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Abstract
The paper explores the challenges and solutions related to preparing SSH for a post-quantum world,  
including  the  inherent  risks  posed  by  quantum-capable  adversaries,  the  limitations  of  existing 
cryptographic  algorithms,  and  the  practical  steps  required  to  integrate  post-quantum  and  hybrid 
mechanisms into real-world SSH deployments. The rapid development of quantum computing poses a  
significant threat to classical cryptographic algorithms that secure today’s digital infrastructure. Among 
the protocols at risk is SSH (Secure Shell), a critical component of secure remote administration across 
countless systems. It assesses the current state of post-quantum cryptography (PQC) integration in the 
official  OpenSSH  project  and  its  experimental  forks,  particularly  emphasizing  hybrid  key  exchange 
mechanisms that combine classical and quantum-safe algorithms. The role of supporting libraries, such as 
liboqs, is examined in enabling these cryptographic enhancements. In addition, the paper offers practical,  
actionable  recommendations  for  infrastructure  and  security  teams  —  including  cryptographic  asset 
inventory, deprecation of vulnerable RSA keys (especially those ≤2048 bits), enforcement of key rotation 
policies,  and  controlled  testing  of  PQC-enabled  SSH  implementations  in  sandboxed  or  isolated 
environments.
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1. Introduction

The development of  quantum computing profoundly challenges the cryptographic basis  of  the 
current  IT infrastructure.  Modern cryptography algorithms are  built  on complex mathematical 
functions  and  principles  to  provide  strong  security  and  protect  sensitive  information  from 
unauthorized access and attacks [1]. Algorithms like RSA and ECDSA, which secure everything 
from online banking to remote server access, could be rendered obsolete by sufficiently powerful  
quantum computers.  These algorithms rely on mathematical problems that are computationally 
hard for classical computers—specifically, integer factorization in the case of RSA and the elliptic  
curve discrete logarithm problem for ECDSA. Under current assumptions, these problems would 
take  thousands  of  years  to  solve  with  traditional  computing  power,  making  them  practically 
secure.  However,  the development of  large-scale quantum computers  fundamentally alters  this 
landscape.  As  a  result,  the  security  community  is  shifting  its  focus  toward  post-quantum 
cryptography—a set of cryptographic algorithms designed to withstand attacks from classical and 
quantum computers [2–6]. These include lattice-based, code-based, hash-based, and multivariate 
polynomial cryptographic approaches. The U. S. National Institute of Standards and Technology 
(NIST) is in the final stages of standardizing post-quantum algorithms, such as CRYSTALS-Kyber 
for key encapsulation and CRYSTALS-Dilithium for digital signatures [7–9].

SSH (Secure Shell), a cornerstone protocol for secure remote administration, is among the most  
widely used tools affected by this shift. SSH is the de facto standard for accessing and managing 
servers, network devices, cloud workloads, and IoT systems—especially in Unix-like environments.  
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It  provides  encrypted  channels  over  untrusted  networks  and  relies  heavily  on  public-key 
cryptography for authentication and secure key exchange.

The question of how to future-proof SSH and the larger IT infrastructure against the upcoming 
wave of quantum-enabled attacks emerges as organizations prepare for the post-quantum era. This 
is not merely a theoretical concern—it’s a strategic imperative.

SSH, being a critical component in managing servers, cloud instances, and network appliances, 
is  particularly at  risk.  A compromise in SSH authentication could lead to unauthorized access, 
lateral movement across systems, and full-scale infrastructure breaches. Therefore, rethinking and 
redesigning  cryptographic  mechanisms  in  SSH  is  necessary  in  building  quantum-resilient  IT 
systems.

SSH security is one of the first crucial steps to post-quantum resilience. Now is the time for 
organizations  to  assess  post-quantum  cryptography  options,  comprehend  their  trade-offs,  and 
organize smooth transitions that don’t interfere with current processes.  If  this transition starts  
earlier, systems will be more robust and flexible when the quantum tipping point occurs.

