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Abstract
This paper presents a hybrid approach for steganographic embedding and detecting information within 
audio and graphical containers, utilizing statistical analysis and neural networks. This study establishes 
the feasibility of employing auto-associative networks for steganographic synthesis and the Cumulative 
Sum (CUSUM) algorithm for identifying structural changes introduced by hidden content. A comparative 
analysis  evaluates  its  effectiveness  against  other  methods,  including  the  Least  Significant  Bit  (LSB) 
technique and the short-time Fourier Transform Combined with a Deep Neural Network (STFT-DNN). 
The  findings  demonstrate  the  superiority  of  the  proposed  hybrid  architecture  in  terms  of  detection 
accuracy,  Bit  Error  Rate  (BER),  and  peak  Signal-to-Noise  Ratio  (PSNR).  Furthermore,  the  research 
investigates  the  efficacy  of  combined  steganography  analysis  algorithms  designed  to  operate  under  
limited  a  priori  information  conditions  and  high  container  variability.  The  results  underscore  the  
significant potential of integrating machine learning and statistical modeling to develop intelligent digital 
security systems to counter hidden threats,  protect copyright,  and detect manipulative content in the 
contemporary information environment.
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1. Introduction

The  rapid  proliferation  of  digital  technologies  and  the  corresponding  growth  of  multimedia 
content,  particularly  graphic  and  audio  files,  have  escalated  threats  related  to  confidential 
information  leakage,  covert  data  exchange,  and  copyright  infringement.  In  this  context, 
steganographic methods, which involve embedding messages within digital media, are becoming 
critically important as tools for ensuring information security. Audio and graphic files serve as 
effective containers for hidden information due to their large capacity, inherent signal redundancy, 
and the insensitivity of human perception to minor distortions, facilitating the effective masking of 
embedded data.

However, traditional steganographic methods, such as least significant bit (LSB) substitution, 
discrete cosine transform (DCT), and discrete wavelet transform (DWT), exhibit limited resilience 
against  modern  steganalysis  techniques.  Moreover,  classical  statistical  approaches  are  often 
insufficient for detecting complex or adaptive forms of hidden data, especially under conditions of 
active  digital  monitoring.  In  response  to  these  limitations,  current  research  is  focused  on 
developing hybrid methods that integrate statistical analysis with deep learning algorithms, such as 
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autoencoders,  convolutional  neural  networks  (CNNs),  recurrent  neural  networks  (RNNs),  and 
generative adversarial networks (GANs).

These intelligent models facilitate the creation of embedded structures that replicate the natural  
statistics of the host container, thus minimizing artifacts detectable by conventional steganalysis. 
Autoencoders, for instance, generate a latent representation of the message, allowing data to be 
embedded  without  significantly  altering  the  signal.  Similarly,  Generative  Adversarial  Network 
(GAN) models can produce containers that carry hidden information and maintain a statistical 
distribution consistent with the original media. Conversely, modern steganalysis employs classifier 
ensembles,  change-detection  algorithms  (e.g.,  PCA or  SVM),  and  deep  neural  detectors.  These 
detectors are trained on contrasting examples of authentic and steganographic files, enabling them 
to identify modified containers even when the embedded signal is faint.

In the context of digital censorship and evolving cyber threats, the primary requirements for  
effective steganographic systems include the undetectability of transmission, accuracy of message 
reconstruction,  resilience  to  attacks  and  distortions  (such  as  JPEG compression  or  noise),  and 
adaptability  to  various  media  types.  Integrating  statistical  estimation  and  neural  network 
processing is pivotal for achieving a higher steganography analysis and synthesis standard. For 
instance, statistical indicators such as mean, variance, and correlation coefficients can be employed 
to assess  the vulnerability of  specific  regions within an image or audio file  to  steganographic  
embedding  [1,  2].  Concurrently,  neural  network  components  are  utilized  for  the  actual  data 
insertion  or  detection,  ensuring  an  optimal  balance  between  embedding  efficiency  and 
imperceptibility [3, 4].

This study uses statistical and neural network algorithms to analyze modern hybrid methods for 
embedding and detecting hidden information within graphic and audio files. The primary focus is 
on intelligent models capable of robustly encoding hidden data, even when subjected to digital 
attacks or censorship filters. The paper proposes a steganographic system architecture comprising 
modules for statistical evaluation, neural network-based container generation, deviation analysis, 
and  Explainable  AI  (XAI)  for  interpreting  and  identifying  hidden  features.  The  system  was 
evaluated  on  open  audio  and  graphic  datasets,  using  PSNR,  SSIM,  BER,  and  AUC/ROC  as 
performance  metrics  for  steganalysis.  The  results  demonstrate  that  these  hybrid  methods 
outperform traditional models in accuracy and detection resistance.

Consequently,  integrating  statistical  and  neural  network  algorithms  for  steganographic 
synthesis and analysis presents significant potential for developing flexible, adaptive, and reliable 
information protection systems in the rapidly evolving digital landscape. The applications for such 
systems extend beyond privacy protection to include digital  watermarking,  cybersecurity,  anti-
censorship measures, and secure data storage.2. Literature analysis review
In  modern  steganography  research,  deep  learning  methods  are  being  actively  implemented  to 
enhance information concealment and detection efficiency. Specifically, Pham Huu Quang et al. [5] 
proposed a steganography method that utilizes deep neural networks to embed audio signals into 
images. Their approach effectively preserves the integrity of the host image and the audio data, 
demonstrating  superior  performance  over  traditional  methods.  In  the  field  of  steganalysis, 
Ghasemzadeh  and  Kayvanrad  [6]  conducted  a  comprehensive  review  of  audio  steganography 
detection  methods,  emphasizing  that  the  combination  of  feature  calibration  and  higher-order 
statistical moments can significantly improve the accuracy of identifying hidden messages.

In 2019, Felix Kreuk et al. [7] introduced a speech steganography approach that integrates the 
short-time Fourier transform (STFT) and its inverse as differentiable layers within a deep neural  
network.  This  architecture allows for  effectively embedding messages into audio signals  while 
preserving  speech  quality  and  ensuring  robustness  against  distortions.  In  2023,  Mohamed  C. 
Ghanem et al. [8] developed the StegoHound method, which integrates multiple approaches for 
effectively detecting and extracting digital evidence concealed within WAV and MP3 files using 
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steganographic techniques.  This method demonstrates  superior accuracy and broader detection 
capabilities compared to conventional systems, particularly in analyzing large audio files. Recent 
research  indicates  a  clear  trend  toward  integrating  statistical  methods  with  neural  network 
architectures to develop more robust and effective steganographic systems.3. Models and methods
This study employed a comprehensive approach to the steganographic synthesis and analysis of  
hidden  information  within  audio  and  graphic  files,  leveraging  methods  from  mathematical 
statistics, probabilistic modeling, and decision theory. This framework facilitated the development 
of generalized mathematical models for embedding and detecting hidden messages. These models 
account for both the structural characteristics of the host container and the parameters of external  
influences, such as digital noise, distortions, and compression.

