
On Algebraic Graphs of Large Girth and New Families
of Message Authentication Codes⋆
Vasyl Ustimenko1,2,† and Oleksandr Pustovit1,∗,†

1 Royal Holloway University of London, United Kingdom, Egham Hill, TW20 0EX Egham, United Kingdom
2 Institute of Telecommunications and Global Information Space, NAS of Ukraine, 13 Chokolivsky ave., 02186 Kyiv, Ukraine

Abstract
Several new families of graph-based key-dependent message authentication codes are proposed. The
method allows for the generation of sensitive digests of electronic documents. Computer simulation
justifies a high level of corresponding avalanche effect. Algorithms are based on walks on special
algebraic graphs defined by equations over the arithmetic ring Zq, q = 2r, r ≥ 8. The cryptographic stability
of proposed key-dependent message authentication codes is connected with a hard algebraic problem in
investigating the systems of algebraic equalities in n variables of linear degree cn for some positive
constant c. Growth of n increases the cryptographic stability. If the file is presented in the form of word in
alphabet Zq of length n and length of the walk in the graph is fixed then the execution is a linear function
of size O(n). Proposed algorithms can work with data in the form of texts, audio and video files, and files
with various extensions such as .avi, .tif, .pdf, etc. The speed for constant m is linearly dependent on
variable n. Growth of n increases the cryptographic stability. Algorithms can generate a digest of a
prescribed size for a potentially infinite digital document.

Keywords
key dependent, message authentication codes, highly nonlinear multivariate cryptography, graph-based
cryptography, algebraic graphs of large girth, symbolic computations

1. Introduction

A simplified model of the global information space can be imagined as a large, time-growing
network of registered virtual users (individuals or institutions) who exchange information and can
store it in electronic repositories located in the network or isolated from it. The size of files for
exchange (electronic documents) tends to increase. An important category of the information space
is the trust in documents. Users can use a symmetric algorithm with a private key to encrypt
documents and a key exchange protocol to maintain the security of the encoding procedure.
Certified public key algorithms can also be used to change the key. These methods ensure the
security of the exchange channels.

It is easy to see that even using reliable encryption tools does not ensure complete trust in
documents. The above justifies the importance and relevance of the following questions. Has the
original document already been damaged? Hash function generation technologies are used to
answer these questions. A hash function is needed to generate a compensated form of the original
document. Note that the general hash function does not require a key or password.

For document verification and authentication tasks, so-called key hash functions (key hash
functions, message authentication codes, or MACs) are required that are password-dependent.

In this paper, we propose new graph-based fast algorithms for creating digests of electronic files
to detect cyberattacks, computer viruses, or other corruptions and verify data integrity. The
cryptographic stability of several graph-based key-dependent hash functions is related to studying
the navigation problem of finding the path between two graph vertices. In the case of the Cayley
graph of the group G this is about decomposing the group element into a composition of known

⋆ CQPC 2025: Classic, Quantum, and Post-Quantum Cryptography, August 5, 2025, Kyiv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 vasyl.ustymenko@rhul.ac.uk (V. Ustimenko); sanyk_set@ukr.net (O. Pustovt)
 0000-0002-2138-2357 (V. Ustimenko); 0000-0002-3232-1787 (O. Pustovt)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

76

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0000-0002-3232-1787
https://orcid.org/0000-0002-2138-2357
mailto:sanyk_set@ukr.net
mailto:vasyl.ustymenko@rhul.ac.uk

generators. Research on the message authentication codes based on Cayley graphs started from the
case of Ramanujan graphs constructed by Lubotzky-Philips-Sarnak and Margulis [1, 2] and Pizer
[3]. Charles, Lauter, and Goren [4] gave a construction of a hash function based on these graphs.
This work was motivated by the successful use of Cayley Ramanujan graphs to construct low-
density parity Check codes for satellite communications. Petit, Lauter, and Quisquater [5], Tillich
and Zémor [6] investigated the properties of Message Authentication Codes. These results gave a
full cryptanalysis of the scheme. Carvalho Pinto and Petit [7] also developed an improved path-
finding algorithm for these graphs.

