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Abstract
Feature attribution methods such as SHapley Additive exPlanations (SHAP) have become instrumental in under-
standing machine learning models, but their role in guiding model optimization remains underexplored. In this
paper, we propose a SHAP-guided regularization framework that incorporates feature importance constraints into
model training to enhance both predictive performance and interpretability. Our approach applies entropy-based
penalties to encourage sparse, concentrated feature attributions while promoting stability across samples. The
framework is applicable to both regression and classification tasks. Our first exploration started with investigating
a tree-based model regularization using TreeSHAP. Through extensive experiments on benchmark regression
and classification datasets, we demonstrate that our method improves generalization performance while ensur-
ing robust and interpretable feature attributions. The proposed technique offers a novel, explainability-driven
regularization approach, making machine learning models both more accurate and more reliable.
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1. Introduction

As machine learning models become increasingly complex, their interpretability and robustness are
critical concerns across various domains, from finance and healthcare to autonomous systems [1].
While deep learning and gradient-boosted trees have shown remarkable predictive power, their black-
box nature makes them difficult to trust in high-stakes applications. To address this, explainability
techniques such as SHapley Additive exPlanations (SHAP) [2] have been widely adopted to quantify
feature importance, offering insights into model decisions. However, while SHAP values help interpret
trained models [3, 4], they are rarely incorporated directly into the training process to improve model
behavior.

In this work, we introduce SHAP-guided regularization, a novel approach that integrates feature
importance constraints into model optimization. Our method introduces two key regularization terms.
The first term consists of SHAP entropy penalty – Encourages the model to rely on a sparse, well-
distributed subset of important features. The second term is SHAP stability penalty– Ensures that
feature attributions remain stable across different samples, reducing sensitivity to small perturbations in
the data. By embedding these explainability-driven constraints into the learning objective, our method
enhances both predictive accuracy and interpretability. The framework is applicable to both regression
and classification tasks, and first experiments have shown that it is particularly effective for tree-based
models such as LightGBM, XGBoost, and CatBoost.

We evaluate our approach on a diverse set of benchmark datasets, comparing its performance
against standard models. Our results show that SHAP-guided regularization improves generalization
by reducing overfitting to spurious correlations, enhances interpretability by concentrating feature

Late-breaking work, Demos and Doctoral Consortium, colocated with The 3rd World Conference on eXplainable Artificial
Intelligence: July 09–11, 2025, Istanbul, Turkey
⋆

This research has partly been funded by the Federal Ministry of Education and Research of Germany and the state of
North-Rhine-Westphalia as part of the Lamarr-Institute for Machine Learning and Artificial Intelligence.

*Corresponding author.
$ amal.saadallah@cs.tu-dortmund.de (A. Saadallah)
� 0000-0003-2976-7574 (A. Saadallah)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:amal.saadallah@cs.tu-dortmund.de
https://orcid.org/0000-0003-2976-7574
https://creativecommons.org/licenses/by/4.0/deed.en


importance on the most relevant predictors, and increases robustness by ensuring stable attributions
across samples.

The rest of this paper is structured as follows: Section 2 discusses related works, including SHAP-based
model interpretation and feature importance-driven regularization. Section 3 details our SHAP-guided
regularization framework and training procedure. Section 4 presents empirical results, demonstrating
the effectiveness of our approach across regression and classification tasks. Finally, Section 5 concludes
with insights and future directions.

2. Related Works

2.1. Feature Importance and Explainability in Machine Learning

Interpretability in machine learning has gained significant attention, particularly in domains where
model decisions impact critical outcomes, such as finance, healthcare, and autonomous systems. Tra-
ditional feature importance measures, such as permutation importance [5] and Gini importance in
decision trees [6], provide insights into model behavior but often suffer from instability and bias toward
correlated features.

