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Abstract
This paper presents the results of the development and research of a pseudorandom number generator  
based on computing the square root of a prime number. The square root of a prime number is one of the  
known irrational numbers. According to a well-known hypothesis in mathematics, the sequence of digits  
of such numbers is a pseudorandom non-periodic digit sequence. Therefore, calculating the square root of 
a prime number can serve as the basis for constructing a pseudorandom number generator. The key of  
such a generator can be a simple number and the digit position number from which the regeneration 
process starts. To efficiently compute the square root in a “bit by bit” style, a modified bisection method is  
proposed.  The  proposed  method  allows  saving  one  multiplication  operation  in  each  iteration  of  the 
bisection method. At the same time, the complexity of one iteration of the proposed method is close to the 
complexity of a single addition operation.
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1. Introduction

The problem of producing high-quality keys for cryptographic applications is an important and 
pressing issue [1]. It is better to use true random numbers for key generation. However, generating 
such numbers is a slow and costly process. Moreover, a true random number cannot be reproduced.  
Therefore, the problem of exchanging a long random key arises. For these reasons, not true random 
numbers but pseudorandom numbers are often used as cryptographic keys [2, 3]. Statistically, they 
are  indistinguishable  from  random  numbers,  but  they  have  a  very  important  advantage.  A 
pseudorandom number can be reproduced.  Thanks to this,  subscribers  can exchange relatively 
short  secret  parameters  of  an  identical  pseudorandom  number  generator.  Based  on  the  same 
parameters, such a generator will produce an identical key for both subscribers [4–6].

One of the important characteristics of a pseudorandom number generator is the period of the 
generated bit sequence [7]. Only a part of the generated sequence up to the point of repetition can 
be used as a key. Otherwise, the cipher can be easily broken. Therefore, it is desirable for the period 
of the generated sequence to be as long as possible. Moreover, the requirements for the period are 
constantly increasing due to the growth of key sizes in modern cryptosystems. This is especially  
relevant  for  post-quantum  asymmetric  cryptosystems,  which  are  currently  being  actively 
implemented [8, 9].

It is often stated that all pseudorandom numbers are periodic. However, this is not entirely true.  
Hypothetically,  there  exist  non-periodic  pseudorandom  numbers.  Among  them  are  irrational 
numbers [10].
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In mathematics,  there is a well-known hypothesis regarding the normality of irrational and 
transcendental numbers, in particular, the square roots of prime numbers [10, 11]. This means that 
the sequence of digits of the square root of a prime number is pseudorandom digit sequence.The 
mentioned  hypothesis  has  not  been  proven  yet.  It  remains  one  of  the  most  famous  unsolved 
problems in mathematics. Interest in calculating the square root of a prime number arose a very  
long time ago [12]. In particular, among collections of Babylonian historical artifacts preserved at 
Yale University, there is a round clay tablet (Fig. 1). It is dated to 1750 BC. The tablet shows a 
square divided by diagonals.  Three digits are clearly inscribed on it with cuneiform characters. 
When the inscription was deciphered, it became clear that almost 4000 years ago in Babylon they  
already knew how to determine the diagonal of a square based on its side length by multiplying the 

side by the square root of two. The markings on the tablet provide an approximate value of √2 in 

four sexagesimal digits, which corresponds to eight decimal digits 1+
24
60

+
51

602 +
10

603 =1.41421296

Figure 1: Babylonian clay tablet

The task of calculating as many digits as possible of the square root of a prime number remains 
relevant today.  One of the notable modern achievements in this area is  the work of Professor 
Jacques Dutka,  a  staff  member of  the Department of  Mathematical  Methods in Engineering at 
Columbia University. He developed an algorithm and calculated the value of the square root of two  
up  to  the  one-million  eighty-second  decimal  place.  However,  the  record  was  soon  surpassed 
multiple times. In particular, in 2010, Shigeru Kondo computed one trillion decimal digits of the 
square root of two [13]. At that time, only the number π had been computed with greater precision 
(five trillion decimal digits). The modern relevance of this computational task is explained both by 
the desire to empirically confirm the pseudorandomness of the digit sequence of the root and by 
the wide range of applications for pseudorandom numbers, particularly in cryptography.