Artificial  neural  networks  constitute  the  core  of  the  software  implementation,  enabling 
automatic  feature  extraction  and  the  adaptive  processing  of  complex  media  signals.  Specific 
network architectures were selected based on the media type: autoencoders were employed for 
steganographic data compression and recovery tasks; convolutional neural networks (CNNs) were 
utilized for graphic files, where preserving the spatial correlation of pixels is crucial; and recurrent  
neural networks (RNNs), particularly Long Short-Term Memory (LSTM) variants, were applied to 
audio signals, which are characterized by a sequential temporal structure.

All  algorithms were implemented using object-oriented programming principles,  ensuring a 
flexible and modular system design that facilitates code reusability and scalability. Comprehensive 
testing  was  conducted  to  validate  the  performance  of  the  developed  models.  This  evaluation 
included  statistical  assessment  methods,  such  as  error  analysis  and  detection  probability 
calculations,  and  simulation  modeling  within  a  variable  digital  environment.  The  simulations 
incorporated  various  real-world  conditions,  including  the  addition  of  noise,  re-encoding,  and 
truncation of media file fragments.

The experimental  results  confirmed that  integrating statistical  methods and neural  network 
algorithms enables high-accuracy detection of  hidden information,  even in significant  noise or 
aggressive  digital  interference  with  the  host  containers.  Furthermore,  this  combined  approach 
provides adaptability to various media data formats and types, a feature of critical importance in 
real-world  applications  such as  digital  watermarking,  secure  message  storage,  and covert  data 
transmission under censorship or information blockade.4. Main material
As cyber threats escalate and digital communications face increasing scrutiny, steganography is 
becoming  an  essential  tool  for  covert  data  transmission.  In  contrast  to  cryptography,  which 
obscures the content of a message, steganography conceals the existence of the communication 
itself, a critical feature for circumventing surveillance and censorship. Consequently, integrating 
neural networks and statistical methods into steganographic systems is a rapidly advancing area of  
research, significantly enhancing the efficiency of embedding and detecting information within 
audio and graphical containers [7, 9].

The paper presents a mathematical model of a stego system and discusses approaches to stego 
synthesis and stego analysis, particularly using autoassociative, convolutional, and feed-forward 
neural networks [5–9]. The basis of functioning is formalized through a pair of functions. F 1 and 

F 2, F 1 (z ,d ) is responsible for embedding a message d  in a container z , а F 2 (~z ) is responsible for 
its recovery while minimizing distortion:

z =F 1 (z ,d ) , |z −~z |→ min , (1)
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d =F 2 (~z ) , |d −
~
d |→ min .

where F 1 is the embedding function, F 2 is the extraction function. Eq. (1) describes a generalized 

steganographic model in which a function modifies a container z , F 1 with an embedded message d , 

and  the  inverse  function  F 2 allows recovery of  this  message  [5–7].  Within  the  framework of 

steganography, the main condition is to minimize the distortion of the container  |z −~z |,  which 

ensures the invisibility of the embedded data, as well as the accuracy of extraction  
~
d ≈ d , which 

ensures the reliability of transmissions.
Fig. 1 shows the architecture of a two-component neural system for steganography: model (a)  

implements the embedding of messages in a container vector with minimal distortion using a two-
layer auto-associative network [9], and model (b) is a feed-forward neural network that classifies 
hidden content based on statistical and structural deviations, learning from “clean” and modified 
containers [6,  10]. For efficient information embedding, it is advisable to use a two-layer auto-
associative neural network with the number of neurons in the hidden layer equal to the container 
dimension  g =n (Fig.  1a).  This  architecture  ensures  compression,  adaptation  to  the  digital 
environment  (audio  or  graphics),  and  resistance  to  attacks.  For  information  extraction,  feed-
forward neural networks are used (Fig. 1b), which implement a binary decision rule necessary for  
message reconstruction [7].

Figure  1:  Architecture  of  a  neural  steganography  system:  (a)  auto-associative  network  for 
embedding a message, (b) feed-forward network for extracting a message.

In digital steganography, there is a growing interest in intelligent models that facilitate both 
adequate concealment and accurate detection of information embedded within digital containers.  
This encompasses steganographic synthesis (the embedding of hidden data) and steganalysis (the 
detection of hidden content), which are increasingly implemented using artificial neural networks 
of various architectures [9,  11]. Convolutional Neural Networks (CNNs) excel at identifying local 
anomalies in images and audio spectrograms that arise from covert embedding processes [11–13]. 
Autoencoders  enable  message  concealment  within  their  latent  representations  with  minimal 
container distortion, proving effective in both graphic and audio domains [5, 14]. Recurrent Neural 
Networks (RNNs) are adept at processing sequential data, such as audio and video, by accounting 
for temporal  dependencies,  which are particularly important for dynamic signals.  Deep Neural  
Networks (DNNs) perform multilevel signal transformations, detect latent patterns, and integrate 
diverse features (statistical,  spatial,  spectral)  to classify and identify hidden content [6,  15–17]. 
These advanced architectures allow for the development of adaptive steganographic systems that 
can operate effectively in complex environments with limited a priori information, providing high 
accuracy and robust resistance to steganalysis.

The effectiveness of embedding and recovering hidden data is quantified using several digital  
signal quality metrics. The Peak Signal-to-Noise Ratio (PSNR) measures the degree of container 
distortion  after  message  embedding  [9],  while  the  Structural  Similarity  Index  Measure  (SSIM) 
assesses the perceptual similarity between the original and the modified object [18]. Additionally, 
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the Bit Error Rate (BER) determines the proportion of errors that occur during the reconstruction 
of the hidden message [19]. These metrics facilitate an objective assessment of a steganographic 
system’s quality, particularly its ability to preserve the visual or auditory integrity of the container 
while ensuring the accurate extraction of hidden information.

Fig. 2  illustrates  the  architecture  of  a  neural  network  designed  for  the  steganographic 
embedding and subsequent analysis of audio and image files. The model comprises an input layer, a 
hidden layer  with  g  neurons,  and an output  layer  that  yields  the  modified  container  and the 
recovered message. This core structure is augmented by several specialized modules: a steganalysis 
module for performance evaluation using PSNR, SSIM, and BER metrics; a cryptographic module 
responsible  for  encryption,  key management,  and integrity verification;  and an Explainable  AI 
(XAI) module that utilizes methods such as SHAP and LIME for decision interpretation [11,  12]. 
This integrated design results in a flexible, adaptive, and resilient system with high accuracy and 
operational transparency.

Figure 2: Neural network architecture for steganographic embedding and information analysis.

