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Abstract
Several  new families  of  graph-based key-dependent  message  authentication codes  are  proposed.  The 
method allows for  the  generation  of  sensitive  digests  of  electronic  documents.  Computer  simulation 
justifies  a  high  level  of  corresponding  avalanche  effect.  Algorithms  are  based  on  walks  on  special 
algebraic graphs defined by equations over the arithmetic ring Zq, q = 2r, r ≥ 8. The cryptographic stability 
of proposed key-dependent message authentication codes is connected with a hard algebraic problem in 
investigating the systems of  algebraic  equalities  in  n  variables  of  linear  degree  cn for  some positive 
constant c. Growth of n increases the cryptographic stability. If the file is presented in the form of word in  
alphabet Zq of length n and length of the walk in the graph is fixed then the execution is a linear function 
of size O(n). Proposed algorithms can work with data in the form of texts, audio and video files, and files 
with various extensions such as .avi, .tif, .pdf, etc. The speed for constant  m is linearly dependent on 
variable  n.  Growth of  n increases  the  cryptographic  stability.  Algorithms can generate  a  digest  of  a 
prescribed size for a potentially infinite digital document.
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1. Introduction

A simplified model  of  the  global  information space can be imagined as  a  large,  time-growing 
network of registered virtual users (individuals or institutions) who exchange information and can 
store it in electronic repositories located in the network or isolated from it.  The size of files for 
exchange (electronic documents) tends to increase. An important category of the information space 
is the trust in documents.  Users can use a symmetric algorithm with a private key to encrypt 
documents  and  a  key  exchange  protocol  to  maintain  the  security  of  the  encoding  procedure. 
Certified public key algorithms can also be used to change the key. These methods ensure the 
security of the exchange channels.

It is easy to see that even using reliable encryption tools does not ensure complete trust in  
documents. The above justifies the importance and relevance of the following questions. Has the 
original  document  already  been  damaged? Hash  function  generation  technologies  are  used  to 
answer these questions. A hash function is needed to generate a compensated form of the original 
document. Note that the general hash function does not require a key or password.

For  document  verification and authentication tasks,  so-called key hash functions  (key hash 
functions, message authentication codes, or MACs) are required that are password-dependent.

In this paper, we propose new graph-based fast algorithms for creating digests of electronic files  
to  detect  cyberattacks,  computer  viruses,  or  other  corruptions  and  verify  data  integrity.  The 
cryptographic stability of several graph-based key-dependent hash functions is related to studying 
the navigation problem of finding the path between two graph vertices. In the case of the Cayley 
graph of the group G this is about decomposing the group element into a composition of known 
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generators. Research on the message authentication codes based on Cayley graphs started from the 
case of  Ramanujan graphs constructed by Lubotzky-Philips-Sarnak and Margulis [1,  2] and Pizer 
[3]. Charles, Lauter, and Goren [4] gave a construction of a hash function based on these graphs. 
This work was motivated by the successful use of Cayley Ramanujan graphs to construct low-
density parity Check codes for satellite communications. Petit, Lauter, and Quisquater [5], Tillich 
and Zémor [6] investigated the properties of Message Authentication Codes. These results gave a  
full cryptanalysis of the scheme. Carvalho Pinto and Petit [7] also developed an improved path-
finding algorithm for these graphs.

Cayley-Ramanujan graphs form a family of graphs of large girth. Another family  CD(n, q) of 
graphs with the fast growth of girth was suggested by Lazebnik, Ustimenko, and Woldar [8] (see 
also [9] where graphs D(n, q) with connected components isomorphic to CD(n, q) were introduced). 
Guinand and Lodge [10,  11] and other researchers used corresponding graphs to construct LDPC 
codes. Accordingly, McKay and Postol  CD(n, q) based graphs have better properties than Cayley 
graphs of large girth [12].

The first message authentication codes based on CD(n, q) graphs were proposed by Polak and 
Zhupa [13] and Ustimenko and Pustovit [14]. In fact, the last paper uses a more general family of 
graphs CD(n, K) defined over an arbitrary commutative ring K. If  K = Fq, then CD(n, K) = CD(n, q) 
and D(n, K) = D(n, q).