In addition to pseudorandomness, the digit sequence of the square root of a prime number has 
two other important features that make such sequences valuable from the perspective of modern 
cryptography. The first feature is that the digit sequence of the square root of a prime number 
(according to the hypothesis) is non-periodic. Therefore, such sequences of digits (or bits) can be 
used in stream ciphers for encrypting large volumes of information, including images, video, and 
audio files. The second feature is that the chosen prime number, as well as the digit number from 
which  the  "refinement"  of  the  root  value  starts,  can  serve  as  secret  parameters  (a  key)  for  a 
pseudorandom number generator based on computing the square root of a prime number.

2. Literature review and problem statement

This work will  demonstrate an efficient method for constructing a non-periodic pseudorandom 
number generator based on computing the square root of a prime number. We will review some 
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computational methods traditionally used for calculating square roots. We will also analyze these 
methods in terms of their suitability for use in a pseudorandom number generator (PRNG).

The Babylonian method. For the purpose of calculating the square root of two, the ancient 
Babylonian  method  for  computing  square  roots  is  often  used  [10,  14,  15].  It  is  based  on  the 
following principle:

an+1=
an+

2
an

2
=

an

2
+

1
an

.
(1)

The more repetitions in the algorithm (that is, the more iterations are performed and the larger  
“n” becomes), the better the approximation of the square root of two. Each iteration approximately 
doubles the number of correct digits.

The long division method for calculating the square root. This method used to be taught 
in schools.  The advantage of this method is  that at each step of the algorithm, one additional  
correct digit of the result is obtained [16], which also becomes the next digit of the pseudorandom 
sequence. The disadvantages of the method are that it is not systematic: at each step, the method’s  
parameters must be selected manually. In addition, the remainder at each subsequent step of the 
algorithm can be twice as long as the previous remainder. Therefore, this method is poorly suited 
for the automated calculation of a large number of root digits, which is required for generating 
pseudorandom sequences.

Method of calculating the square root via Taylor series expansion:

√1+x =∑
n=0

∞ (−1)2 (2n ) !

(1−2n ) (n !)2 (4n )
x n=1+

1
2

x −
1
8

x 2+
1
16

x 3−
5

128
x 4+... . (2)

This method [15] provides good convergence, but it involves complex computations, which are 
inconvenient when calculating a large number of root digits.

Method of arithmetic extraction of the square root. For square numbers, the following rule 
applies [15] 1 = 12, 1 + 3 = 22, 1 + 3 + 5 = 32, and so on.

That is,  the integer part of the square root of a number can be determined by successively  
subtracting all odd numbers from it until the remainder becomes zero or is less than the next odd  
number to be subtracted. The result (the integer part of the root) is  the number of performed 
actions (subtractions). For example, 9 − 1 = 8, 8 − 3 = 5, 5 − 5 = 0.

Three steps were performed, so the square root of 9 is 3.
The disadvantage of this method of calculation is that as a result of its application, only the 

integer part of the result can be obtained. At the same time, this method is useful for obtaining a  
rough initial approximation of the root.

The iterative analytical algorithm (Heron's iterative formula). This is a popular and very 
ancient iterative algorithm [17], which allows refining the solution using the formula:

{x n+1=
1
2 (x n+

a
x n

) ,

x 0=a ,

lim
n → ∞

x n=√a .

(3)

The method converges quickly: each iteration approximately doubles the number of correctly 
computed digits of the result. At the same time, the method involves complex operations, including 
division.

Numerical methods of approximate square root calculation. These methods [18] include, 
in particular, the bisection method, the secant method, the tangent method (Newton's method), and 
others. Most of these methods (except for the bisection method) do not allow for the computation 
of the square root “digit by digit.”
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To compute square roots, specialized function transformations can also be used, for example, 
number-to-impulse transformations based on classical digital converters [18–20].