Cayley-Ramanujan graphs form a family of graphs of large girth. Another family CD(n, q) of
graphs with the fast growth of girth was suggested by Lazebnik, Ustimenko, and Woldar [8] (see
also [9] where graphs D(n, q) with connected components isomorphic to CD(n, q) were introduced).
Guinand and Lodge [10, 11] and other researchers used corresponding graphs to construct LDPC
codes. Accordingly, McKay and Postol CD(n, q) based graphs have better properties than Cayley
graphs of large girth [12].

The first message authentication codes based on CD(n, q) graphs were proposed by Polak and
Zhupa [13] and Ustimenko and Pustovit [14]. In fact, the last paper uses a more general family of
graphs CD(n, K) defined over an arbitrary commutative ring K. If K = Fq, then CD(n, K) = CD(n, q)
and D(n, K) = D(n, q).

Ustimenko [15] proves that the girth of D(n, K) is at least n + 5 if K is an integral domain.
Message authentication codes of [14] are defined in terms of infinite graphs D(n, K[x1, x2, …, xm])

where K is a finite commutative ring. The cryptographical stability of these codes rests not only on
the complexity of the corresponding navigation problem but also on the complexity of the general
problem of solving a nonlinear system of algebraic equations.

In this paper, the authors present a family of new robust MACs based on several families of
algebraic graphs, such as generalised Wenger graphs W(n, K), D(n, K), A(n, K), and other graphs.

All graphs under consideration are so-called linguistic graphs of type (1, 1, n – 1) (see [15] and
further references) introduced as bipartite graphs with partition sets isomorphic to affine spaces Kn

over a commutative ring K with unity for which the incidence relation triangular equations give me.
In fact points and lines of the linguistic graph are tuples of kind (x) = (x1, x2, …, xn) and [y] = [y1, y2,
…, yn] and (x) and [y] are incident if and only if aixi – bixi = fi(x1, x2, …, xi – 1, y1, y2, …, yi – 1), i = 2, 3, …,
n where ai and bi are elements of multiplicative group K* of the K and fi ϵ K[x1, x2, …, xi – 1, y1, y2, …,
yi – 1]. The first coordinates ϱ(x) = x1 and ϱ(y) = y1 define the colours of the point and line. The path
in the graph formed by distinct vertices is the walk v0Iv1Iv2…vk – 1Ivk such that the colours of all
points and lines are different.

If Fm(K) is a family of linguistic graphs, then the growth of m to infinity defines the projective
limit F(K).

If Fm(K) is one of the families of graphs investigated in [16], then the walk v0Iv1Iv2…vk – 1Ivk of F(K)
such that ϱ(vi)-ϱ(vi + 2) ϵ K* for I = 0, 1, …, k – 2 is the path.. Cayley-Ramanujan graphs form a family
of graphs of large girth. Another family CD(n, q) of graphs with the fast growth of girth was
suggested by Lazebnik, Ustimenko, and Woldar [8] (see also [9] where graphs D(n, q) with
connected components isomorphic to CD(n, q) were introduced). Guinand and Lodge used
corresponding graphs.

In this paper, we select the case when K = Zq, q = 2m, m ≥ 2, and the aforementioned linguistic
graphs to define new families of message authentication codes. In Section 1, we introduce an
algorithm for converting an arbitrary word (α1 α2, …, αn) written in the alphabet Zq into the digest
(d1, d2, …, dk), which is the word of length k, k < n. These algorithms are defined in terms of
arbitrary linguistic graphs. The complexity estimates are given in the Jordan-Gauss graphs defined
in [16]. Section 2 is dedicated to the requirements on the cryptographical stability of message
authentication codes. We discuss the general complexity of investigating a nonlinear system of
equations, which justifies the security of the presented MACs. Section 3 introduces our algorithms
regarding arbitrary linguistic graphs of type (1, 1, n – 1). Section 4 describes our selected algebraic
graphs defined by the sparce quadratic system of equations and discusses their complexity and

77

parameters of the corresponding algebraic systems of equations. Section 5 is dedicated to
implementing MACs described in the previous section. Section 6 contains conclusive remarks.

2. Requirements for digesting

The cryptographically stable hash function f must provide the practical impossibility of selecting a
pair of links x and z with the same hash function value. The digest of a document created with a
key-dependent hash function (MAC) uses the HMAC symbol. When users want to exchange
correspondence secretly, verifying the author of the letter and the absence of changes when
forwarding, they choose a shared MAC. Additionally, they use a standard symmetric encryption
scheme.

