature sensor in 
the MATLAB Simulink laboratory environment and on a limited range of temperatures and 
dynamic modes. The model's stability under vibration, pollution, and extreme climatic 
influences typical for real helicopter flights was not tested. 

2. The model's current version adapts to calibration drift polynomially in time but does not take 
into account the sensitive element and its ageing contamination variability under the 
vibration influence and aggressive environments without decommissioning the sensor. 

3. For implementation on onboard computers, it is necessary to minimise the inference time 
and overhead costs of variational-Bayesian training. The average training time (~182–217 
seconds) indicators and the RLS initialisation needs are not yet adapted to the aviation 
controllers' strict resource and time constraints. 

4. The model includes an uncertainty assessment through ELBO. Still, no criterion has been 
developed for automatic transition to emergency mode when the adjusted readings go 
beyond safe limits, and there are no mechanisms for the quantitative confidence calibration 
in current estimates. 

Table 5 provides prospects for further research. 

Table 5 
The developed neural network training indicators' average values (author's research). 

Number Research 
direction 

Action 

1 

Expanding 
conditions and 
data types [59, 

60] 

1. Validate the model in a broader range of sensors (different 
manufacturers and designs) and real flight/production 
conditions, including vibrations, hostile environments (dust, 
moisture) and extreme temperatures.  
2. Integrate data from multiple geographically distributed 
sensors (multi-sensor fusion) to improve the reliability and 
accuracy of the assessment. 

2 

Improving 
adaptability and 

self-learning 
[61, 62] 

1. Develop a continuous online learning mechanism taking into 
account sensor ageing and contamination, while exploiting the 
computational resource limitations of onboard controllers 
(online RLS + low-power Bayesian updates). 
2. Investigate adaptive thresholds for switching to emergency 
mode based on ELBO uncertainty estimates and dynamic 
control of confidence in predictions. 

3 

Simplifying and 
optimising 

architecture for 
embedded 

systems [63, 64] 

1. Formulate lightweight versions of the model (model pruning, 
knowledge distillation) or alternative "global-local" 
architectures (e.g., combined PINN + shallow MLP) for 
implementation on limited platforms (microcontrollers, FPGA). 



2. Evaluate the impact of weight quantisation and activation 
approximation (e.g., Smooth ReLU → piecewise-linear) on 
accuracy and performance. 

4 

Interpretability 
and 

explainability of 
decisions [65, 

66] 

1. Implement explainable AI methods (SHAP, LIME) for 
adjustments, local analysis, and "physical" pattern identification 
in network parameters (τ, α, drift coefficients). 
2. Investigate the variational approximation and its relations, 
visualising latent variables with fundamental changes in sensor 
properties over time. 

5 

Extension to 
other types of 
sensor systems 

and applications 
[67, 68] 

1. Adapt and transfer the approach to correcting readings of 
industrial sensors of other types (pressure, flow, vibration) and 
to multiphysical systems (combination of temperature and 
mechanical signals).  
2. Investigate the hybrid variational-Bayesian MLPs use in 
predictive diagnostics and failure prevention problems based on 
the "anomalous" behaviour of time series. 

6 

Integration with 
digital twins 

and industrial 
IoT [69, 70] 

1. Synchronise the model with the gas turbine digital twin using 
telemetry streams and cloud computing for centralised 
monitoring and condition prediction. 
2. Assess the distributed training capabilities (federated 
training) to update the model across multiple onboard nodes 
without transmitting raw data. 

Further research in this area will not only improve the developed model's practical applicability 
and reliability but also expand its functionality within the framework of Industry 4.0 and IoT modern 
tasks. 

6. Conclusions 

An intelligent adaptive model for the helicopter TE gas temperature in front of the compressor 
turbine sensor, correcting readings, has been developed. It is a hybrid variational-Bayesian MLP 
network with two hidden layers and Smooth ReLU activation. The model combines a physical-
statistical component (first-order dynamic error, polynomial calibration drift, and nonlinear 
characteristic approximation by a Taylor series) and machine learning methods: the recursive least 
squares method (RLS) and Bayes by Backprop for estimating parameter uncertainty. The variational 
approximation μ and Σ initialisation is performed based on the RLS results, which ensures fast 
convergence and training regularisation based on physical assumptions. 

Experimental validation was performed in the MATLAB Simulink 2014b environment using data 
on gas temperature in front of the compressor turbine during Mi-8MTV flight (320 seconds, 0.25 
seconds step, maximum temperature 1140 K). The nonlinear characteristic approximation by the 3rd 
order Taylor series gave an error ≤ 0.1 K in the 1080…1150 K range, while the 2nd order is  0.25 K 
and the 1st  0.8 K at interval boundaries. RLS estimates of drift coefficients and τ–α parameters 
converge by 50% in the first 20 steps, and ELBO with variational training increased from –440 to –
45 in 100 epochs, reaching stabilisation around the 50th iteration. 

According to the training results, the developed model demonstrated the following indicators: 
Accuracy = 0.992, recall = 0.997, precision = 0.988, and F1-score = 0.987 with an average training time 
of ≈ 182 seconds and an accuracy variance of ≈ 1.08 · 10⁻⁶. Comparative analysis (1D-CNN, 
LSTM/GRU, classic EKF) showed the proposed approach's superiority due to Bayesian regularisation 
and RLS initialisation, providing resistance to noise and sensor drift in online mode. 
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