The  signal  supplied  to  the  input  of  a  neural  network  that  implements  steganographic 
information synthesis (SIS) can be represented as a combined vector [7–9, 14, 20]:

y =( zT

d T )=y 1+y 2 , (2)

y 1=( z 1 , z 2 ,… ,zn ,0 ,… ,0 )T ,

y 2=( 0 ,… ,0 , d 1 ,… ,d m )T ,
(3)

where d ={ d 1 ,… ,d m } is a vector containing the elements of the message to be hidden.

In the case of hiding a complete message, which forms a data sequence d ( p ), p=1 ,… , P , each of 

its  elements corresponds to a separate fragment of  the container described by the vector  z ( p ), 

where p=1 ,… , P  [10, 12]. At the output of the pre-trained neural network, a sequence of modified 

fragments of the container ź ( p ), is formed, which already contains hidden information.
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The  neural  network  is  trained  using  a  back-propagation  algorithm  to  minimize  the  Mean 
Squared Error (MSE) between the original message and the reconstructed data extracted from the 
modified  container.  This  approach  provides  practical  steganographic  synthesis,  especially  in 
processing audio signals and graphic files with high dimensionality and complex structure [10, 13]. 
In addition, considering the container’s local properties, element-by-element embedding increases 
the resistance to detection, including steganalysis attacks based on statistical and neural network 
methods.

However, modern steganalysis can detect even minor deviations in the statistical characteristics 
of  the  signal  resulting  from modifications  during  embedding.  In  particular,  analyzing  residual 
noise, spectral density, and local entropy allows you to form features sensitive to hidden content.  
Neural network steganalysers trained on a large number of examples of both clean and modified 
containers  demonstrate  a  high  ability  to  classify  such  embeddings.  In  this  regard,  testing  for  
resistance to such attacks is necessary to evaluate the effectiveness of any steganography method.

To analyze the regularities of the steganographic information synthesis (SIS) process, within the 
framework of the proposed approach, a statistical model of the container is considered, according 
to which each fragment of the container is considered as a realization of a random vector z , with 
zero mathematical expectation and a known correlation operator [21]:

E [z ]=0 , E [z zT ]=Rz . (4)

The  elements  of  the  sequence  of  the  embedded  message  d  are  modeled  as  independent 

realizations of a binary random variable d i, which does not depend on the container z  and has an 
equal probability distribution:

P ( d i=1 )=0.5 , P ( d i=−1 )=0.5 , E [d i ]=0 , E [d i
2]=σ d

2 =1. (5)

The statistical representation of the container  z  and the message  d  allows us to estimate the 
effect of the embedded information on the signal distribution, which is critical for imperceptible 
embedding without significantly changing the correlation characteristics [11, 15]. To do this, it is 
advisable to use a neural network with the number of neurons in the hidden layer one unit less 
than the input/output dimension (Fig.  1a),  which provides compression and adaptation to data  
statistics [7,  12]. The model of the container as a zero random vector with a known correlation 
operator  allows us to  identify how hidden data changes its  distribution,  which is  the basis  of 
effective steganalysis.

The neural network is trained on a set of realizations of the input vector:

y ( p )=( z ( p )

d ( p ) ) , p=1 ,… , P , (6)

by minimizing the mean square functional of the recovery error:

E =
1
P ∑

p=1

P

(y ( p )−W 2 W 1 y ( p ))
T

( y ( p )−W 2 W 1 y ( p ) ) , (7)

where W 1 and W 2 weight matrices of the neural network [22]. This approach minimizes container 
distortion  and  prevents  detection  of  hidden  information  by  using  modern  steganalysis  tools, 
particularly those based on artificial intelligence and deep learning.

The neural network for SIS functions as an intelligent encoder that learns to embed the message 

d ( p ) into  the  structure  of  the  container  z ( p ) with  minimal  distortion  and  ensuring  reliable 
extraction  [13,  17].  To  detect  data,  a  second  network  is  used  that  performs  classification  by 
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detecting changes in the statistical characteristics of the signal. This combination of architectures  
guarantees high secrecy, decoding accuracy, and attack resistance. Neural network methods allow 
building adaptive, scalable, and invisible steganography systems suitable for information security,  
digital forensics, copyright protection, and media cybersecurity.

The  auto-associative  architecture  minimizes  distortion  and  residual  traces,  preserving  the 
features of the container and balancing between secrecy and quality [22]. Adapting to local signal 
features  forms a  stable  internal  representation capable  of  carrying hidden information.  During 
training, compression is performed with minimal distortion, which allows masking data in audio 
and graphic files without losing visual or acoustic quality. The system preserves the statistical and 
structural  integrity  of  the  container,  providing  effective  and  subtle  hiding  even  in  complex 
multimedia environments.

However, these properties make a container (a multimedia file containing hidden information) 
vulnerable to deep steganalysis, detecting hidden messages by analyzing statistical and structural 
changes in data. Such analysis focuses on detecting minor changes resulting from steganographic 
embedding,  even  if  they  are  subtle  visually  or  acoustically,  but  manifest  themselves  in  high-
dimensional feature spaces (i.e., in many statistical signal characteristics).

For this purpose, spectral filtering methods are used (analysis of the frequency components of 
the signal, for example, using a discrete cosine or Fourier transform), PCA (Principal Component  
Analysis),  which  allows  to  detect  changes  in  the  internal  structure  of  data  by  reducing  their 
dimensionality, and anomaly detection methods (i.e., algorithms that look for unusual or atypical 
deviations from the expected behavior of data).

Particular attention is paid to changes in the distributions of auto-encoder residuals, which are 
the  differences  between  the  input  and  the  reconstructed  signal  in  an  auto-encoder  (a  neural 
network  that  learns  to  compress  and  reconstruct  data).  If  these  residuals  show  systematic  
deviations, it can serve as an indicator of hidden content.

Thus,  even  if  masking  (i.e.,  hiding  information)  is  performed  using  an  auto-associative 
architecture  (an  auto-encoder  that  learns  to  reproduce  itself),  it  still  needs  to  be  tested  for  
resistance  to  modern  steganalysis  algorithms—otherwise,  there  is  a  risk  of  detecting  a  hidden 
message even in a complex multimedia environment.

As  a  result  of  the  theoretical  analysis,  the  following  statement  has  been  proved:  the 
transformation performed by a linear two-layer auto-associative neural network (Fig. 1a) trained 
according to the criterion of minimizing the mean square error is equivalent to the use of a linear  
operator [17, 21]:

W =Ryn Ryn
+ =W 2 W 1 , (8)

where  Ryn is  the  singular  (degenerate)  matrix  formed based on the  sample  covariance  matrix  

between the input data y ( p ), Ryn
+  is its pseudo-inverse matrix in the Moore-Penrose sense, q  is the 

number of neurons in the hidden layer, m+n−q  is the number of discarded (zeroed) eigenvalues in 
the diagonalization process.