For  use  in  PRNGs  (pseudorandom  number  generators),  most  of  the  listed  methods  are 
unsuitable. This is due to two reasons. First, a PRNG typically needs to generate a long sequence of  
pseudorandom bits. When constructing such a generator based on the calculation of the square 
root of a prime number, this means that a large number of digits of the square root need to be  
computed.  Moreover,  each  subsequent  digit  (bit)  of  the  result  must  be  computed  precisely. 
Otherwise, the pseudorandomness property of the generated sequence may be lost. Additionally, 
the digits of the square root, which become bits of the pseudorandom sequence and can be used 
further in fast stream ciphers, must be computed quickly.

Thus, for use in a PRNG based on the square root calculator of a prime number, a fast and  
accurate “digit-by-digit” calculator is suitable. Accordingly, various methods for rough estimation 
of the square root value are only suitable for calculating the initial approximation. Methods such as 
columnar calculation and most of the approximate numerical methods (Heron's method, secant, 
tangent, and others) are also poorly suited. The main reason for their unsuitability in building a 
PRNG is the high complexity of computational operations, which increases with the number of 
computed digits. At the same time, it is worth noting that the columnar calculation method allows 
for the "digit-by-digit" computation of the result.

Considering  the  aforementioned  application  characteristics,  the  bisection  method,  or  the 
method of  bisections,  is  convenient  for  constructing a  PRNG calculator.  This  method involves 
relatively  simple  computational  operations.  It  has  slow convergence,  but  it  is  fast  and,  under 
certain conditions, can be converted into a “digit-by-digit” method. In terms of performance, for a  
PRNG, the speed of generating the exact value of the next bit in the sequence is more important  
than the overall  speed of generating the entire sequence without guaranteeing the accuracy of  
individual bits.

3. Development of an improved square root calculation algorithm for 
a PRNG

Let us formulate an observation regarding the bisection method that makes it possible to transform 
this method into a “digit-by-digit” square root calculation method.

If the width of the initial approximation interval in the bisection method (the interval in which  
the root of the nonlinear equation x2 = p is localized) equals an exact power of two, then at each 
step of the bisection method we obtain the next correct bit of the square root result.

Thus, if the formulated requirements for the initial approximation of the root are met, we can 
construct an algorithm for calculating the square root using the “digit-by-digit” method.

Therefore, the bisection method can be used to construct a pseudorandom number generator 
based on computing the square root of a prime number. Compared to other square root calculation 
methods, the bisection method is characterized by lower computational complexity, although it  
often has slower convergence. At the same time, the bisection method allows for the selection of an 
initial approximation that enables “bit-by-bit” computation of the square root, with each step of the 
algorithm yielding the exact value of the next bit of the result – an essential requirement when  
generating a pseudorandom bit sequence.

Another important characteristic of a pseudorandom number generator is its speed. The low 
complexity  of  the  basic  operations  in  the  bisection  method  can  ensure  this  performance 
characteristic. This is why the bisection algorithm is well-suited for computing the square root of  
large numbers. At the same time, when using a square root calculator to construct a pseudorandom 
number generator, a number of improvements to the bisection method can be proposed, which 
would  significantly  reduce  the  computational  effort  required.  The  essence  of  the  proposed 
improvements is as follows:
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1 The width of the initial approximation interval must be an exact (positive or negative) power of 
two. This allows for the precise computation of the next bit of the result at each step of the algo-
rithm. Furthermore, as will be shown later, this makes it possible in the bisection algorithm to  
eliminate the need for monitoring the right boundary of the root localization interval, as well as 
to compute the midpoint of the interval by simply appending a one to the next bit.

2 When generating a pseudorandom sequence, which in the case of using a square root calculator 
of a prime number, is non-periodic—we can begin the generation from any bit. In doing so, it is 
necessary to provide an appropriate initial approximation of the root, i.e., the position of point a 
within the root  localization interval  (see  Fig. 2).  The width of  the root  localization interval 
should be chosen according to the requirements of point 1. As will be shown below, this allows 
for a significant simplification of the computation of root localization conditions.

3 For clarity and unambiguity in the further formal exposition, we choose the initial approxima-
tion of the root (the position of point a in the localization interval (see Fig. 2)) to be equal to the 
integer part of the root value.