In addition to cryptographical stability, the execution speed and a high indicator of avalanche
effect are important. The avalanche effect can be measured in the following way. The HMAC of the
generated file has to be computed. After this step, a chosen character of the original file has to be
changed to another symbol, and HMAC for the new file has to be computed.

Finally, a comparison of the characters of two HMACs has to be made, and the percentage of
changed characters has to be computed. For practical usage of HMAC, it is necessary to show that
a change of an arbitrarily used character leads to a change of at least 40% of bits independently of
the size of the tested files.

The introduced approach of using walks on algebraic graphs defined over a finite commutative
ring K is helpful for the development of stream ciphers of Symmetric Cryptography (see, for
instance, [17], [18], and further references) and constructions of HMACs. Other applications of
graph theory to Symmetric Cryptography are considered in [19]. The method of generation of
nonlinear transformations of free modules over commutative rings described in terms of special
graphs defined by algebraic equations (so-called linguistic graphs) can be used in Non-commutative
Cryptography instead of methods of generators and equations [20].

Studies of message authentication codes and НMACs are a hot topic. A complete list of all
published papers within this direction is impossible; we only refer to some recent papers [21–29].

Recall that non-commutative cryptography is an active field of cryptology that explores
cryptographic primitives and systems based on algebraic structures such as groups, semigroups,
and non-commutative rings.

One of the earliest applications of non-commutative algebraic structure for cryptographic
purposes was using groups to develop cryptographic protocols.

Noteworthy that arbitrary hash functions such as MD5 or SHA1 can be used to compose
HMACs corresponding to MD5 and SHA-1 message authentication codes, which are known as
HMAC-MD5 and HMAC-SHA-1, respectively. HMAC’s cryptographic performance depends on the
cryptographic performance of the underlying hash function, the size of its hash output, and the size
and quality of the key.

3. Description of HMACs based on linguistic graphs defined over Zq,
q = 2m

Let us assume that q = 2m and nI is a bipartite linguistic graph with the partition sets formed by
points (x) = (x1, x2, …, xn), xi ϵ Zq and lines [y1, y2, …, yn], yi ϵ Zq. Recall that (x)nI[y] if and only if the
following equations hold

a2x2 – b2x2=f2(x1, y1),
a3x3 – b3x3=f3(x1, x2, y1, y2),

…
anxn – bnxn = fi(x1, x2, …, xn – 1, y1, y2, …, yn – 1).

(1)

78

We define the operator Na(v) of taking the neighbour of colour a via the following rule. If vertex
v is the point (p) then Na(p) is the neighbouring line of this point with the colour a, i. e line [l] = [a,
l2, …, ln] where li, i = 2, 3, …, n are defined recurrently from the equations a2p2 – b2l2 = p1a,
a3p3 – b3l3 = f3(p1, p2, l1, l2), …, aipi – bili = fi(p1, p2, …, pi – 1, l1, l2, …, li – 1). If vertex v is the line [l] then
Na(l) is the neighbouring point of the line with the colour a, i.e., point (p) = (a, p2, …, pn) where pi,
i = 2, 3, …, n are defined recurrently from the equations a2p2 – b2l2 = al1, a3p3 – b3l3 = f3(p1, p2, l1, l2), …,
aipi – bili = fi(p1, p2, …, pi – 1, l1, l2, …, li – 1).

In the following algorithms, we assume that the commutative ring K = Zq and the graph nI(K)
internal parameters are among the input data. So, the operations of addition and multiplication of
the ring are given by the loaded addition and multiplication tables. So we have embedded functions
x + y and xꞏy where x and y are taken from the set of residues mod q. We will use another
embedded power function xy, where x is from the domain of all odd residues and y is the residue
modulo 2m – 1, which is the order of the multiplicative group K*. Parameters give the graph nI(K) ai,
bi, i = 2, 3, …, n, and a list of polynomials fi is given in their standard forms, i.e., lists of monomial
terms of fi, i = 2, 3, …, n shown in the lexicographical order. The data described above is public. The
input tuple of our algorithm is of the kind (x1, x2, …, xn), xi ϵ K = Zq, q = 28s, s ≥ 1. So we can treat
each xi as a tuple (z1, z2, …, zs) from Zb, b = 256 corresponding to the residue z1 + z2b + … + zsbs – 1

from Zq, and use the standard one-to-one correspondence between elements of Zb and ASCII codes
of binary alphabet. So we can partition the text in binary alphabet into words of length s and treat
each word as an element of the ring K = Zq.