2. SSH as a high-risk protocol in a post-quantum world

SSH (Secure Shell)  is  a  cryptographic protocol  that  connects remote computers securely to an  
insecure network. It’s widely used by system administrators, developers, and DevOps engineers for 
remote  administration,  file  transfers,  and  tunneling.  SSH  relies  on  asymmetric  cryptography 
(public-key cryptography) for authentication and symmetric encryption for secure communication.

The Transport Layer in the SSH protocol establishes a secure and confidential communication 
channel between the client and the server. All data exchanged between the client and server is 
encrypted using symmetric encryption algorithms (e.g.,  AES, ChaCha20).  This ensures the data 
remains  unreadable  to  unauthorized  parties  even  if  the  communication  is  intercepted.  The 
transport layer uses Message Authentication Codes (MACs), such as HMAC with SHA-2, to verify 
the integrity of the transmitted data. This ensures that the data has not been tampered with during 
transit  [10].  Before exchanging sensitive data, the client verifies the server’s identity using the 
server’s host key. This prevents man-in-the-middle (MITM) attacks by ensuring the client is talking 
to the intended server.  The layer facilitates a  secure key exchange (e.g.,  via  Diffie-Hellman or 
Elliptic Curve Diffie–Hellman), allowing both parties to agree on a shared session key without 
transmitting it over the network.

The Authentication Layer in the SSH protocol is responsible for verifying the client’s identity to 
ensure that only authorized users can access the server. Once the Transport Layer has established a 
secure, encrypted connection, the server must confirm that the connecting client is legitimate. This 
layer supports multiple authentication methods, offering flexibility and strong security: Public Key 
Authentication,  Password  Authentication,  Keyboard-Interactive  Authentication,  Multifactor 
Authentication, and GSSAPI/Kerberos Authentication.

The  most  common  and  secure  method  is  Public  Key  Authentication.  The  client  proves 
ownership of a private key corresponding to a public key pre-approved and stored on the server. 
The server issues a challenge; only a client with the correct private key can decrypt and respond 
appropriately.

The Connection Layer in the SSH protocol operates on top of the secure and authenticated 
transport established by the lower layers,  allowing multiple logical communication channels to 
coexist  within a single SSH session.  This layer provides a flexible and efficient framework for 
managing  different  activities  over  the  same  encrypted  tunnel.  The  Connection  Layer  enables 
multiple  independent  channels  (e.g.,  shell  sessions,  file  transfers,  port  forwarding)  to  run 
simultaneously within one SSH connection. Each channel behaves like a virtual stream with its 
flow control and window size. It handles opening, closing, and terminating channels cleanly, along 
with data flow and error signaling between client and server. All these logical channels operate 
over a single encrypted SSH connection, eliminating the need to open multiple TCP connections 
for separate tasks.
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SSH is deeply integrated into automation tools, scripts, and infrastructure-as-code deployments. 
A  compromise  of  a  single  SSH  private  key  could  cascade  into  full  access  to  production 
environments, allowing for lateral movement and privilege escalation. In post-quantum terms, one 
broken key may equal full systemic compromise.

Figure 1: SSH mechanism

Unlike ephemeral session keys, SSH keys often remain valid for years. Many organizations use 
static key-based authentication with poor or no key rotation practices. This makes SSH particularly 
vulnerable to “harvest now, decrypt later” attacks, where encrypted session data and public keys 
are  collected today,  intending to  decrypt  and exploit  them once quantum decryption becomes 
viable.

From a formal security standpoint, SSH is analyzed under the Authenticated and Confidential 
Channel  Establishment  (ACCE)  model—a  framework  that  ensures  secure  key  exchange  and 
encrypted  communication.  In  the  ACCE  model,  the  protocol  is  expected  to  provide  strong 
authentication, confidentiality, and integrity guarantees. SSH achieves ACCE security through a 
combination of algorithms, including: Diffie-Hellman or elliptic-curve Diffie-Hellman (ECDH) for 
key  exchange,  RSA or  ECDSA for  authentication  (typically  host  keys),  Symmetric  encryption 
(AES), and MACs for transport protection.

The security of Authenticated and Confidential Channel Establishment protocols relies on two 
main properties: a secure handshake, which ensures proper authentication of the communicating 
parties,  and  a  secure  channel,  which  guarantees  confidentiality  and  integrity  of  the  messages 
exchanged after the handshake.