Ustimenko [15] proves that the girth of D(n, K) is at least n + 5 if K is an integral domain.
Message authentication codes of [14] are defined in terms of infinite graphs D(n, K[x1, x2, …, xm]) 

where K is a finite commutative ring. The cryptographical stability of these codes rests not only on 
the complexity of the corresponding navigation problem but also on the complexity of the general  
problem of solving a nonlinear system of algebraic equations.

In this paper, the authors present a family of new robust MACs based on several families of  
algebraic graphs, such as generalised Wenger graphs W(n, K), D(n, K), A(n, K), and other graphs.

All graphs under consideration are so-called linguistic graphs of type (1, 1, n – 1) (see [15] and 
further references) introduced as bipartite graphs with partition sets isomorphic to affine spaces Kn 

over a commutative ring K with unity for which the incidence relation triangular equations give me. 
In fact points and lines of the linguistic graph are tuples of kind (x) = (x1, x2, …, xn) and [y] = [y1, y2, 
…, yn] and (x) and [y] are incident if and only if aixi – bixi = fi(x1, x2, …, xi – 1, y1, y2, …, yi – 1), i = 2, 3, …, 
n where ai and bi are elements of multiplicative group K* of the K and fi ϵ K[x1, x2, …, xi – 1, y1, y2, …, 
yi – 1]. The first coordinates ϱ(x) = x1 and ϱ(y) = y1 define the colours of the point and line. The path 
in the graph formed by distinct vertices is the walk  v0Iv1Iv2…vk – 1Ivk such that the colours of all 
points and lines are different.

If Fm(K) is a family of linguistic graphs, then the growth of m to infinity defines the projective 
limit F(K).

If Fm(K) is one of the families of graphs investigated in [16], then the walk v0Iv1Iv2…vk – 1Ivk of F(K) 
such that ϱ(vi)-ϱ(vi + 2) ϵ K* for I = 0, 1, …, k – 2 is the path.. Cayley-Ramanujan graphs form a family 
of  graphs of  large girth.  Another family  CD(n, q)  of  graphs with the fast  growth of  girth was 
suggested  by  Lazebnik,  Ustimenko,  and  Woldar  [8]  (see  also  [9]  where  graphs  D(n, q) with 
connected  components  isomorphic  to  CD(n, q) were  introduced).  Guinand  and  Lodge  used 
corresponding graphs.

In this paper, we select the case when K = Zq, q = 2m,  m ≥ 2,  and the aforementioned linguistic 
graphs to define new families  of  message authentication codes.  In  Section 1,  we introduce an 
algorithm for converting an arbitrary word (α1 α2, …, αn) written in the alphabet Zq into the digest 
(d1,  d2,  …,  dk), which is  the word of  length k,  k < n. These algorithms are defined in terms of 
arbitrary linguistic graphs. The complexity estimates are given in the Jordan-Gauss graphs defined 
in [16].  Section 2 is  dedicated to the requirements on the cryptographical  stability of message 
authentication codes. We discuss the general complexity of investigating a nonlinear system of 
equations, which justifies the security of the presented MACs. Section 3 introduces our algorithms 
regarding arbitrary linguistic graphs of type (1, 1, n – 1). Section 4 describes our selected algebraic 
graphs defined by the sparce quadratic system of equations and discusses their complexity and 
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parameters  of  the  corresponding  algebraic  systems  of  equations.  Section  5  is  dedicated  to 
implementing MACs described in the previous section. Section 6 contains conclusive remarks.

2. Requirements for digesting

The cryptographically stable hash function f must provide the practical impossibility of selecting a 
pair of links x and z with the same hash function value. The digest of a document created with a 
key-dependent  hash  function  (MAC)  uses  the  HMAC symbol.  When  users  want  to  exchange 
correspondence  secretly,  verifying  the  author  of  the  letter  and  the  absence  of  changes  when 
forwarding, they choose a shared MAC. Additionally, they use a standard symmetric encryption 
scheme.

In addition to cryptographical stability, the execution speed and a high indicator of avalanche 
effect are important. The avalanche effect can be measured in the following way. The HMAC of the 
generated file has to be computed. After this step, a chosen character of the original file has to be 
changed to another symbol, and HMAC for the new file has to be computed.

Finally, a comparison of the characters of two HMACs has to be made, and the percentage of  
changed characters has to be computed. For practical usage of HMAC, it is necessary to show that  
a change of an arbitrarily used character leads to a change of at least 40% of bits independently of  
the size of the tested files.