The passive password of our secret key of our key dependent message authentication codes is
the tuples (α2, α3, …, αn), (γ2, γ3, …, γn) where αj ϵ (Zq)* and (λ2, λ3, …, λn) where λi are even residues
together with the tuple ((a(2), a(3), …, a(n)) formed by elements of a(j) ϵ {1, 2, …, 28s – 1 – 1}. We refer
to this list of parameters as a passive password. We additionally use the format parameter k = O(nt),
k < n, where 0 < t ≤ 1.

The active password is formed by depth parameter m of size O(1) together with tuples (β(1), β(2),
…, β(m)) and (μ(1), μ(2), …, μ(m)) from ((Zq)*)m.

 We consider bijective transformations L of kind x1 → x1 + α2x2 + … + anxn, xj → xj, j = 2, 3, …, n
and the value of multivariate polynomial Q(x1, x2, …, xn) = x1(λ2x2 + γ2)a(2)(λ3x3 + γ3)a(3)…
(λnxn + γn)a(n) = Q.

To control the speed of computation of Q we assume that ‘’almost all’’ parameters a(i), I ≥ 2,
coincide with 1, i.e., the sum of parameters a(i) which are distinct from 1 is the selected constant d.

HMAC algorithm 1 (two versions)
Let (x1, x2, …, xn) be the intermediate point of the graph. We assume that it is the input of the

algorithm.
1. Compute y(1) = L(x) = (a, x2, x3, …, xn).
 Compute NQ(y(1)) = z(1) = [c, y2, y3, …, yn].
2. y(2) = Na + β(1)(z(1)).
 z(2) = Nc + μ(1)(y(2)).
3. y(3) = Nc + β(1) + β(2)(z(2)).
 z(3) = Nc + μ(1) + μ(2)(y(3)).
We continue this process with m-steps to get y(m) = Na + β(1) + β(2) + … + β(m – 1))(z(m – 1)) and

z(m) = Nc + μ(1) + μ(2) + … + β(m – 1)(y(m)).
We have two versions of the algorithm via selection of y(m) or z(m) as the intermediate output

v = (v1, v2, …, vn).
Finally, we select parameter k = O(nt), k < n, where 0 < t ≤ 1, and announce that (vn – k, vn – k + 1,

vn – k + 2, …, vn) is the output of the algorithm.
HMAC algorithm 2.
The first step is the same as the first computation of the previous algorithm. So we get y(1) and

y(2). In each of the following steps, we permute two colours of the vertices.
2. y(2) = Nc + μ(1)(z(1), z(2) = Na + β(1)(y(2)).
3. y(3) = Nc + μ(1) + μ(2)(z(2)), z(3) = Na + β(1) + β(2)(y(3)).

79

We continue this process with m-steps to get y(m) = Nc + μ(1) + μ(2) + … + μ(m – 1)(z(m – 1)) and
z(m) = Na + β(1) + β(2) + … + β(m – 1)(y(m)).

Similarly, we have two versions of the algorithm via the selection of y(m) or z(m) as the
intermediate output v = (v1, v2, …, vn). Finally, we select parameter k = O(nt), k < n, where 0 < t ≤ 1,
and announce that (vn – k, vn – k + 1, vn – k + 2, …, vn) is the output of the algorithm.

The multivariate maps (x1, x2, …, xn – k) → (vn – k(x1, x2, …, xn), vn – k + 1(x1, x2, …, xn), …, vn(x1, x2, …,
xn)) for the computation of the outputs in the two algorithms presented above have different
degrees and densities.

HMAC algorithm 3
This algorithms will use the map Q(x1, x2, …, xn) of Kn on Kn of kind x1 → x1(λ2x2 + γ2)a(2)(λ3

x3 + γ3)a(3)…(λnxn + γn)a(n), xj → xj and linear function M = x1 + α2x2 + … + αnxn.
We take (x) = (x1, x2, …, xn) and compute Q(x) = (a, x2, x3, …, xn) = y(1), parameter M(x1, x2, …,

xn) = c and z(1) = Nc(y(1)).
Then we use recursive procedures of the MAC Algorithm 1 to compute recurrently y(2), z(2),

y(3), z(3), …, y(m), z(m). For the selected parameter k, we take k last coordinates of y(m) or z(m) and
use this tuple as the output.