However, these classical building blocks are the ones quantum computers are expected to break. 
Shor’s  algorithm can efficiently  solve  both integer  factorization and the elliptic  curve discrete 
logarithm problem—rendering RSA, DSA, and ECDSA insecure. Likewise, the security of DH and 
ECDH  collapses  under  quantum  attack,  compromising  the  confidentiality  of  the  session  key 
derived during the handshake. As a result, the ACCE security guarantees of SSH are fundamentally 
undermined in a  post-quantum world.  A quantum adversary could:  recover  private  keys from 
public ones, forge valid signatures, decrypt previously captured SSH sessions, impersonate trusted 
hosts or clients [11].
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To preserve the ACCE security model in the quantum era, SSH must evolve to incorporate post-
quantum key exchange and authentication mechanisms, ideally through hybrid approaches that 
combine classical and quantum-safe primitives during the transition.

3. Post-quantum SSH: Current state

As the cryptographic community races to prepare for the quantum era, Secure Shell has become a  
focal  point  in  the  transition  toward  Post-Quantum  Cryptography  (PQC).  Post-Quantum 
Cryptography is Quantum-Safe Cryptography (QSC) designed to be quantum-safe and operate on 
existing computers and networks. While SSH remains one of the most widely used and trusted 
protocols  for  secure remote  access,  its  reliance on classical  cryptographic  primitives  like  RSA, 
ECDSA, and ECDH makes it fundamentally vulnerable to quantum attacks. Fortunately, efforts to 
future-proof SSH are already underway, though still  in early stages of adoption. Post-Quantum 
Cryptography replaces Public Key algorithms already five decades old with ones that can resist the 
Quantum Threat [12].

The most significant development in post-quantum SSH has come from the OpenSSH project—
the de facto standard SSH implementation in Unix-like systems. As of OpenSSH, support has been 
introduced  for  hybrid  key  exchange  mechanisms,  combining  both  classical  and  post-quantum 
algorithms.  This  is  achieved  through  integration  with  Open  Quantum  Safe  (OQS)  libraries, 
particularly  liboqs  [13].  It  is  a  project  that  develops  and  prototypes  quantum-resistant 
cryptography  algorithms.  The  OQS  project  provides  an  open-source  library  that  implements 
several post-quantum cryptographic algorithms. It plays a crucial role in experimental integrations 
of Post-Quantum Cryptography into widely used protocols such as SSH. The OQS library aims to 
facilitate the research, development, and integration of quantum-resistant algorithms into various 
applications and systems [14].

Several  experimental  implementations  and  research  prototypes  have  emerged  as  the 
cryptographic community explores how to bring post-quantum security to SSH. These efforts aim 
to test the feasibility, performance, and interoperability of post-quantum cryptographic primitives 
within  the  SSH  protocol  stack.  While  promising,  these  integrations  are  not  yet  ready  for 
production  use  and  come  with  various  technical  and  practical  limitations.  By  providing 
implementations of NIST-selected and other leading PQ algorithms, it helps developers test and 
integrate quantum-resistant primitives into real-world applications like SSH. While not yet ready 
for production, liboqs is an essential building block for the secure infrastructure of the quantum 
future.

OQS-OpenSSH is a fork of OpenSSH that adds quantum-safe cryptography to enable its use and 
evaluation in the SSH protocol. This fork is currently based on OpenSSH version 9.7. It is at an 
experimental stage and has not received the same auditing and analysis level as OpenSSH. liboqs is 
provided “as is,” without warranty of any kind. As research advances, the supported algorithms 
may see rapid changes in their security and may even prove insecure against both classical and 
quantum  computers.  OQS-OpenSSH  believes  that  the  NIST  Post-Quantum  Cryptography 
standardization project is currently the best avenue to identifying potentially quantum-resistant 
algorithms, and strongly recommends that applications and protocols rely on the outcomes of the 
NIST standardization project when deploying quantum-safe cryptography [15].