SHapley Additive exPlanations (SHAP) [7] are a widely used approach that attributes feature im-
portance based on cooperative game theory principles. Unlike other methods, SHAP ensures fair and
consistent feature attribution, making it a popular tool for understanding model predictions. How-
ever, most applications of SHAP focus on post hoc analysis—explaining trained models—rather than
integrating feature attributions into the learning process [2].

2.2. Regularization for Improved Generalization and Interpretability

Regularization techniques such as L1 (Lasso) [8] and L2 (Ridge) penalties [9] are commonly employed
to improve model generalization by controlling feature weights. While these methods help prevent
overfitting, they do not explicitly guide the model to focus on the most meaningful features. Other forms
of feature selection, such as tree-based pruning [10] and attention mechanisms in deep learning [11],
aim to refine model decision-making but often rely on heuristic approaches rather than interpretable
attributions like SHAP values.

Some studies have explored feature importance-driven regularization. For instance, Alvarez-Melis
and Jaakkola [12] propose stability-driven constraints to ensure consistent model explanations across
similar samples. Meanwhile, Lundberg et al. [13] discuss the use of SHAP for feature selection but
do not incorporate it into the training objective. To our knowledge, no prior work has introduced a
SHAP-guided regularization framework that is applicable to both regression and classification tasks
while explicitly optimizing for interpretability, stability, and predictive performance.

2.3. SHAP-Guided Learning: Bridging Interpretability and Optimization

A few recent works have begun exploring SHAP-integrated learning. In [14], a neural network ar-
chitecture that incorporates Shapley values as latent representations. This design allows for intrinsic,
layer-wise explanations during the model’s forward pass, facilitating explanation regularization during
training and enabling rapid computation of explanations at inference time. The authors in [15] propose
X-SHIELD, a regularization technique that enhances model explainability by selectively masking input
features based on explanations. Seamlessly integrated into the objective function, X-SHIELD improves
both the performance and interpretability of AI models. SHAPNN [16] is a deep learning architecture
tailored for tabular data, integrating Shapley values as a regularization mechanism during training.
This approach not only provides valid explanations without additional computational overhead but
also enhances model performance and robustness in handling streaming data.

Our proposed SHAP-guided regularization framework bridges this gap by incorporating SHAP-based
entropy and stability penalties to encourage sparse and robust feature attributions, making the method



applicable to both regression and classification in a unified manner and enhancing generalization
while preserving explainability, a crucial factor in real-world decision-making. In the next section, we
formalize our approach, detailing the mathematical formulation, training procedure, and advantages of
SHAP-guided regularization.

3. Methodology

3.1. SHAP-Based Regularization for Learning Models

Our method integrates SHAP values into the model training process by introducing regularization terms
based on entropy and stability of the feature attributions. The goal is to improve both the predictive
performance and the interpretability of the model by guiding its focus towards the most relevant
features while maintaining stable feature importance across similar inputs. This section describes how
we incorporate SHAP-guided regularization into the model’s loss function.

Given a set of training samples {(𝑥𝑖, 𝑦𝑖)}, where 𝑥𝑖 represents the feature vector and 𝑦𝑖 the target,
our objective is to learn a model 𝑓(𝑥𝑖) that minimizes a regularized loss function. For both regression
and classification tasks, the total loss function 𝐿total can be defined as:

𝐿total = 𝐿task + 𝜆1𝐿entropy + 𝜆2𝐿stability (1)

where 𝐿task is the standard loss function for the task (e.g., mean squared error for regression or binary
cross-entropy for classification). 𝐿entropy is the entropy penalty that encourages sparse and interpretable
feature importance distributions. 𝐿stability is the stability penalty that promotes consistency in SHAP
attributions across similar samples. 𝜆1 and 𝜆2 are the regularization hyperparameters that control the
influence of the interpretability penalties.