4. On the selected graphs for the implementation

a. General Jordan-Gauss graphs

Accordingly to [16], we refer to the linguistic graph nI(K) given by equations of kind (1) as the
Jordan-Gauss graph in the case when

f2 = a2(1, 1)x1y1,
f3 = a3(1, 1)x1y1 + a3(1, 3)x1y2 + a3(2, 3)x2y2,

f4 = a4(1, 1)x1y1 + a4(1, 2)x1y2 + a4(1, 3)x1y3 + a4(2, 2)x2y2 + a4(2, 3)x2y3 + a4(3, 3)x3y3,
…

fn = an(1, 1)x1y1 + an(1, 2)x1y2 + … + an(1, n – 1)x1yn – 1 + an(2, 2)x2y2 + an(2, 3)x2y3 +
+ an(2, n – 1)x2yn – 1+ + ...+ + an(n – 1, n – 1)xn – 1yn – 1.

(1)

We refer to the graph as a dense Jordan-Gauss if all coefficients ai(k, l) as above are different
from zero. If nI(K) is a dense Jordan-Gauss graph, we can keep it secret by adding the coefficients of
the graph equations to the passive password. The theoretical complexity of the presented above
algorithms is O(n2).

b. Special Jordan-Gauss graphs

We select for the implementation several well-known sparse Jordan-Gauss graphs for which the
number of nonzero coefficients ai(k, l) is O(n).

Example 4.2.1. Generalised Wenger graph.
This is a Jordan-Gauss graph with partition its isomorphic to Kn, such that point (x1, x2, …, xn) is

incident to line [y1, y2, …, yn] if and only if the following equations hold

x2 – y2 = x1y1,
x3 – y3 = x1y2,

…
xn – yn = x1yn – 1.

(1)

Wenger introduced this family of graphs in [30] for the case of K = Zp where p is prime.
Example 4.2.2.
Let K stand for an arbitrary commutative ring with unity. We consider the graph D(K) with

points and lines which are infinite tuples over K of kind (p) = (p1, p2, …, pi, pi + 1, …), [l] = [l1, l2, …, li,

80

li + 1, …] with the following incidence relations. The point (p) is incident to line [l] if the following
equation holds.

l2 – p2 = l1p1,
l3 – p3 = l2p1,
l4 – p4 = l1p2,

li – pi = l1pi – 2,
li + 1 – pi + 1 = li – 1p1,
li + 2 – pi + 2 = lip1,

li + 3 – pi + 3 = l1pi + 1 where i ≥ 5.

(1)

Graphs D(n, K), n ≥ 2, were introduced in [15]. In fact, they are homomorphic images of D(K)
under a homomorphism sending (p) into (p1, p2, …, pn) and [l] into [l1, l2, …, ln]. So the incidence
Jordan-Gauss graph D(n, K) is defined by the first n – 1 equations in the list presented above.

The graph G’s girth g(G) is the size of its minimal cycle. The forest is the graph without a cycle.
The connected forest is called the tree [31]. If K is an integrity domain, i.e., K does not contain zero
divisors, then the girth D(n, K) of is at least n + 5 [15]. These facts were established in [9] for the
case of finite fields.

Example 4.2.3.
Infinite Jordan-Gauss graph A(K) with points (p) = (p1, p2, …, pi, pi + 1, …) and lines [l] = [l1, l2, …, li,

li + 1, …] with coordinates from commutative ring K is defined by equations

l2 – p2 = l1p1,
l3 – p3 = p1l2,
l4 – p4 = l1p3,
l5 – p5 = p1l4,

…

(1)

Graphs A(n, K), n ≥ 2 introduced in [15] are homomorphic images of A(K) under a
homomorphism sending (p) into (p1, p2, …,pn) and [l] into [l1, l2,…, ln]. So the incidence of Jordan-
Gauss graph A(n, K) is defined by the first n – 1 equations presented above.