Thus, the neural network implements the optimal linear mapping with compression, preserving 
the statistically significant components of the vector  y , which includes the container  z  and the 
message  d  [5,  9,  14,  22]. To evaluate the possibility of recovering hidden data in the process of 
steganographic  synthesis,  the  paper  proposes  a  methodology  for  analyzing  the  statistical 
characteristics of the original vector z  after processing by a neural network [13, 21]. In particular, 
deviations from the original distribution, changes in the covariance structure, and the possibility of 
using steganalysis methods to detect hidden content are evaluated. This approach allows us to form 
a formalized detection profile based on the empirical patterns inherent in modified containers. The 
spectral and autocorrelation analysis will enable us to detect anomalous patterns characteristic of  
the influence of  steganographic embeddings.  Classifiers  trained on feature vectors that include 
changes in entropy and local consistency are also involved in improving the detection accuracy. 
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Thus, steganalysis is essential in assessing the method’s resistance to unauthorized detection of 
hidden information.

The neural network (Fig. 1a) is fed with test signals that model hypothetical states of a hidden  
message [7]:

1. y +=( 0,0 ,… ,0 ,1 )T  is a signal that corresponds to the hypothesis H 1 (presence of bit “+1” 
in the message);

2. y –=( 0,0 ,… ,0 ,−1 )T  is a signal that corresponds to the hypothesis H 2 (presence of the “–1” 
bit).

The output of the neural network generates vectors y + and y –, which can be represented as:

y ±=(m±

d )=W 2 W 1 y ± , (9)

where m± is the mathematical expectation (average values) of the useful signal that corresponds to  
the hypotheses about the value of the hidden bit.

Next, to assess the impact on the structure of the container, we analyze the covariance matrix of 
the output signal (only the first  n components corresponding to the container vector  z ), when a 

random vector y x =( z 1 , z 2 ,… ,zn ,0 )T  is applied. To do this, the matrix is calculated:

~R=W 2 W 1 Ry W 1
T W 2

T , (10)

where  Ry  is the covariance matrix of the input signal. The block part  ⋀ z ,  is extracted from it, 

which corresponds to the submatrix for the container.
As a result, the output signal can be represented as:

z =α m++(1−α )m–+η , (11)

where α =1 for d =1, α =0 for d =−1, and η is a fluctuating noise that models the residual content 
of the container [10, 12]. This expression shows how the structure of the container changes due to 
steganographic  embedding:  the  signal  z  is  the  sum  of  mathematical  expectations  for  the 
corresponding bit  and the noise component [6,  15].  These changes allow us to build adequate 
detectors for detecting embedded information even under distortion. For this purpose, steganalysis 
uses methods for estimating residual noise η, which are key indicators of the presence of a hidden 
message. In particular,  analyzing the moving average, variance, and higher statistical  moments 
allows us  to  identify  atypical  fluctuations  associated with steganographic  activity.  In  addition, 
comparing the empirical distributions of m⁺ and m⁻ will enable us to assess the symmetry of the  
signal and detect shifts caused by embedding. These characteristics are widely used in machine 
learning-based detectors that detect hidden information even at low signal-to-noise ratios.

To recover the hidden bits, it is necessary to perform a binary classification: to determine which 

class a vector z  belongs to based on the mathematical expectations m+ and m–, in the presence of 
noise with a known covariance matrix  ⋀ z .  The neural  network identifies  the message bits  by 

comparing the signal with the typical built-in states.
In  steganalysis,  the classification task is  reduced to the implementation of  an ML equation 

(maximum  likelihood  rule)  that  formalizes  the  optimal  solution:  to  determine  whether  the 

container contains a “+1” or “–1” bit. A neural network trained on the differences between m+ and 

m–,  acts  as  a  stego-decoder.  To  do  this,  we  use  a  network  (Fig.  1b)  that  implements  ML 
classification. With Gaussian noise, the solution is as follows:
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ln ln (v (z ) )=zT R−1 (m+−m–)− 1
2

(m++m–)
T

R−1 (m+−m–)>0 , (12)

where R  is the noise covariance matrix [12, 21, 23]. This ensures the detection of hidden data even 
with partial signal distortion.

The expression determines the error probability when recovering the bits of a hidden message:

P err=P (H 1)+P (H 2)=1−Φ (α ) ,α =0.5 ∙ (m+−m–)
T

R−1 (m+−m–) , (13)

where  Φ (α ) is  the  probability  function  of  the  standard  normal  distribution  [13,  17].  This 

expression quantifies the quality of steganographic concealment: the smaller P err, the more reliably 

the hidden information is  recovered,  even in noise or distortion.  This assessment allows us to 
measure the effectiveness of various steganographic methods in practice objectively.

The probability of erroneous bit recognition, as defined by Eq. (13), serves as a key indicator of 
decoding accuracy under conditions of  uncertainty.  Minimizing this  probability indicates high-
quality  embedding  and robust  resilience  to  attacks,  even  when an  adversary  possesses  partial  
knowledge of  the container  or  the  embedding methodology.  Utilizing a  linear  neural  network 
reduces  the  embedded message’s  amplitude  relative  to  the  training phase,  thereby minimizing 
container distortion without sacrificing decoding accuracy—a critical factor for ensuring stealth.

To  evaluate  the  system’s  robustness,  a  series  of  typical  steganalysis  attacks  was  modeled, 
including  the  introduction  of  noise,  signal  clipping,  spectral  modifications,  and  compression. 
Experiments  simulating  an  active  adversary  with  knowledge  of  the  embedding  technique 
confirmed the system’s high level of imperceptibility when the decoder is configured correctly. 
Attacks  employing  alternative  network  architectures  proved  ineffective,  primarily  due  to  the 
challenges  of  data  sampling  and  the  extensive  training  time  required,  which  significantly 
complicates reverse engineering efforts [10]. The system demonstrates remarkable adaptability to 
real-world  distortions  (e.g.,  compression,  filtering,  and  signal  conversion).  It  maintains  high 
recovery accuracy even with a message amplitude of 0.5 and noise levels up to 10⁻⁴, provided it has 
been trained on data with comparable characteristics.

For stable model training and high accuracy, preliminary signal normalization is recommended. 
High-resolution and lossless formats, such as BMP, TIFF, and PNG for graphics, and WAV or FLAC 
for audio, are ideally suited for this purpose. In an experiment using 24-bit PNG images, a linear  
neural network achieved a bandwidth of 0.3 bits per pixel while maintaining a PSNR greater than 
50 dB, a visually imperceptible distortion level [19]. It is advisable to employ deeper architectures, 
such as convolutional autoencoders (CAEs) and transformers, to enhance efficiency and security 
further. These models can adapt to different media types and conceal more complex messages with 
minimal distortion.