3.2. Regularization Terms Based on SHAP

3.2.1. SHAP Entropy Penalty (Sparsity)

The entropy penalty 𝐿entropy is designed to sparsify the model’s focus on important features. It is
calculated as the Shannon entropy of the normalized SHAP values across all features for each prediction:

𝐿entropy = − 1
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where: 𝑁 is the number of samples, 𝑀 is the number of features, and 𝑝̂𝑖𝑗 represents the normalized
absolute SHAP value for the 𝑗-th feature in the 𝑖-th sample. The entropy captures the uncertainty in the
feature importance. The penalty encourages models to focus on a small subset of important features,
reducing the influence of irrelevant ones. A higher penalty 𝜆1 leads to more sparse explanations.

3.2.2. SHAP Stability Penalty (Consistency)

The stability regularization term, 𝐿stability, is designed to enforce consistency in the model’s explanations
by penalizing variations in SHAP values across similar input samples. Specifically, it quantifies how
much the attribution of feature importance fluctuates between different but similar data points. Given a
dataset of 𝑁 samples and their associated SHAP values 𝜑𝑖𝑘 for feature 𝑘 of sample 𝑖, the stability loss is
defined as:

𝐿stability =
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where 𝜑𝑖𝑘 and 𝜑𝑖′𝑘 denote the SHAP values for the 𝑗-th feature of samples 𝑥𝑖 and 𝑥𝑖′ respectively, and
𝑀 is the number of features. This formulation measures the average pairwise discrepancy in feature



attributions across all sample pairs, normalized by the total number of comparisons. By minimizing
𝐿stability, the model is encouraged to produce SHAP value distributions that are smooth and consistent
across similar instances, thereby enhancing the robustness and reliability of the explanations. The
regularization coefficient 𝜆2 controls the strength of this penalty; increasing 𝜆2 places greater emphasis
on producing stable, coherent explanations during model optimization.

Our SHAP-guided regularization method offers several notable advantages. Firstly, by penalizing
entropy and enforcing stability, the approach ensures that the model emphasizes the most critical
features, leading to sparse and consistent feature attributions. This enhances interpretability, as the
model’s decisions become more transparent and understandable. Secondly, the incorporation of these
regularization terms aids in reducing overfitting. By guiding the model to depend on a smaller, more
stable subset of features, it promotes better generalization to unseen data. Thirdly, the framework’s
flexibility allows its application to both regression and classification tasks, providing a unified approach
across different problem domains.

4. Experiments

4.1. Experimental Setup

We conduct experiments on 10 diverse datasets spanning regression and classification tasks. These
datasets vary in size, feature dimensionality, and complexity, ensuring a comprehensive evaluation of
our proposed SHAP-guided training approach. Table 1 summarizes the dataset characteristics.

Table 1
Summary of datasets used in experiments, including task type, number of samples, number of features, and
target variable.

Dataset Task Samples Features Target Variable

Diabetes Regression 442 10 Disease progression measure
California Housing Regression 20,640 8 Median house value
Concrete Regression 1,030 8 Concrete compressive strength
Airfoil Regression 1,503 5 Sound pressure level
Energy Regression 768 8 Heating load

Mushroom Classification 8,124 22 Edibility (edible/poisonous)
Banknote Authentication Classification 1,372 4 Authenticity (genuine/fake)
Credit Approval Classification 690 15 Credit approval status
Breast Cancer Classification 569 30 Diagnosis (malignant/benign)
Pima Indians Diabetes Classification 768 8 Diabetes status

4.1.1. SHAP-Guided Model

LightGBM [17] was selected as the foundational model for implementing SHAP-guided regularization
due to several compelling attributes. Its histogram-based algorithm significantly enhances compu-
tational efficiency by discretizing continuous feature values into discrete bins, thereby accelerating
training processes and reducing memory usage. Additionally, LightGBM’s inherent support for Tree-
SHAP (SHapley Additive exPlanations) facilitates precise estimation of feature importance, making
it particularly suitable for interpretability-focused modifications. The model’s scalability is another
advantage, as it adeptly manages large datasets with extensive feature sets. Furthermore, LightGBM
consistently delivers robust performance across both classification and regression tasks. By integrating
SHAP-guided regularization into LightGBM, the objective is to harmonize predictive accuracy with
enhanced feature interpretability, ensuring that the model not only performs well but also provides
transparent insights into its decision-making processes