Figure 2: Illustration of the bisection method

In doing so, and in accordance with point 1, it is assumed that the right boundary of the root lo -
calization interval (point b) is located one unit away from point a.

4. Development of the operating equation of the PRNG calculator

We develop the generator’s operating equation based on the bisection method, taking into account 
the proposed improvements to the method. We need to compute the value of x, the square root of a 
prime number p.

x =√ p . (4)
To do this, we apply the bisection method, which we use to refine the initial approximation of 

the root of a nonlinear quadratic equation.

x 2−p=0. (5)
As  the  initial  approximation  x0 (the  left  boundary  of  the  root  localization  interval  in  the 

bisection method), we choose the integer part of x is the greatest integer whose square is less than 
the  number  p.  Obviously,  at  the  initial  approximation  point,  the  value  of  the  function  (5)  is 
negative. In the formulated proposals, in addition to the initial approximation x0, we also proposed 
the  width of  the  localization  interval  one  unit.  Therefore,  under  these  conditions,  to  find  the 
midpoint of the localization interval, we need to add half of the localization interval to the initial 
approximation  x0 in our case,  1/2, that is,  x0 + 2–1.  Next, we need to compute the square of the 
midpoint and compare the result with the number  p. The square of the midpoint, based on the 
initial approximation and considering the accepted assumptions, is determined by the following 
relation:

( x c )2=y c=( x 0+2−1 )2=x 0
2+2x 0⋅2

−1+2−2=x 0
2+x 0+2−2=y 0+x 0+2−2 . (6)

Next, we compare the computed yc with p. If yc < p, we set x1 = xc, y1 = yc.
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Otherwise x1 = x0,  y1 = y0.  We then proceed further,  and at the  ith step of the algorithm, we 
obtain:

( x c )2=y c=( x i−1+2−i )2=x i−1
2 +2−i+1 x i−1+2−2 i=y i−1+2−i+1 x i−1+2−2 i . (7)

We again compare with p, and based on the result of the comparison, we determine the value of 
the next bit of the result. We continue in a similar manner.

Analyzing  expression  (7),  we  conclude  that  the  addition  of  the  term  2–2i is  practically 
implemented by writing a one in the corresponding bit position (since, before the  ith step of the 
algorithm, all lower bits of the number  y, starting from the bit with weight  2–2i + 2,are zero). The 
term  2–i + 1xi – 1 is formed by shifting the number  xi – 1. Thus, to compute the new  yi according to 
formula (7), we need to write a one in the next bit, shift the number xi – 1, and add it to yi – 1. In terms 
of complexity, this set of operations is close to a single addition.

Next, the calculated number is compared with  𝑝,  and based on the comparison results, new 
values of xi and yi are established. The new value xi is set by appending either a zero or a one (the 
newly calculated correct bit!)  to the next lower bit  of the result.  Thus,  if  we do not take into 
account simple operations such as bit writing, shifting, and reassignment, the proposed algorithm 
requires only one addition operation per correct bit of the result.

5. Development of the PRNG algorithm based on a square root 
calculator from prime numbers

Based on the proposed operating principle of the generator and the derived operating equation of  
its calculator (3), an algorithm for the operation of a PRNG based on a square root calculator from 
prime numbers was developed.

The structure of the developed algorithm is presented in Fig. 3. The following notations are used 
in the structure of the algorithm: x0 and y0 are initial approximations of the result x and its square; 
pp is  a  given  prime  number;  s is  a  number  of  bits  in  the  integer  part  of  the  result;  yy is  a 
intermediate value of the square of the result, calculated according to (7); p is a carry value for the 
next bit during addition.

The developed algorithm (Fig. 3) provides for the generation of a 20,000-bit sequence for the 
purpose of further analysis of the statistical properties of the generated sequence in accordance 
with FIPS 140 standard. Therefore, the values x, y, and yy, which are large numbers, appear as bit 
arrays  in  the  algorithm shown in  Fig.  3.  Taking  into  account  the  term 2–2i added  to  y  when 
calculating yy according to (7), as well as the need to shift x as per (7), the size of these arrays is 
increased to 40000 + 2s.