Most early quantum-involved systems are anticipated to adopt a hybrid approach, utilizing both 
quantum and classical technologies. This hybrid model is designed to harness the strengths of both 
quantum  and  classical  computing  to  create  more  robust  and  efficient  solutions  for  various 
applications  [16].  Quantum  computers,  while  holding  the  potential  for  certain  types  of 
computations, are still in their nascent stages of development and are not yet ready to completely 
replace classical computers [17]. Thus, the practical implementation of quantum computing will  
likely involve integrating quantum capabilities into existing classical systems to address specific  
tasks  where  quantum  advantages  are  prominent,  such  as  cryptography,  optimization,  and 
simulations [18].
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Table 1
Supported Algorithms on OQS-OpenSSH

Algorithm Name Specification

Key Exchange
BIKE bike-l1-sha512*, bike-l3-sha512*, bike-l5-sha512*

ClassicMcEliece

classic-mceliece-348864-sha256*, classic-mceliece-348864f-sha256*, 
classic-mceliece-460896-sha512*, classic-mceliece-460896f-sha512*, 
classic-mceliece-6688128-sha512*, classic-mceliece-6688128f-sha512*, 
classic-mceliece-6960119-sha512*, classic-mceliece-6960119f-sha512*, 
classic-mceliece-8192128-sha512*, classic-mceliece-8192128f-sha512*

FrodoKEM
frodokem-640-aes-sha256*, frodokem-976-aes-sha384*, frodokem-1344-
aes-sha512*, frodokem-640-shake-sha256*, frodokem-976-shake-
sha384*, frodokem-1344-shake-sha512*

HQC hqc-128-sha256, hqc-192-sha384, hqc-256-sha512
Kyber kyber-512-sha256*, kyber-768-sha384*, kyber-1024-sha512*

ML-KEM mlkem512-sha256*, mlkem768-sha256*, mlkem1024-sha384*
NTRU-Prime ntruprime-sntrup761-sha512*

Digital Signature
Dilithium dilithium2, dilithium3, dilithium5

Falcon falcon512*, falcon1024*, falconpadded512, falconpadded1024
MAYO mayo1, mayo2*, mayo3*, mayo5*

ML-DSA mldsa44*, mldsa65*, mldsa87*

SPHINCS

sphincssha2128fsimple*, sphincssha2128ssimple, 
sphincsshake128fsimple, sphincsshake128ssimple, 
sphincssha2192fsimple, sphincssha2192ssimple, 
sphincsshake192fsimple, sphincsshake192ssimple, 
sphincssha2256fsimple*, sphincssha2256ssimple, 
sphincsshake256fsimple, sphincsshake256ssimple

SSH  was  designed  with  algorithmic  agility  in  mind—the  ability  to  support  and  negotiate 
between multiple cryptographic algorithms within each functional category. This modular design 
allows both the client and the server to advertise and agree upon supported algorithms for key 
exchange, public key authentication, encryption (symmetric ciphers), and message authentication 
(MACs or hash functions) during the SSH handshake [19].

This flexibility has historically enabled SSH to transition from weaker or deprecated algorithms 
(like DSA or 3DES) to stronger ones (such as Ed25519, ChaCha20-Poly1305, and SHA-2) without 
rewriting the protocol from scratch. Each party maintains a prioritized list of supported algorithms, 
and during the connection setup, the two sides negotiate the best standard option. If a particular  
algorithm is deprecated or compromised, administrators can update configurations to disallow its  
use without upgrading every client and server simultaneously.

In  the  context  of  post-quantum cryptography,  this  architectural  feature  becomes  especially 
important.  It  allows  for  the  gradual  introduction  of  quantum-safe  algorithms—even  in  hybrid 
deployments where classical and post-quantum mechanisms are used together for compatibility 
and risk mitigation. For example, recent versions of OpenSSH have begun to support hybrid key 
exchange  schemes,  which  combine  classical  elliptic-curve  Diffie-Hellman  (ECDH)  with  post-
quantum algorithms like Kyber, leveraging SSH’s negotiation mechanism [20, 21].