The introduced approach of using walks on algebraic graphs defined over a finite commutative 
ring  K is helpful for the development of stream ciphers of Symmetric Cryptography (see, for 
instance, [17],  [18], and further references)  and constructions of HMACs.  Other applications of 
graph theory to Symmetric Cryptography are considered in [19].  The method of generation of 
nonlinear transformations of free modules over commutative rings described in terms of special 
graphs defined by algebraic equations (so-called linguistic graphs) can be used in Non-commutative 
Cryptography instead of methods of generators and equations [20].

Studies of message authentication codes and  НMACs are a hot topic.  A complete list  of all 
published papers within this direction is impossible; we only refer to some recent papers [21–29].

Recall that non-commutative cryptography is an active field of cryptology that explores 
cryptographic primitives and systems based on algebraic structures such as groups,  semigroups, 
and non-commutative rings.

One  of  the  earliest  applications  of  non-commutative  algebraic  structure  for  cryptographic 
purposes was using groups to develop cryptographic protocols.

Noteworthy that arbitrary hash functions such as MD5  or SHA1  can be used  to  compose 
HMACs corresponding to  MD5 and  SHA-1  message authentication codes, which are known as 
HMAC-MD5 and HMAC-SHA-1, respectively. HMAC’s cryptographic performance depends on the 
cryptographic performance of the underlying hash function, the size of its hash output, and the size 
and quality of the key.

3. Description of HMACs based on linguistic graphs defined over Zq, 
q = 2m

Let us assume that  q = 2m and  nI is a bipartite linguistic graph with the partition sets formed by 
points (x) = (x1, x2, …, xn), xi ϵ Zq and lines [y1, y2, …, yn], yi ϵ Zq. Recall that (x)nI[y] if and only if the 
following equations hold

a2x2 – b2x2=f2(x1, y1),
a3x3 – b3x3=f3(x1, x2, y1, y2),

…
anxn – bnxn = fi(x1, x2, …, xn – 1, y1, y2, …, yn – 1).

(1)
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We define the operator Na(v) of taking the neighbour of colour a via the following rule. If vertex 
v is the point (p) then Na(p) is the neighbouring line of this point with the colour a, i. e line [l] = [a, 
l2,  …,  ln] where  li,  i = 2,  3,  …,  n are  defined  recurrently  from  the  equations  a2p2 – b2l2 = p1a, 
a3p3 – b3l3 = f3(p1, p2, l1, l2), …, aipi – bili = fi(p1, p2, …, pi – 1, l1, l2, …, li – 1). If vertex v is the line [l] then 
Na(l) is the neighbouring point of the line with the colour a, i.e., point (p) = (a, p2, …, pn) where pi, 
i = 2, 3, …, n are defined recurrently from the equations a2p2 – b2l2 = al1, a3p3 – b3l3 = f3(p1, p2, l1, l2), …, 
aipi – bili = fi(p1, p2, …, pi – 1, l1, l2, …, li – 1).

In the following algorithms, we assume that the commutative ring K = Zq and the graph nI(K) 
internal parameters are among the input data. So, the operations of addition and multiplication of 
the ring are given by the loaded addition and multiplication tables. So we have embedded functions 
x + y  and  xꞏy where  x and  y are taken from the set  of  residues mod  q. We will  use another 
embedded power function xy,  where x is from the domain of all odd residues and y is the residue 
modulo 2m – 1, which is the order of the multiplicative group K*. Parameters give the graph nI(K) ai, 
bi, i = 2, 3, …, n, and a list of polynomials fi is given in their standard forms, i.e., lists of monomial 
terms of fi, i = 2, 3, …, n shown in the lexicographical order. The data described above is public. The 
input tuple of our algorithm is of the kind (x1, x2, …, xn), xi ϵ K = Zq, q = 28s, s ≥ 1.  So we can treat 
each xi as a tuple  (z1, z2, …, zs) from  Zb, b = 256 corresponding to the residue  z1 + z2b + … + zsbs – 1 

from Zq, and use the standard one-to-one correspondence between elements of Zb and ASCII codes 
of binary alphabet. So we can partition the text in binary alphabet into words of length s and treat 
each word as an element of the ring K = Zq.