In the proposed algorithm (Fig. 3), the main loop generates 20,000 bits of the square root of the 
given prime number  pp. To do this, according to (7), the square of the midpoint on the current 
localization interval is calculated. The addition of the term is implemented by writing a one into 
the yy[b] bit. The required shift of the number x according to (7) is implemented by modifying the 
index of the x array, followed by bitwise addition of y and the shifted x with carry to the next digit. 
After calculating  yy according to (7),  yy is compared with the given prime number. If the prime 
number is greater, then according to (7), the function is negative at the current midpoint of the 
localization interval (under the assumed conditions, the function at the right point of the interval is  
always positive).  In this  case,  the left  boundary of  the localization interval  should shift  to the 
midpoint  x is increased by appending a one in the corresponding digit, and the intermediate  yy 
becomes the new y. If the intermediate yy in the current iteration is greater than the prime number 
pp, we stay at the previous left boundary of the localization interval (assuming the right boundary  
has moved to the midpoint).
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Figure 3:  Structure of the operation algorithm of the PRNG on a square root calculator from a  
prime number

In both cases, the increment of  x for computing the next bit is halved, and we proceed to the 
next iteration of the algorithm.

6. Development of algorithms for testing the generated bit sequence 
according to FIPS 140

The FIPS 140 standard defines four statistical randomness tests: the monobit test, the block test 
(poker  test),  the  runs  test,  and  the  long runs  test.  Each test  defines  thresholds  for  acceptable 
statistical parameters. A separate bit sequence of length 20,000 generated by the PRNG is tested 
using all four tests. If any test fails, the generator is considered to have failed the entire test suite.

Monobit test.  The essence of this test lies in counting the number of zeros and ones in the 
generated bit sequence of a given length (in this standard, the sequence length is 20,000 bits). Let n1 

and  n2 denote the number of zeros and ones in the sequence  x,  respectively. If the sequence is 
random, the values of n1 and n2 must satisfy the condition 9654 < n1 (n2) < 10346.

The structure of the developed monobit test algorithm is shown in Fig. 4.
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Figure 4: Structure of the monobit test algorithm

Block test. Let m be a positive integer such that:

k =
n
m

≥5⋅( 2m ) . (8)

The sequence is divided into non-overlapping subsequences of length m = 2, 3, … . Let be the 
number  of  occurrences  of  the  ith type of  subsequence  of  length  m.  The block test  determines 
whether the subsequences of length m appear approximately the expected number of times in the 
sequence  x  that  is,  each  subsequence  should  occur  approximately  equally  often,  as  would  be 
expected in a truly random sequence. To apply the criterion, the following parameter is computed:

X 3=
2m

k
( ∑

i=1

2m

n i
2 )−k , (9)

which  follows  a  distribution  close  to  the  χ2 with  2m – 1  degrees  of  freedom.  The  statistical 
parameter defined by the equation is calculated for m = 4. The statistic must satisfy the following 
condition 1.03 < X3 < 57.4.

The structure of the developed block test algorithm is shown in Fig. 5.

Figure 5: Structure of the block test algorithm
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Here, blok is a four-bit block of the generated sequence, the array kblok accumulates the number 
of blocks of each type (by index), and Sub is the next generated bit.

Runs test.  A  run is  defined as  a  sequence of  identical  symbols—either  ones  or  zeros.  The 
essence of the test is to count the number of runs of lengths 1, 2,  3,  4,  5,  and 6 in the tested  
sequence of a given length (runs longer than 6 elements are treated as runs of length 6). If the  
sequence is random, the number of runs of each length should fall within the following intervals 
(Table 1).

Table 1
Number of runs

Run Length Required Interval
1 2267–2733
2 1079–1421
3 502–748
4 223–402
5 90–223
6 90–223

That is, as the run length increases by one, the number of runs approximately halves.
Long run length test. The essence of this test lies in verifying the maximum length of a run of 

identical elements (ones or zeros). If the sequence is random, the maximum run length must not  
exceed 34.