SSH’s  algorithm agility  makes  it  well-positioned  for  cryptographic  evolution,  including  the 
upcoming migration to NIST-standardized post-quantum algorithms. However, agility alone isn’t 
enough—secure  defaults,  consistent  key  rotation,  and  robust  deployment  practices  must 
accompany this flexibility to ensure strong protection in the quantum era.

The hybrid approach offers organizations the opportunity to harness the emerging potential of  
quantum computing while maintaining compatibility with their established classical infrastructure. 
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It also provides a gradual transition as quantum technologies advance and become more applicable 
for broader usage. As the quantum computing field progresses and matures,  the integration of 
quantum  and  classical  technologies  is  expected  to  become  more  seamless  and  sophisticated,  
realizing more capable and efficient quantum-involved systems.

4. Recommendations for IT infrastructure

As the quantum threat becomes increasingly real, IT and security teams must begin preparing their  
infrastructure — especially cryptographic components like SSH — for a secure transition.

Begin by creating a detailed inventory of where and how cryptographic algorithms are used 
across  your  infrastructure.  Review  how  SSH  keys  are  provisioned,  distributed,  and  managed. 
Organizations must begin by auditing existing SSH key usage and implementing regular rotation 
policies to reduce long-term exposure and prepare for a smooth migration toward post-quantum 
cryptography. The first step is understanding what keys exist in the environment, their use, and 
whether they comply with current cryptographic standards. A detailed understanding of the SSH 
key landscape enables infrastructure teams to minimize unnecessary risk and prioritize the most 
vulnerable components for replacement [22].

The following step is for organizations to move beyond passive auditing and take active steps to 
reduce exposure to vulnerable cryptographic primitives. One of the most immediate and impactful 
actions is to disallow RSA keys, particularly those with key lengths of 2048 bits or less, which are  
among the most widely used but soon-to-be-cryptographically-insecure key types. For OpenSSH 
versions ≥8.8, this enforcement aligns with the protocol’s move to deprecate ssh-rsa by default.

In traditional SSH deployments, it is common for keys to remain valid for years, often without  
lifecycle  management.  This  practice,  while  convenient,  is  risky—especially  in  the  context  of 
evolving threats such as credential leakage, insider misuse, and the looming quantum decryption 
threat. Defining a finite key lifespan and enforcing regular rotation is fundamental in improving 
operational  security  and  reducing  cryptographic  exposure.  Organizations  should  establish  a 
standard maximum validity period for all SSH keys based on the system’s sensitivity. Organizations 
should combine policy, tooling, and user education to enforce SSH key rotation effectively.

Finally, hybrid mechanisms—currently being evaluated and prototyped in experimental forks of 
OpenSSH—should be thoroughly tested and gradually implemented as part of a forward-looking 
cryptographic strategy.  These mechanisms combine classical  and post-quantum algorithms and 
offer a practical transitional path toward quantum-resistant secure communication. Organizations 
can maintain compatibility with existing systems by adopting a hybrid approach while gaining 
protection against future quantum adversaries. Testing in isolated environments allows security 
teams  to  evaluate  interoperability,  performance  implications,  and  key  management  challenges 
without disrupting production [23]. Over time, as standards solidify and official OpenSSH releases 
begin incorporating post-quantum support, hybrid key exchanges can be a critical foundation for a  
robust and future-proof SSH infrastructure.

5. SSH with PQ algorithms implementation

The  official  OpenSSH  project  has  taken  a  more  conservative  path,  prioritizing  stability  and 
standards alignment. While it has begun introducing limited hybrid key exchange support (e.g., 
sntrup761x25519-sha512@openssh.com), full PQ integration will likely follow the finalization of 
NIST’s standardization process and broader ecosystem readiness.