Fig. 3 illustrates the logical framework for evaluating the robustness of a neural network-based 
steganography method. The process commences with selecting a host container (either an audio or 
image file) into which the neural network embeds data. Subsequently, the system is subjected to 
simulated steganalysis attacks, including introducing noise, cropping, and compression, as well as 
modeling the actions of an active adversary. Following an attempted decoding of the embedded 
data, the accuracy and throughput of the system are evaluated. Its parameters are systematically 
adjusted if the attack fails to disrupt the message. The influence of the embedded signal’s amplitude 
is  also  analyzed,  and  the  entire  procedure  is  iterated  for  various  container  types  to  ensure 
comprehensive validation.

Fig. 4 illustrates the architecture of a system designed for steganographic synthesis and analysis 
using neural networks.  It  comprises distinct modules for container formation,  data embedding, 
attack simulation, message decoding, and performance evaluation. The neural network training 
module is a key component that adapts the system to the specific media type being processed 
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(audio or graphics).  The interaction between these modules facilitates a comprehensive testing 
cycle to evaluate the system’s robustness against various steganalysis attacks.

Figure 3: Diagram of the algorithm for assessing the stability of the neural network steganographic 
method.

Figure 4: Component diagram of the architecture of the neural network steganographic synthesis 
and analysis system.

Fig. 5 illustrates the sequence of operations within the steganographic experiment, detailing the 
interaction logic among the system’s modules. The process begins with the researcher defining the 
experimental  parameters,  after  which  a  host  container  (audio  or  graphic)  is  prepared  and the 
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message is embedded. Subsequently, the container is subjected to simulated steganalysis attacks, 
such as the introduction of noise, cropping, and compression. The decoding module then attempts 
to extract the embedded data. Finally, key performance metrics—accuracy, PSNR, and efficiency—
are automatically recorded and compiled into a report for subsequent analysis.

Figure 5: Diagram of the sequence of interaction between the components of the neural network 
steganographic analysis system.

This  study  introduces  a  hybrid  algorithm  for  detecting  steganographic  embeddings,  which 
combines the neural network-based reconstruction of a container’s inherent statistical structure 
with the parametric monitoring of any resulting changes [7–9]. The methodology is founded upon 
an autoregressive (AR) model of the signal or image. This model is initially established by a linear 
neural network trained on a dataset of unmodified containers. The subsequent detection of hidden 
data is accomplished by analyzing any deviations from the established AR model’s predictions.

Theoretical  studies  prove  the  convergence  of  the  network  weights,  which  guarantees  the 
accuracy  of  the  forecast  and  the  formation  of  a  profile  of  normal  behavior  [13,  18,  21,  22]. 
Deviations from its record concealment, even without knowledge of a specific algorithm. Thus, the 
neural network acts as a predictor and an adaptive detector of hidden information. In steganalysis, 
this allows for the detection of hidden embeddings by comparing the actual behavior of the signal  
with the expected profile formed based on clean containers. In particular, a sharp increase in the 
prediction error or a shift in the feature vector may indicate the presence of a hidden message.  
Such  approaches  efficiently  analyze  high-dimensional  data,  where  classical  statistical  methods 
show  insufficient  sensitivity.  Thus,  neural  networks  play  a  key  role  in  modern  steganalysis 
systems, accurately identifying steganographic influences.

In  the  context  of  steganography,  detecting  the  fact  of  embedding  hidden  information  is 
formalized to fix the moment of statistical imbalance in the analyzed digital sequence [11, 15]. We 
consider a dataset  { z t }, which is modeled by the conditional probability density  P θ ( z t ), where 

θ ∈ R r  is a vector of parameters describing the container’s normal (unchanged) state. The task is to 

detect  the  moment  t 0,  when  the  parameter  θ 0 changees  to  θ 1,  which  is  a  sign  of  covert 

steganographic interference. Before  t 0 the data distribution corresponds to the “clean” container 

and  is  described  by the  density  w ( z t |θ 0 ),  after—to  the  modified  container  with  the  message 

already embedded,  which is  described as  w ( z t |θ 1 ),  where  θ 1 ≠ θ 0.  Thus,  embedding a  hidden 

message is considered a statistical shift in the parametric space of the model, and its detection is  
the main task of intelligent steganalysis.

Contemporary research, particularly the work of Michel Basseville and Alexander Tartakovsky 
[12,  23], employs a modified cumulative sum (CUSUM) algorithm [12] to detect subtle changes 
induced by steganographic embedding. This algorithm, which is based on the Le Cam asymptotic  
decomposition, accurately identifies the point at which structural changes occur in the parameters 
of a digital signal. Within the context of steganalysis, CUSUM is a tool for monitoring the stability  
of  the  signal’s  structure;  when  an  embedded  message  alters  the  statistical  characteristics,  the 
algorithm signals this anomaly. This approach enables the detection of the concealment itself and 
allows  for  the  localization  of  its  point  of  insertion.  This  capability  is  critical  for  constructing 
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resilient digital security systems that do not require prior knowledge of the specific embedding 
algorithm used.

The formula for the accumulated statistics is as follows:

g t =[g t −1+∆ g t ]
+ , g 0=0 , t a=t 0−na+1 , (14)

∆ g t =∑
i=1

r

c i ∙
∂ ln ln P ( z t |θ )

∂ θ i

, (15)

where  [x ]+=max ⁡( 0 , x ),  g t  is  the value of CUSUM at step  t ,  h is  the threshold for deciding 
whether there are changes in the model, t a is the moment of fixing the imbalance, na is the number 

of steps from the last reset of g t  to fixation.

The threshold h ( t ) is determined dynamically:

h (t )=C +ln ln (t )+2 ln ⁡( ln ln (t ) ) , (16)

where  C  is an empirically selected constant that considers the trade-off between sensitivity and 
false alarms.

In the context of steganalysis, the cumulative sum (CUSUM) algorithm is utilized to monitor the 
statistical stability of a digital signal [17,  18]. Suppose a hidden message alters the parameters of 
the signal’s underlying model. In that case, the CUSUM statistic registers these deviations, enabling 
the embedding detection even without prior knowledge of the specific method employed. This 
approach  facilitates  real-time,  adaptive  steganalysis  and  offers  significant  flexibility  when 
encountering unknown concealment techniques.

The work of the neural network algorithm for detecting steganographic embedding includes 
three main stages [10]:

1. Formation of an AR model of the container by training a neural network on “clean” data to 
create a standard state benchmark.

2. Evaluation of deviations using the CUSUM algorithm, which captures structural changes 
likely caused by SIE.

3. Detecting SIEs by analyzing the growth of the prediction error: if a neural network trained 
on “clean” containers suddenly predicts the following elements poorly, it signals a possible 
hidden embedding [14, 23, 24].