The structure of the developed combined algorithm for the runs test and the long run length 
test is shown in Fig. 6.

Figure 6: Structure of the algorithm for the runs and long run length tests

9



Here, SS denotes the run length (not exceeding 6), S is the absolute length of the run, Sub is the 
current  generated  bit,  and  Sub0 is  the  previously  generated bit.  The arrays  serii_1 and  serii_0 
accumulate the number of runs of the corresponding (indexed) length.  max stores the maximum 
run length.

7. Comparison of the developed algorithm with the baseline

Analyzing  the  proposed  algorithm  (Fig. 3),  we  conclude  that  generating  a  single  bit  of  the 
pseudorandom  sequence  x requires  one  addition,  one  comparison,  and,  optionally,  one 
reassignment.  In  contrast,  in  the  classical  bisection  algorithm  applied  to  our  function  (5), 
computing each bit of the result requires an addition and shift to determine the midpoint of the  
localization interval, a multiplication to compute the square of the midpoint, a comparison, and 
two reassignments.

Thus, the proposed algorithm, compared to the classical one, saves one multiplication per bit of 
the result. Considering that the approximate complexity of the proposed algorithm is one addition 
per bit of the result, this gain is significant, especially in view of the lengths of bit sequences that 
must be generated in stream ciphers using PRNGs.

Based on the proposed algorithm for the operation of the PRNG on a square root calculator of  
prime numbers (Fig. 3), as well as the developed PRNG testing algorithms according to the FIPS 140 
standard (Figs. 4-6), a software implementation of the generator based on the square root calculator  
of a prime number was developed. The implementation enables the generation of a pseudorandom 
sequence  in  accordance  with  the  proposed  method for  computing  the  square  root  of  a  prime 
number. It also provides the capability to investigate the statistical properties of the generator.

In the process of studying the statistical properties of the developed generator, a sequence of 
20,000  pseudorandom  bits  was  generated  using  its  software  model.  During  this  process,  the 
generated sequence was tested for compliance with the requirements of the FIPS 140 standard. The 
results of the statistical testing of the generator for three small prime numbers are summarized in 
the Table 2.

Table 2
Results of the statistical characteristic evaluation of the generator

Monobit
test

Block
test

Run test Long run 
length 

test1 2 3 4 5 6

√3 10036 10 2433 1261 632 350 157 143 14
2465 1259 610 336 172 134

√17 10014 18 2527 1240 614 310 163 158 12
2526 1234 621 335 144 153

√31 10005 24 2522 1225 630 339 181 127 11

2531 1215 679 316 132 150

The results of the runs test for ones are presented in the upper row, and for zeros in the lower  
row.

Conclusions

The  paper  presents  the  results  of  the  development  and  investigation  of  the  structure  of  a 
pseudorandom number generator based on a square root calculator of a prime number. The square 
root of a prime number is an irrational number. Therefore, the sequence of its digits hypothetically  
forms  a  non-periodic  pseudorandom  sequence.  An  improvement  to  the  bisection  method  is 
proposed in order to enable its application in the PRNG based on the square root calculator of a  
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prime number. An algorithm and software implementation of the PRNG based on the square root 
calculator of a prime number have been developed.  The statistical  characteristics of the PRNG 
based on the improved square root calculator have been investigated. The results of the conducted 
research  show  that  the  application  of  the  improved  bisection  method  allows  a  significant 
enhancement in performance due to the reduction of computational workload per multiplication 
during each iteration.  In the context  of  the PRNG built  upon such a  method,  this  means that 
computing a single bit of the pseudorandom sequence requires only one addition operation. The 
evaluations of the statistical characteristics of the developed generator confirm that the quality of 
the pseudorandom sequences it generates meets the requirements of the FIPS 140 standard.

Declaration on Generative AI

While  preparing this  work,  the  authors  used the  AI  programs Grammarly  Pro  to  correct  text 
grammar and Strike Plagiarism to search for possible plagiarism. After using this tool, the authors 
reviewed and edited the content as needed and took full responsibility for the publication’s content.
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