If K is an integrity domain, then A(K) is the forest (see [16] and further references), the girth of
A(n, K) is ≥ [(n + 2) / 2].

We can see that the quadratic monomial term on the right-hand side of the equations uniquely
defines each equation of D(K). Let D be the set of monomial terms of the equation of D(K), and A be
the set of monomial terms of the A(K) equations. Note that the deletion of equations of D(K) with
monomial terms from D – A, together with corresponding equations, defines the homomorphism of
the forest D(K) onto A(K).

Example 4.2.4
The equations of the graph D(K) and corresponding quadratic monomial terms are ordered

accordingly to the list (2). Let rB(K) be the homomorphic image of D(K) obtained by the deletion of
all equations with the number > r which contain the monomials from D-A. Let rB(n, K), n > r + 1 be
the graph with partition sets isomorphic to Kn defined via the first n – 1 equations of rB(K) (see [16]
and further references).

In the case of Examples 4.2.1–4.2.4, the complexity of the generating procedure of the message
authentication codes is O(n).

In cases 4.2.1–4.2.3, we assume that the graphs are known to the public. In the case of the graph
of Example 4.2.4, we can add the parameter n to the passive password.

81

5. Comments on the implementation

We investigate our algorithms in the commutative ring Z256, which is the same size as the binary
alphabet. We select the cases of sparse graphs described in Examples 4.2.1–4.2.4 for the
implementation. We choose the parameters of the passive password as follows. Only O(1) values of
kind αi, βi, and a(j) differ from 1, and only a selected finite number of λi differ from 2. The passive
password remains the same during our computer simulation.

We refer to d = 2m as the length of the walk. In the cases of 4.2.2–4.2.4, the change of active
password leads to the shift in intermediate output v = (v1, v2, …, vn). The walk’s computation speed
is the same in all cases 4.2.1–4.2.4 because Jordan-Gauss graphs have equations with the single
quadratic monomial terms in each equation. Note that the time execution does not depend on
parameter k, which defines the digest size.

Computer simulations demonstrate a high level of the avalanche effect. We can see that a single
change of the character of the initial file or a single shift in the character of the active password
leads to a change of 98% of the characters of the output. Not that this is essentially better than in
the case of HMAC [32] when the change of characters of the initial file leads to the change of 47-50
characters of the output.

Our software is written in C++; therefore, it is portable and runs on many platforms, such as
Unix/Windows. To evaluate our algorithm’s performance, we use files of different sizes. We
measure the time (Fig. 1) needed to produce the digest in milliseconds. And the file size of files in
kilobytes for passwords of length d.

Figure 1: Run time for the digest generation

We use an average PC with a Pentium 3.00 GHz, 2GB of RAM, and Windows 7. The following
diagram presents the time of the algorithm’s execution in the case of graphs 4.2.2. on in the case of
graphs 4.2.2.

Conclusions

The paper proposes new fast graph-based algorithms for creating sensitive digests of electronic
files to detect cyberattacks, computer viruses, or other damages and check data integrity. These
tools can be used to defend a virtual organization and audit all files after a registered intervention.
Cryptographic stability of new key-dependent hash functions is associated with complex algebraic
problems, such as the study of systems of algebraic equations of a considerable degree and the
decomposition of a nonlinear transformation into the composition of given generators. These facts
justify resistance of digests against adversary attacks with the use of algorithms in terms of a
Turing machine or the theory of Quantum Computation.

Algorithms of digest generation use the idea of presentation of files in the form of sequences
(words) of elements of the arithmetical ring modulo 2m. The presented families of graphs form
sequences that define the projective limit of finite graphs given by equations.

82

Affine transformations and polynomial maps of high degree are used to hide the transformation
induced by the walk on the graph. This scheme is new,

Implemented according to this scheme, a family of fast algorithms was investigated via
computer simulations on large real data sets. Changing a single document character in the binary
alphabet causes the change of most characters of the produced digest (≥98%). This property and the
evaluation of the time execution of software programs justify the potential of practical usage of the
implemented algorithm for cybersecurity tasks.

Declaration on Generative AI

While preparing this work, the authors used the AI programs Grammarly Pro to correct text
grammar and Strike Plagiarism to search for possible plagiarism. After using this tool, the authors
reviewed and edited the content as needed and took full responsibility for the publication’s content.