The passive password of our secret key of our key dependent message authentication codes is 
the tuples (α2, α3, …, αn), (γ2, γ3, …, γn) where αj ϵ (Zq)* and (λ2, λ3, …, λn) where λi are even residues 
together with the tuple ((a(2), a(3), …, a(n)) formed by elements of a(j) ϵ {1, 2, …, 28s – 1 – 1}. We refer 
to this list of parameters as a passive password. We additionally use the format parameter k = O(nt), 
k < n, where 0 < t ≤ 1.

The active password is formed by depth parameter m of size O(1) together with tuples (β(1), β(2), 
…, β(m)) and (μ(1), μ(2), …, μ(m)) from ((Zq)*)m.

 We consider bijective transformations L of kind x1 → x1 + α2x2 + … + anxn, xj → xj, j = 2, 3, …, n 
and  the  value  of  multivariate  polynomial  Q(x1,  x2,  …,  xn) = x1(λ2x2 + γ2)a(2)(λ3x3 + γ3)a(3)…
(λnxn + γn)a(n) = Q.

To control  the  speed of  computation of  Q we assume that  ‘’almost  all’’  parameters  a(i),  I  ≥ 2, 
coincide with 1, i.e., the sum of parameters a(i) which are distinct from 1 is the selected constant d.

HMAC algorithm 1 (two versions)
Let (x1, x2, …, xn) be the intermediate point of the graph. We assume that it is the input of the 

algorithm.
1. Compute y(1) = L(x) = (a, x2, x3, …, xn).
    Compute NQ(y(1)) = z(1) = [c, y2, y3, …, yn].
2. y(2) = Na + β(1)(z(1)).
    z(2) = Nc + μ(1)(y(2)).
3. y(3) = Nc + β(1) + β(2)(z(2)).
    z(3) = Nc + μ(1) + μ(2)(y(3)).
We  continue  this  process  with  m-steps  to  get  y(m) = Na + β(1) + β(2) + … + β(m – 1))(z(m – 1)) and 

z(m) = Nc + μ(1) + μ(2) + … + β(m – 1)(y(m)).
We have two versions of the algorithm via selection of y(m) or z(m) as the intermediate output 

v = (v1, v2, …, vn).
Finally, we select parameter  k = O(nt),  k < n, where  0 < t ≤ 1, and announce that  (vn – k,  vn – k + 1, 

vn – k + 2, …, vn) is the output of the algorithm.
HMAC algorithm 2.
The first step is the same as the first computation of the previous algorithm. So we get y(1) and 

y(2). In each of the following steps, we permute two colours of the vertices.
2. y(2) = Nc + μ(1)(z(1), z(2) = Na + β(1)(y(2)).
3. y(3) = Nc + μ(1) + μ(2)(z(2)), z(3) = Na + β(1) + β(2)(y(3)).
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We  continue  this  process  with  m-steps  to  get  y(m) = Nc + μ(1) + μ(2) + … + μ(m – 1)(z(m – 1)) and 
z(m) = Na + β(1) + β(2) + … + β(m – 1)(y(m)).

Similarly,  we  have  two versions  of  the  algorithm via  the  selection  of  y(m) or  z(m) as  the 
intermediate output v = (v1, v2, …, vn). Finally, we select parameter k = O(nt), k < n, where 0 < t ≤ 1, 
and announce that (vn – k, vn – k + 1, vn – k + 2, …, vn) is the output of the algorithm.

The multivariate maps (x1, x2, …, xn – k) → (vn – k(x1, x2, …, xn), vn – k + 1(x1, x2, …, xn), …, vn(x1, x2, …, 
xn)) for  the  computation of  the  outputs  in  the  two algorithms presented above have different  
degrees and densities.

HMAC algorithm 3
This algorithms will  use the map  Q(x1,  x2,  …,  xn) of  Kn on Kn of kind  x1 → x1(λ2x2 + γ2)a(2)(λ3 

x3 + γ3)a(3)…(λnxn + γn)a(n), xj → xj and linear function M = x1 + α2x2 + … + αnxn.
We take (x) = (x1, x2, …, xn) and compute Q(x) = (a, x2, x3, …, xn) = y(1),  parameter M(x1, x2, …, 

xn) = c and z(1) = Nc(y(1)).
Then we use recursive procedures of the MAC Algorithm 1 to compute recurrently  y(2), z(2), 

y(3), z(3), …, y(m), z(m). For the selected parameter k, we take k last coordinates of y(m) or z(m) and 
use this tuple as the output.