In steganalysis, even a simple neural network can detect hidden embeddings effectively [21]. In 
its  most  basic  implementation,  the network approximates  an autoregressive (AR) signal  model 
through a single-layer linear structure that predicts the subsequent state of a container based on its  
preceding values. The number of inputs is determined by the parameter d (the dimension of the 
input vector), while the number of outputs, l, corresponds to the length of the predicted vector. 
This configuration allows for capturing statistically significant deviations caused by the embedding 
process,  serving  as  a  sensitive  indicator  of  signal  alterations  without  the  need  for  complex 
calculations or prior knowledge of the hidden data’s characteristics.

The input influence matrix is defined as [9]:

Y = {y 1 , y 2 ,… ,y N −S } ,

y i=( s i , s i+1 ,… , s i+S −1 ) , (17)

where  S  is the length of the sliding window,  s i is the signal values can be either primary data 
(pixels, samples) or secondary features (histograms, entropy, etc.).

The output of the neural network is a vector of predicted values, which is described by a vector  
autoregressive (VAR) equation of the following form:
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ŷ t =∑
j =1

S

W j y t − j +A+ηt , (18)

where t =S ,S +1 ,… , N  and W j are the weighting matrices of the neural network that realize the 

passage of the input signal y t − j , A is the vector of bias in the neurons, ηt  is the vector of prediction 

error,  with  a  mathematical  expectation  of  zero  and  an  unknown  covariance  matrix  Rη.  The 

parameters  W j and  A are  determined  in  the  process  of  training  the  neural  network  on  the 
reference  set.  In  the  context  of  steganography,  this  equation  allows  modeling  the  expected 
behavior of a digital container without embedded data, creating a reference predictive model [13, 
17]. Any significant deviation between the actual signal and the predicted vector ŷ t  may indicate 
interference caused by covert embedding [6,  15]. Thus, the neural network acts as a detector of 
steganographic influence, recording anomalies that violate the statistical sequence of the signal.

To detect steganographic embedding, we analyze the root mean square error of predicting the 
vector y t  based on a neural network trained on “clean” containers. A sudden increase in this error 
signals the possible insertion of hidden information, which is recorded using the cumulative sum 
statistic [10]. This approach allows for detecting steganographic influence without knowledge of 
the embedding algorithm. The accumulation of errors over time ensures high sensitivity to even 
minor changes in the signal structure characteristic  of  data masking,  which allows timely and 
accurate detection of hidden information in audio and graphic containers.

Fig. 6 outlines the process for detecting steganographic embeddings within audio or image files 
using a  neural  network.  Initially,  the  network  is  trained  on  a  dataset  of  unmodified  (“clean”)  
containers to establish a baseline model of their natural statistical properties. Subsequently, a new 
container is analyzed using a sliding window methodology. An input vector is formed within each 
window,  the network predicts  the subsequent signal  element,  and the root  mean square error  
between the expected and actual values is computed. The cumulative sum (CUSUM) algorithm is  
activated if this prediction error exceeds a predetermined threshold. The CUSUM algorithm then 
accumulates these errors to identify statistically significant deviations, thereby signaling a potential 
hidden embedding.

Figure  6:  Stages  of  the  neural  network  algorithm  for  detecting  steganographic  information 
embedding.
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Fig.  7  illustrates the mean square error (MSE) dynamics generated by the neural  network’s 
signal  prediction.  For  the  initial  50  samples,  corresponding  to  the  unmodified  portion  of  the 
container,  the  MSE  remains  consistently  low.  However,  immediately  after  the  point  of 
steganographic embedding, a sharp increase in the MSE is observed. This spike signifies a change 
in the signal’s statistical properties and is registered as an indicator of steganographic modification.

Figure 7: Graph of changes in forecast error under the influence of steganographic embedding.

The comparative evaluation is conducted under the key assumption that none of the methods  
possesses a priori information regarding the concealment technique. This condition ensures an 
objective assessment of the versatility and effectiveness of the hybrid NN+CUSUM approach in 
detecting the presence of  steganography,  regardless of  its  specific  implementation.  Within this 
framework, steganalysis is predicated on analyzing statistical deviations from the original signal’s  
properties, which are recorded using the cumulative sum algorithm—a sensitive tool for change 
detection. When combined with a neural network that establishes an adaptive baseline profile of 
normal signal behavior, this methodology facilitates the detection of even subtle embeddings. This 
hybrid approach minimizes false positive and false negative rates when identifying hidden content. 
Notably,  testing  on  independent  datasets  has  demonstrated  superior  performance  in  scenarios 
where the type of steganographic method or its parameters is available.

Table 1
Comparison of methods for detecting hidden information

Method Accuracy, % BER, % PSNR, dB

Proposed NN+CUSUM 93.8 1.5 50.2
Classical LSB 75.4 4.2 38.4
STFT-based DNN (Kreuk et al.) 88.6 2.7 45.1
StegoHound (Ghanem et al.) 91.2 1.9 47.6
Statistical χ² + Calibration 82.7 3.8 41.3

The  proposed  method  achieves  superior  performance,  demonstrating  the  highest  accuracy 
(93.8%), the lowest bit error rate (1.5%), and the highest peak signal-to-noise ratio (PSNR) of 50.2 
dB.  These  results  confirm  the  hybrid  system’s  superiority  over  traditional  and  contemporary 
methods.

Figure  8  presents  a  comparative  analysis  of  five  steganalysis  methods  across  three  key 
performance metrics: detection accuracy (%), bit error rate (BER, %), and peak signal-to-noise ratio 
(PSNR, dB). The proposed hybrid method, which integrates a neural network with the CUSUM 
algorithm, exhibits the highest detection accuracy (93.8%), the lowest BER (1.5%), and a superior  
PSNR of  50.2  dB.  In  contrast,  the classical  Least  Significant  Bit  (LSB)  method yields  markedly 
inferior results, while other modern approaches, including StegoHound and the STFT-based DNN, 
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demonstrate comparatively lower efficacy. These findings underscore the advantages of integrating 
statistical analysis with neural networks for developing robust and covert steganographic systems.

Figure 8: Comparison of steganography analysis methods in terms of detection accuracy, BER, and 
PSNR.

The procedure for detecting hidden information embedded in audio and graphic files is based on 
the hypothesis that steganographic influence causes statistically significant changes in the signal 
structure.  The proposed approach combines an autoregressive model,  a  neural  network,  and a 
cumulative sum (CUSUM) algorithm to detect anomalies.

In the first stage, a prediction model is formed in the form of a vector autoregressive model:

ŷ t =∑
i=1

S

W i y t −i+A , (19)

where y t −i is the input vector, W i is the neural network weight matrices, A is the shift vector, S  is 
the sliding window length.