References

[1] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan graphs, Combinatorica 8(3) (1988) 261–277.
doi:10.1007/BF02126799

[2] G. Margulis, Explicit constructions of graphs without short cycles and low density codes.
Combinatorica 2 (1982) 71–78. doi:10.1007/BF02579283

[3] A. K. Pizer, Ramanujan graphs and Hecke operators. Bull. Amer. Math. Soc. 23(1) (1990) 127–
137.

[4] D. X. Charles, K. E. Lauter, E. Z. Goren, Cryptographic hash functions from expander graphs, J.
Cryptol. 22(1) (2009) 93–113. doi:10.1007/s00145-007-9002-x

[5] C. Petit, K. Lauter, J.-J. Quisquater, Full cryptanalysis of LPS and Morgenstern hash functions,
in: Security Cryptography Networks, 2008, 263–277. doi:10.1007/978-3-540-85855-3_18

[6] J.-P. Tillich, G. Zémor, Collisions for the LPS expander graph hash function, in: Advances in
Cryptology (EUROCRYPT), 4965, 2008, 254–269. doi:10.1007/978-3-540-78967-3_15

[7] E. Carvalho Pinto, C. Petit, Better path-finding algorithms in LPS Ramanujan graphs, J. Math.
Cryptol. 12(4) (2018) 191–202.

[8] F. Lazebnik, V. Ustimenko, A. J. Woldar, A new series of dense graphs of high girth, Bull.
Amer. Math. Soc. 32(1) (1995) 73–79. doi:10.1090/S0273-0979-1995-00569-0

[9] F. Lazebnik, V. Ustimenko, Some algebraic constructions of dense graphs of large girth and of
large size, in: Discrete Mathematics and Theoretical Computer Science (DIMACS), 10, 1993,
75–93. doi:10.1090/dimacs/010/07

[10] P. Guinand, J. Lodge, Tanner type codes arising from large girth graphs, in: 1997 Canadian
Workshop on Information Theory (CWIT), 1997, 5–7.

[11] P. Guinand, J. Lodge, Graph theoretic construction of generalized product codes, in: 1997 IEEE
Int. Symposium on Information Theory (ISIT), 1997, 111. doi:10.1109/ISIT.1997.613026

[12] D. MacKay, M. Postol, Weakness of Margulis and Ramanujan margulis low dencity parity-
check codes, Electron. Notes Theor. Comput. Sci. 74 (2003) 97–104. doi:10.1016/S1571-
0661(04)80768-0

[13] M. Polak, E. Zhupa, Keyed hash function from large girth expander graphs, Albanian J. Math.
16(1) (2022) 25–39. doi:10.51286/albjm/1656414764

[14] V. Ustimenko, O. Pustovit, On new stream algorithms generating sensitive digests of computer
files, in: Annals of Computer Science and Information Systems, 16th Conference on Computer
Science and Intelligence Systems, 26, 2021, 117–121. doi:10.15439/2021f80

[15] V. Ustimenko, On linguistic dynamical systems, families of graphs of large girth, and
cryptography, J. Math. Sci. 140(3) (2007) 461–471. doi:10.1007/s10958-007-0453-2

[16] T. Chojecki, et al., On affine forestry over integral do-mains and families of deep Jordan–
Gauss graphs, Eur. J. Math. 11(10) (2025). doi:10.1007/s40879-024-00798-2

83

https://doi.org/10.1007/s40879-024-00798-2
https://doi.org/10.1007/s10958-007-0453-2
https://doi.org/10.15439/2021f80
https://doi.org/10.51286/albjm/1656414764
https://doi.org/10.1016/S1571-0661(04)80768-0
https://doi.org/10.1016/S1571-0661(04)80768-0
https://doi.org/10.1109/ISIT.1997.613026
https://doi.org/10.1090/dimacs/010/07
https://doi.org/10.1090/S0273-0979-1995-00569-0
https://doi.org/10.1007/978-3-540-78967-3_15
https://doi.org/10.1007/978-3-540-85855-3_18
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/BF02579283
https://doi.org/10.1007/BF02126799

[17] V. Ustimenko, et al., On the constructions of new symmetric ciphers based on nonbijective
multivariate maps of prescribed degree, Secur. Commun. Netw. (2019) 1–15.
doi:10.1155/2019/2137561