Organizations exploring PQ-SSH deployments should use hybrid algorithms to bridge the gap 
between  classical  and  quantum-safe  security.  Hybrid  algorithms  maintain  compatibility  with 
existing infrastructure while introducing quantum resilience. If the post-quantum component turns 
out to be flawed or poorly implemented, the classical component still provides a known level of 
security [24].
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Before deploying post-quantum or hybrid SSH algorithms into production, it’s essential to test 
them in controlled, isolated environments rigorously. These testbeds allow infrastructure teams to 
assess  how  the  new  cryptographic  primitives  affect  real-world  performance  —  including 
connection latency, CPU and memory usage, and handshake durations. Testing in isolation also 
helps  identify  compatibility  issues  with  existing  clients,  servers,  libraries,  and  automation 
workflows.  Isolated  testing  enables  a  safe  and iterative  transition,  offering  insights  that  guide 
configuration tuning, user training, and fallback planning. It also helps organizations stay aligned 
with compliance requirements and anticipate potential interoperability gaps before quantum-safe 
algorithms are adopted more broadly in production.

It is also crucial to track developments from NIST, OpenSSH, and OQS to ensure alignment in 
the  future.  These  organizations  are  at  the  forefront  of  shaping  the  post-quantum  security 
landscape.  By  staying  informed  about  evolving  standards,  algorithm  selections,  and 
implementation best practices, infrastructure teams can proactively adapt their systems and avoid 
costly retrofits when post-quantum cryptography becomes a baseline requirement [25].

To  better  understand  the  practical  implications  of  post-quantum  SSH,  let’s  walk  through 
deploying and configuring an SSH host that supports post-quantum algorithms using the OQS-
OpenSSH fork. This hands-on setup enables security teams to evaluate the real-world performance,  
compatibility,  and  operational  considerations  of  hybrid  and  quantum-safe  key  exchange 
mechanisms in a controlled environment.

To begin testing post-quantum SSH in a realistic environment, let’s deploy two EC2 instances 
running Ubuntu 24.04: one will act as the SSH server, and the other as the client. This setup will  
allow us to test  key exchange, authentication, and session stability using hybrid post-quantum 
algorithms.

AWS provides a quick and isolated environment where you can safely build and experiment 
without interfering with production systems.

Before installing any dependencies or building post-quantum libraries, ensuring that both EC2 
instances are fully updated is essential. This minimizes compatibility issues and ensures you work 
with the latest security patches.

Once we’ve confirmed that the system is up to date, the next step is to install all the necessary  
dependencies  to  build  our  quantum-safe  SSH  stack.  These  packages  include  compilers, 
development  libraries,  and  tools  needed  to  create  the  liboqs  library  and  the  OQS-enhanced 
OpenSSH fork from the source.

Now that the system is updated and all necessary dependencies are in place, we’re ready to 
begin building. The first step is to clone the source code for both the Open Quantum Safe (liboqs)  
library and the OQS-OpenSSH fork, 

Full list of commands:
sudo apt update
sudo apt -y upgrade
sudo apt -y install autoconf \
                    automake \
                    cmake \
                    gcc \
                    git \
                    libtool \
                    libssl-dev \
                    make \
                    ninja-build \
                    zlib1g-dev
git clone --depth 1 --branch OQS-v9 https://github.com/open-quantum-safe/openssh.git
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The following instructions  will  install  liboqs  in  a  subdirectory  inside  the  OpenSSH source.  
Building liboqs requires your system to have OpenSSL 1.1.1 or higher already installed.  It  will  
automatically be detected if it is under /usr or another standard location. To simplify the process of  
building both liboqs and the custom OQS-OpenSSH fork, the Open Quantum Safe team provides a 
set  of  automation  scripts.  These  scripts  handle  your  full  setup—from cloning  dependencies  to 
compiling the SSH binaries.

cd openssh
./oqs-scripts/clone_liboqs.sh
./oqs-scripts/build_liboqs.sh
./oqs-scripts/build_openssh.sh

After the build is complete, the SSH binaries will be located in the openssh/oqs-bin directory. 
You’re ready to configure and test post-quantum SSH key exchanges using any of the supported 
algorithms.

Basic interoperability and algorithm verification can be performed using the provided script. 
This script runs predefined connection and key exchange tests across supported hybrid and pure 
PQC algorithms,  helping teams quickly  assess  readiness  and  identify  integration  issues  before 
deploying in production.