4. On the selected graphs for the implementation

a. General Jordan-Gauss graphs

Accordingly to [16], we refer to the linguistic graph  nI(K) given by equations of kind (1) as the 
Jordan-Gauss graph in the case when

f2 = a2(1, 1)x1y1,
f3 = a3(1, 1)x1y1 + a3(1, 3)x1y2 + a3(2, 3)x2y2,

f4 = a4(1, 1)x1y1 + a4(1, 2)x1y2 + a4(1, 3)x1y3 + a4(2, 2)x2y2 + a4(2, 3)x2y3 + a4(3, 3)x3y3,
…

fn = an(1, 1)x1y1 + an(1, 2)x1y2 + … + an(1, n – 1)x1yn – 1 + an(2, 2)x2y2 + an(2, 3)x2y3 +
+ an(2, n – 1)x2yn – 1+ + ...+ + an(n – 1, n – 1)xn – 1yn – 1.

(1)

We refer to the graph as a dense Jordan-Gauss if all coefficients ai(k, l) as above are different 
from zero. If nI(K) is a dense Jordan-Gauss graph, we can keep it secret by adding the coefficients of 
the graph equations to the passive password. The theoretical complexity of the presented above 
algorithms is O(n2).

b. Special Jordan-Gauss graphs

We select for the implementation several well-known sparse Jordan-Gauss graphs for which the 
number of nonzero coefficients ai(k, l) is O(n).

Example 4.2.1. Generalised Wenger graph.
This is a Jordan-Gauss graph with partition its isomorphic to Kn, such that point (x1, x2, …, xn) is 

incident to line [y1, y2, …, yn] if and only if the following equations hold

x2 – y2 = x1y1,
x3 – y3 = x1y2,

…
xn – yn = x1yn – 1.

(1)

Wenger introduced this family of graphs in [30] for the case of K = Zp where p is prime.
Example 4.2.2.
Let  K stand for an arbitrary commutative ring with unity. We consider the graph  D(K) with 

points and lines which are infinite tuples over K of kind (p) = (p1, p2, …, pi, pi + 1, …), [l] = [l1, l2, …, li, 
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li + 1, …] with the following incidence relations. The point (p) is incident to line [l] if the following 
equation holds.

l2 – p2 = l1p1,
l3 – p3 = l2p1,
l4 – p4 = l1p2,

li – pi = l1pi – 2,
li + 1 – pi + 1 = li – 1p1,
li + 2 – pi + 2 = lip1,

li + 3 – pi + 3 = l1pi + 1 where i ≥ 5.

(1)

Graphs  D(n, K), n ≥ 2, were introduced in [15]. In fact, they are homomorphic images of  D(K) 
under a homomorphism sending  (p) into  (p1, p2,  …, pn) and  [l]  into  [l1, l2,  …, ln].  So the incidence 
Jordan-Gauss graph D(n, K) is defined by the first n – 1 equations in the list presented above.

The graph G’s girth g(G) is the size of its minimal cycle. The forest is the graph without a cycle. 
The connected forest is called the tree [31]. If K is an integrity domain, i.e., K does not contain zero 
divisors, then the girth D(n, K) of is at least n + 5 [15]. These facts were established in [9] for the 
case of finite fields.

Example 4.2.3.
Infinite Jordan-Gauss graph A(K) with points (p) = (p1, p2, …, pi, pi + 1, …) and lines [l] = [l1, l2, …, li, 

li + 1, …] with coordinates from commutative ring K is defined by equations

l2 – p2 = l1p1,
l3 – p3 = p1l2,
l4 – p4 = l1p3,
l5 – p5 = p1l4,

…

(1)

Graphs  A(n, K),  n ≥ 2 introduced  in  [15]  are  homomorphic  images  of  A(K) under  a 
homomorphism sending (p) into (p1, p2, …,pn) and [l] into [l1, l2,…, ln].  So the incidence of Jordan-
Gauss graph A(n, K) is defined by the first n – 1 equations presented above.

If K is an integrity domain, then A(K) is the forest (see [16] and further references), the girth of 
A(n, K) is ≥ [(n + 2) / 2].