[18] V. Ustimenko, T. Chojecki, Walks on algebraic small world graphs of large girth and new
secure stream ciphers, in: Intelligent Systems and Applications (IntelliSys), Lecture Notes in
Networks and Systems, 1067, 2024, 525–538. doi:10.1007/978-3-031-66431-1_37

[19] P. L. K. Priyadarsini, A survey on some applications of graph theory in cryptography, J.
Discret. Math. Sci. Cryptogr. 18(3) (2015) 209–217. doi:10.1080/09720529.2013.878819

[20] V. Ustimenko, Graphs in terms of algebraic geometry, symbolic computations and secure
communications in post-quantum world. UMCS Editorial House, Lublin, 2022.

[21] M. Cary, R. Venkatesam, A message authentication code based on unimodular matrix groups,
Advances, in: Lecture Notes in Computer Science, 23rd Annual Int. Cryptology Conf., 2003,
500–512. doi:10.1007/978-3-540-45146-4_29

[22] M. Bellare, D. J. Bernstein, S. Tessaro, Hash-function based PRFs: AMAC and its multi-user
security, in: Lecture Notes in Computer Science, 2016, 566–595. doi:10.1007/978-3-662-49890-
3_22

[23] K. Yasuda. A double-piped mode of operation for MACs, PRFs and PROs: Security beyond the
birthday barrier, in: Lecture Notes in Computer Science, 2009, 242–259. doi:10.1007/978-3-642-
01001-9_14

[24] X. Wang, et al., Cryptanalysis on HMAC/NMACMD5 and MD5-MAC, in: Lecture Notes in
Computer Science, 5479, 2009, 121–133. doi:10.1007/978-3-642-01001-9_7

[25] G. Leurent, T. Peyrin, L. Wang, New generic attacks against hash-based MACs, in: Advances
in Cryptology—ASIACRYPT, 8270, 2013, 11–20.

[26] N. Koblitz, A. Menezes, Another look at HMAC, Cryptology ePrint Archive, Report 2012/074,
2012.

[27] Y. Dodis, et al., Message authentication, revisited, in: Advances in cryptology (EUROCRYPT),
7237, 2012, 355–374. doi:10.1007/978-3-642-29011-4_22

[28] A. Bessalov, V. Sokolov, S. Abramov, Efficient commutative PQC algorithms on isogenies of
Edwards curves, Cryptogr. 8(3), iss. 38 (2024) 1–17. doi:10.3390/cryptography8030038

[29] A. Bessalov, et al., Multifunctional CRS encryption scheme on isogenies of nonsupersingular
Edwards curves, in: Workshop on Classic, Quantum, and Post-Quantum Cryptography, 3504,
2023, 12–25.

[30] R. Wenger, Extremal graphs with no C4, C6 and C10s, J. Comb. Theory, Ser B., 52 (1991) 113–
116. doi:10.1016/0095-8956(91)90097-4

[31] B. Bollobash, Extremal graph theory, Academic Press, London, 1978.
[32] S. Krendelev, P. Sazonova, Parametric hash function resistant to attack by quantum computer,

in: 2018 Federated Conf. on Computer Science and Information Systems (ACSIS), 15, (2018)
387–390.

84

https://doi.org/10.1016/0095-8956(91)90097-4
https://doi.org/10.3390/cryptography8030038
https://doi.org/10.1007/978-3-642-29011-4_22
https://doi.org/10.1007/978-3-642-01001-9_7
https://doi.org/10.1007/978-3-642-01001-9_14
https://doi.org/10.1007/978-3-642-01001-9_14
https://doi.org/10.1007/978-3-662-49890-3_22
https://doi.org/10.1007/978-3-662-49890-3_22
https://doi.org/10.1007/978-3-540-45146-4_29
https://doi.org/10.1080/09720529.2013.878819
https://doi.org/10.1007/978-3-031-66431-1_37
https://doi.org/10.1155/2019/2137561

	1. Introduction
	2. Requirements for digesting
	3. Description of HMACs based on linguistic graphs defined over Zq, q€=€2m
	4. On the selected graphs for the implementation
	a. General Jordan-Gauss graphs
	b. Special Jordan-Gauss graphs

	5. Comments on the implementation
	Conclusions
	Declaration on Generative AI
	References