The next step is to create a set of quantum-safe SSH keys to use when connecting to the VM.  
With the growing range of  supported post-quantum algorithms.  Organizations can experiment 
with  cryptographic  approaches  to  evaluate  their  performance,  compatibility,  and  operational 
impact. By generating keys for each supported algorithm using the command, administrators can 
build a comprehensive test set, enabling side-by-side comparisons of key sizes, handshake speeds, 
and connection stability, and ensuring their infrastructure is ready for the post-quantum era.

./oqs-test/run_tests.sh
make tests -e LTESTS=””

To make an SSH connection using the quantum-safe tools  we just  built,  we need to run a 
separate instance of the OQS-enhanced SSH daemon, instead of replacing the system-wide SSH 
service. This allows for safe, side-by-side testing without disrupting existing SSH access. 

/usr/openssh/sshd -D -e \
       -f /usr/openssh/regress/sshd_config \
      -o KexAlgorithms=kyber-512-sha256 \
      -o HostKeyAlgorithms=ssh-ecdsa-nistp521-falcon1024 \
      -o PubkeyAcceptedKeyTypes=ssh-ecdsa-nistp521-falcon1024

On  the  client  side,  connect  to  the  quantum-safe  SSH  server  using  the  matching  hybrid 
cryptographic options and specifying the quantum-safe private key.

/usr/openssh/ssh -o KexAlgorithms=kyber-512-sha256 \
    -o HostKeyAlgorithms=ssh-ecdsa-nistp521-falcon1024 \
    -o PubkeyAcceptedKeyTypes=ssh-ecdsa-nistp521-falcon1024 \
    -o PasswordAuthentication=no \
    -o LogLevel=DEBUG3 \
    -i /usr/openssh/regress/ssh-ecdsa-nistp521-falcon1024 \
    -p 4242 \
    ububntu@server-ip
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In  a  production  environment,  the  OQS-enhanced  SSH  daemon  can  be  configured  to  run 
alongside or eventually replace the standard SSH service, allowing organizations to phase in post-
quantum security gradually.  Access policies  can be set  to  restrict  or  limit  connections via the 
legacy SSH daemon while encouraging or enforcing the use of quantum-safe protocols. This staged 
approach  minimizes  operational  risks  and  provides  flexibility  during  the  migration  to  a  fully 
quantum-resistant remote access infrastructure. This hands-on setup demonstrates that integrating 
post-quantum cryptography into existing infrastructure—particularly for critical protocols like SSH
—is  no  longer  theoretical.  With  tools  like  liboqs  and  OQS-OpenSSH,  organizations  can  start 
experimenting today,  laying the  foundation  for  a  smooth and secure  transition  into  the  post-
quantum era.

Conclusions

The arrival  of quantum computing presents a fundamental challenge to classical cryptographic 
protocols—and  SSH,  as  a  foundational  tool  for  secure  remote  administration,  is  no  exception. 
Algorithms like RSA and ECDSA, which currently secure countless SSH connections worldwide, 
are  particularly  vulnerable  to  quantum  attacks  and  will  inevitably  need  to  be  retired  once 
sufficiently  powerful  quantum machines  become available.  This  looming shift  underscores  the 
urgency of transitioning toward post-quantum cryptographic (PQC) solutions.

Organizations have a critical opportunity to prepare as standards evolve and NIST finalizes its  
post-quantum cryptography selections. This preparation should not be postponed until a quantum 
threat is imminent—by then, migration timelines and operational risks could be unmanageable. 
Instead, the transition should begin by testing hybrid algorithms combining classical and quantum-
safe  techniques,  enforcing  cryptographic  agility  across  systems,  and  gradually  phasing  out 
vulnerable key types.

Proactive steps such as maintaining a comprehensive cryptographic inventory, enforcing SSH 
key  rotation  policies,  and  closely  tracking  developments  from NIST,  OpenSSH,  and  the  Open 
Quantum Safe (OQS) project  will  help ensure a  smooth migration.  By aligning with upstream 
development  and  participating  in  the  early  adoption  of  PQC-enabled  SSH  implementations, 
infrastructure teams can safeguard remote access in the current classical computing era and the 
coming quantum age.

In short, the post-quantum transition for SSH is not a matter of if, but when—and organizations  
that act now will be better positioned to maintain secure, trusted communications well into the 
future.
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