After the model is formed, the current value is predicted and the error is calculated:

ε t =y t −ŷ t . (20)

The root mean square error is used to evaluate the degree of deviation:

MSE t =
1
l ∑

j =1

i

ε 2
t , j . (21)

These values are fed into the CUSUM algorithm, which accumulates deviation statistics using 
the formula [17, 23]:

g t =( 0 , g t −1+MSE t −μ 0−δ ) , (22)

where μ 0 is the average error when working with “clean” containers, δ  is the sensitivity threshold. 

The  values  of  the  mean  square  error  MSE t  and  the  cumulative  sum  g t  allow  us  to  detect 
steganographic  embedding when a  model  trained  on “clean”  containers  unexpectedly  loses  its 
ability to predict subsequent values accurately. This indicates that the signal structure has been 
altered by a hidden message.

A violation is recorded if the accumulated statistics exceed the threshold g t ≥ h .
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The start and end of exposure are recorded under the following conditions:

t start=arg g t>0 , t end=arg g t =0. (23)

To  enhance  the  effectiveness  of  the  analysis,  secondary  characteristics  can  be  used,  in 
particular, the, χ 2 is test for analyzing lower bits:

χ 2=∑
i=1

k ( O i−E i )
2

E i

, (24)

where O i is the number of observations, E i are expected values.
False alarm probability assessment:

P FA (h )=P ( g t ≥ h ∨H 0 ) . (25)

Average detection delay time:

E [τ −t 0∨τ >t 0]→ min , (26)

where τ  is the moment of fixation, t 0 is the actual start time of the steganographic impact.
The  proposed  model  demonstrates  high  accuracy  in  detecting  and  localizing  hidden 

information, effectively adapting to conditions of a priori uncertainty. The model facilitates the 
precise  identification  of  embedding boundaries  by  integrating  neural  network  processing  with 
classical  statistical  control.  Formalized  quality  metrics,  including  delay  time  and  false  alarm 
probability, validate its suitability for implementation in real-world steganographic systems.

This paper details the architecture and implementation of a software framework for embedding 
and detecting hidden information within graphic and audio containers. The core of the system, 
implemented in C++, integrates classical steganographic methods with proprietary algorithms to 
form  a  multi-layered  system  for  steganography,  steganalysis,  and  neural  network  modeling. 
Particular  attention  is  given  to  the  steganalysis  module,  which  employs  a  hybrid  feature  set 
comprising  spectral  coefficients,  residual  noise  patterns,  and  neural  network  activations.  This 
approach enables the system to detect hidden information even when sophisticated concealment 
techniques are used to preserve high visual or acoustic fidelity. Furthermore, integrating a trained 
neural  network  facilitates  the  dynamic  adaptation  of  detection  thresholds  according  to  the 
container  type  and  level  of  distortion.  This  methodology  demonstrates  high  efficacy  in  test  
scenarios and is suitable for the automated verification of multimedia content integrity.

The analytical component of this framework is based on the combined application of statistical 
and  structural  steganalysis  methods.  It  integrates  several  techniques,  including  detecting 
autoregressive model imbalances, comparing file service block signatures, and using the χ² (chi-
squared) criterion for analyzing the least significant bits of graphic and audio signals. Support for 
various  formats,  including  BMP,  PNG,  GIF,  JPEG,  MP3,  WAV,  HTML,  and  TXT,  ensures  its 
versatility. A key feature of this approach is integrating these classical methods with a multilayer 
perceptron (MLP), which performs signal prediction and anomaly detection.

To  support  model  training  independently  of  external  machine  learning  frameworks,  a 
proprietary library was developed that enables the creation and training of MLPs, featuring flexible 
parameterization and an adaptive gradient descent algorithm.

To  validate  its  effectiveness,  modules  were  developed  to  simulate  standard  concealment 
techniques,  including  least  significant  bit  (LSB)  modification,  pseudo-random  data  dispersion, 
context-aware embedding, and variable embedding densities. In experiments conducted on BMP 
files with embedding densities up to 25%, a detection accuracy exceeding 90% was achieved, with a 
Type II error rate below 1%. Integrating statistical and neural network approaches enabled the 
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detection  of  even  randomly  distributed  embedded  data.  Furthermore,  the  CUSUM  algorithm 
identifies  the  onset  and  duration  of  statistical  violations,  thereby  accurately  localizing  the 
embedded  segments.  This  research  culminates  in  an  autonomous  system capable  of  detecting 
hidden messages in digital media without prior knowledge of the embedding algorithm. Its efficacy 
has been confirmed across various graphic and audio file formats, and the system’s architecture is 
extensible for future applications in reverse analysis and digital forensics.

The  graph  in  Fig. 9  presents  the  results  of  an  experimental  study  on  the  dependence  of 
steganographic detection effectiveness on the threshold value, h, in the CUSUM algorithm. The 
data illustrate that as h increases, the False Negative Rate decreases significantly; however, beyond 
a certain point, this is accompanied by a gradual increase in the False Positive Rate. The highest 
detection accuracy is achieved when an optimal balance is struck between these two error rates, 
which guides the selection of the ideal threshold, h, for the steganalysis system.

Figure 9: Experimental dependence of the effectiveness of detecting steganographic embedding on 
the threshold value of the CUSUM algorithm.

Fig. 10 presents a data flow diagram (DFD) illustrating a steganographic system that integrates a 
neural network with the cumulative sum (CUSUM) algorithm for detecting hidden information 
within digital containers. The process is initiated when a user uploads a container to the “Analyze 
Container” module, which passes the data to the “Predict Signal” block. The neural network then 
computes the prediction error between the expected and actual signal values.  These errors are 
subsequently  analyzed  by  the  “Compute  CUSUM  Statistics”  module  to  identify  statistically 
significant deviations.

Subsequently,  the Decision Module determines the presence of  hidden data;  the outcome is 
recorded in the Result Log and conveyed to the user. Additionally, the system utilizes a reference  
database of unmodified containers (the Clean Container Database) and an “Embed Hidden Data” 
module  to  simulate  various  embedding  scenarios.  This  architecture  supports  a  comprehensive 
operational cycle, from generating steganographic containers to detecting hidden content, and is 
adaptable to audio and graphic data.

During  steganalysis,  the  system  compares  the  characteristics  of  the  container  under 
investigation with baseline statistics from the Clean Container Database, a process that enables the 
detection of even minimal deviations. A multifactorial analysis is conducted to enhance accuracy, 
incorporating prediction residuals, spectral features, and neural network responses obtained during 
the modeling phase. 
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Figure 10: Steganalysis system using a neural network and the CUSUM algorithm.

The  final  determination  by  the  Decision  Module  is  based  on  an  integrated  metric  that  
aggregates  the  outputs  from multiple  detection algorithms.  Consequently,  the system provides 
highly  accurate  detection  of  hidden  information,  independent  of  the  specific  steganography 
algorithm.