We can see that the quadratic monomial term on the right-hand side of the equations uniquely  
defines each equation of D(K). Let D be the set of monomial terms of the equation of D(K), and A be 
the set of monomial terms of the A(K) equations. Note that the deletion of equations of D(K) with 
monomial terms from D – A, together with corresponding equations, defines the homomorphism of 
the forest D(K) onto A(K).

Example 4.2.4
The equations of  the graph D(K) and corresponding quadratic monomial  terms are ordered 

accordingly to the list (2). Let rB(K) be the homomorphic image of D(K) obtained by the deletion of 
all equations with the number > r which contain the monomials from D-A. Let rB(n, K), n > r + 1 be 
the graph with partition sets isomorphic to Kn defined via the first n – 1 equations of rB(K) (see [16] 
and further references).

In the case of Examples 4.2.1–4.2.4, the complexity of the generating procedure of the message 
authentication codes is O(n).

In cases 4.2.1–4.2.3, we assume that the graphs are known to the public. In the case of the graph 
of Example 4.2.4, we can add the parameter n to the passive password.
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5. Comments on the implementation

We investigate our algorithms in the commutative ring Z256, which is the same size as the binary 
alphabet.  We  select  the  cases  of  sparse  graphs  described  in  Examples  4.2.1–4.2.4  for  the 
implementation. We choose the parameters of the passive password as follows. Only O(1) values of 
kind αi, βi, and a(j) differ from 1, and only a selected finite number of λi differ from 2. The passive 
password remains the same during our computer simulation.

We refer to d = 2m as the length of the walk. In the cases of 4.2.2–4.2.4, the change of active 
password leads to the shift in intermediate output v = (v1, v2, …, vn). The walk’s computation speed 
is the same in all cases 4.2.1–4.2.4 because Jordan-Gauss graphs have equations with the single 
quadratic  monomial terms in each equation. Note that the time execution does not depend on 
parameter k, which defines the digest size.

Computer simulations demonstrate a high level of the avalanche effect. We can see that a single 
change of the character of the initial file or a single shift in the character of the active password 
leads to a change of 98% of the characters of the output. Not that this is essentially better than in  
the case of HMAC [32] when the change of characters of the initial file leads to the change of 47-50 
characters of the output.

Our software is written in C++; therefore, it is portable and runs on many platforms, such as  
Unix/Windows.  To  evaluate  our  algorithm’s  performance,  we  use  files  of  different  sizes.  We 
measure the time (Fig. 1) needed to produce the digest in milliseconds. And the file size of files in 
kilobytes for passwords of length d.

Figure 1: Run time for the digest generation

We use an average PC with a Pentium 3.00 GHz, 2GB of RAM, and Windows 7. The following 
diagram presents the time of the algorithm’s execution in the case of graphs 4.2.2. on in the case of  
graphs 4.2.2.

Conclusions

The paper proposes new fast  graph-based  algorithms for creating sensitive digests of electronic 
files to detect cyberattacks, computer viruses, or other damages and check data integrity. These 
tools can be used to defend a virtual organization and audit all files after a registered intervention.  
Cryptographic stability of new key-dependent hash functions is associated with complex algebraic 
problems, such as the study of systems of algebraic equations of a considerable degree and the 
decomposition of a nonlinear transformation into the composition of given generators. These facts 
justify resistance of digests against adversary attacks with the use of algorithms in terms of a  
Turing machine or the theory of Quantum Computation.

Algorithms of digest generation use the idea of presentation of files in the form of sequences 
(words) of elements of the arithmetical ring modulo  2m.  The presented families of graphs form 
sequences that define the projective limit of finite graphs given by equations.
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Affine transformations and polynomial maps of high degree are used to hide the transformation 
induced by the walk on the graph. This scheme is new, 

Implemented  according  to  this  scheme,  a  family  of  fast  algorithms  was  investigated  via 
computer simulations on large real data sets. Changing a single document character in the binary 
alphabet causes the change of most characters of the produced digest (≥98%). This property and the 
evaluation of the time execution of software programs justify the potential of practical usage of the 
implemented algorithm for cybersecurity tasks.

Declaration on Generative AI

While  preparing this  work,  the  authors  used the  AI  programs Grammarly  Pro  to  correct  text 
grammar and Strike Plagiarism to search for possible plagiarism. After using this tool, the authors 
reviewed and edited the content as needed and took full responsibility for the publication’s content.
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