5. Discussion

The  results  of  this  study  confirm  the  high  efficacy  of  a  hybrid  approach  for  steganographic 
embedding and detection.  This  approach integrates  neural  network modeling with a statistical  
change-detection  algorithm,  specifically  the  Cumulative  Sum  (CUSUM)  method.  This  synergy 
allows the system to account for the deep structural features of the media container, as modeled by 
the artificial neural network, while simultaneously identifying anomalous deviations through the 
statistical accumulation of probabilistic features. Compared to traditional methods such as Least 
Significant Bit (LSB) substitution, chi-squared (χ²) analysis, or simple histogram comparison, the 
proposed system demonstrates markedly superior performance. This is  evident in its enhanced 
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accuracy of hidden message detection and improved key quality metrics,  including a lower Bit  
Error Rate (BER) and a higher Peak Signal-to-Noise Ratio (PSNR).

The  proposed  hybrid  scheme,  which  integrates  auto-associative  neural  networks  for 
constructing  an  adaptive  latent  embedding  space  with  the  CUSUM  algorithm  for  detecting 
deviations in temporal or spatial signal structures, demonstrated superior performance over other 
contemporary  methods.  These  include  the  Short-Time  Fourier  Transform  with  Deep  Neural 
Network (STFT-DNN) approach and StegoHound,  a  prominent  image steganalysis  system.  Key 
advantages  of  this  integrated  methodology  include  the  high-fidelity  preservation  of  the  host 
container, robustness against common attacks such as JPEG compression and noise addition, and 
enhanced  adaptability  achieved  through  a  flexible  embedding  process  that  conforms  to  the 
container’s intrinsic characteristics.

A key innovation of this work is the integration of Explainable Artificial  Intelligence (XAI) 
mechanisms,  specifically  through  the  application  of  tools  such  as  SHAP  (SHapley  Additive 
exPlanations)  and  LIME  (Local  Interpretable  Model-agnostic  Explanations).  This  integration 
enables the system to automatically detect hidden messages and provide visual interpretations for 
its classification decisions, thereby significantly enhancing the model’s transparency. This feature 
is particularly valuable in fields such as digital forensics, where evidence-based explanations for 
system outputs are a critical requirement.

The  developed  architecture  is  modular  and  scalable,  allowing  for  adaptation  to  various 
multimedia  container  formats—including  PNG,  JPEG,  WAV,  MP3,  and  FLAC—and  resilience 
against  different  types  of  interference,  such as  noise  attacks,  re-encoding,  clipping,  and signal 
transformations.  The  flexibility  of  this  implementation  facilitates  the  independent  updating  of  
system components, enabling changes to the embedding strategy, the integration of new detector  
types, or connection with real-time stream processing tools.

Nevertheless, several limitations must be considered for practical implementation. These include 
the significant computational load imposed on processors and graphics accelerators, particularly 
during the model training phase,  and the system’s sensitivity to the quality of  the input data. 
Specifically, data artifacts, unstable sampling, or unrepresentative examples can adversely affect 
detection accuracy.  Therefore,  future  work will  focus on expanding the system to  incorporate 
transfer  learning,  enabling  the  reuse  of  pre-trained  models  in  novel  contexts,  and  integrating 
federated learning to enhance data confidentiality and facilitate distributed model training without 
centralized data collection.

The  primary  advantage  of  the  proposed  method  is  its  adaptability  to  diverse  digital 
environments.  This  quality ensures the adequate concealment of  transmitted information,  high 
detection accuracy,  configurational  flexibility  for  various  containers,  and the capacity  for  self-
learning and automatic adaptation. These characteristics provide a foundation for developing a 
new generation of steganographic systems capable of operating within a highly dynamic digital  
environment characterized by an escalating number of attacks and a growing demand for solution 
transparency.

This  paper  proposes  a  steganographic  embedding  method  that  integrates  neural  network 
modeling with statistical  monitoring.  A multilayer  perceptron architecture  was selected as  the 
optimal framework for concealing and detecting information, based on its balance of accuracy, 
adaptability, and noise immunity. A statistical embedding model was developed that considers key 
container characteristics - such as type, bit depth, and signal distribution—with BMP, PNG, and 
WAV formats identified as optimal for achieving the best performance. A steganalysis module was 
implemented to evaluate the method’s effectiveness by comparing the characteristics of original 
and  modified  containers.  Specifically,  this  module  analyzes  spectral  features,  residual  noise 
patterns, and histogram alterations that indicate a potential embedding. The neural network model 
adapts  to  these statistical  changes by learning to  differentiate  between typical  and anomalous 
signal variations. This integrated approach ensures high accuracy in detecting hidden information, 
even within complex multimedia environments.
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Conclusions

The  convergence  of  the  neural  network’s  weight  coefficients  during  the  approximation  of 
autoregressive models is established, ensuring the creation of a baseline profile for normal signal 
behavior.  A  hybrid  detection  algorithm  is  proposed,  which  integrates  neural  network-based 
prediction  with  cumulative  sum  (CUSUM)  statistics,  enabling  the  precise  identification  of  an 
embedding’s  onset  and  duration.  This  approach  allows  for  detecting  hidden  information  by 
analyzing deviations between the predicted and actual signal values, without prior knowledge of 
the  specific  steganography method  employed.  The  CUSUM algorithm effectively  identifies  the 
cumulative signal structure changes characteristic of steganographic modification. When combined 
with an adaptive neural network, this technique facilitates the detection of the concealment itself  
and the estimation of its temporal or spatial localization within the data.

A  software  framework  was  developed  using  the  Borland  C++Builder  6.0  environment  to 
implement  this  method.  This  system  supports  the  processing  of  graphic  and  audio  files, 
accommodates various embedding schemes (including LSB and hybrid approaches), and integrates  
statistical  and  neural  network  algorithms.  In  experiments  conducted  on  BMP  files  with  an 
embedding density of 25%, the system achieved a detection accuracy exceeding 90% with an error 
rate of less than 1%.

The proposed method demonstrates high efficacy in detecting hidden data and is well-suited for 
applications in digital forensics, multimedia stream protection, and content integrity verification. 
Future development will focus on integrating deep learning architectures, support for additional 
formats, and incorporating Explainable AI (XAI) to interpret detected anomalies. This will facilitate 
the creation of transparent steganalysis systems, wherein model decisions are justifiable through 
key  signal  features.  The  integration  of  deep  convolutional  or  recurrent  neural  networks  will 
enhance the capability for real-time detection of hidden content in streaming data. Furthermore, 
extending support to modern formats such as HEIF, FLAC, and WebP will broaden the method’s 
applicability in contemporary media environments. Consequently, this approach has the potential 
to form the basis for a new generation of adaptive digital security systems characterized by a high 
degree of trustworthiness and automation.
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