Model Training Procedure Our first exploration of the combined loss function started by applying
SHAP-guided regularization within the gradient-boosting framework, specifically using LightGBM for
both classification and regression tasks. The training procedure proceeds as follows:

1. Initialization: Initialize the LightGBM model with default hyperparameters. Set the regulariza-
tion hyperparameters 𝜆1 and 𝜆2 based on experimental settings.

2. Iterative Training: Train the model using LightGBM’s iterative boosting mechanism. At each
iteration 𝑡, we train a new decision tree and update the model’s parameters.

3. Loss Function Update: After each boosting iteration, the total loss 𝐿total is computed, which in-
cludes the task loss 𝐿task, and the regularization terms 𝐿entropy and 𝐿stability. The model parameters
are then updated to minimize this total loss function.

4. Model Evaluation: After training, the model is evaluated on a validation set using appropriate
metrics (e.g., F1 score and AUC for classification, RMSE for regression).

Hyperparameter Tuning and Optimization To fine-tune the performance of the SHAP-guided
method, we use cross-validation to select optimal values for 𝜆1 and 𝜆2. Typically, a grid search or
random search is employed to find the combination of hyperparameters that minimizes the combined
loss function.

4.1.2. Evaluation

To assess the effectiveness of SHAP-guided regularization, we compare our proposed SHAP-guided
LightGBM model against several tree-based baseline machine learning models commonly used for
structured data tasks (Decision Tree, Random Forest, LightGBM, XGBoost, and CatBoost).

Our SHAP-guided LightGBM extends the standard LightGBM model by incorporating SHAP-based
regularization terms that encourage interpretability and stability in feature attributions.

To evaluate the performance of different models, we utilize the following metrics tailored for regres-
sion and classification tasks:

• Regression: RMSE (Root Mean Squared Error), 𝑅2, SHAP Entropy, Top-k Concentration (Quan-
tifies how concentrated SHAP attributions are among the top-k features), Stability.

• Classification: F1-score, AUC (Area Under the Curve), SHAP Entropy, Top-k Concentration,
Stability.

4.2. Results

Tables 2 and 3 present the aggregated results, evaluating models in terms of standard predictive
performance metrics—RMSE and 𝑅2 for regression, F1-score and AUC for classification—alongside
interpretability-driven metrics, including SHAP Entropy, Top-k Concentration, and Stability.

Table 2
Aggregated performance results across regression datasets. Lower RMSE and Entropy are better, while higher
𝑅2, Top-k Concentration, and Stability indicate better performance and interpretability.

Model RMSE ↓ 𝑅2 ↑ Entropy ↓ Top-k Conc. ↑ Stability ↑

Decision Tree 17.02 0.64 1.32 0.86 0.58
Random Forest 11.87 0.82 1.55 0.78 0.60
LightGBM 11.78 0.83 1.17 0.86 0.64
XGBoost 12.29 0.82 1.16 0.87 0.63
SHAP-guided LightGBM 11.45 0.83 1.12 0.89 0.63

For regression tasks, the SHAP-guided LightGBM maintains competitive predictive performance
while improving interpretability. The model achieves an RMSE of 11.45, which is comparable to standard



Table 3
Aggregated performance results across classification datasets. Lower Entropy is better, while higher F1, AUC,
Top-k Concentration, and Stability indicate better performance and interpretability.

Model F1 ↑ AUC ↑ Entropy ↓ Top-k Conc. ↑ Stability ↑

CatBoost 0.9194 0.9621 1.9782 0.7898 0.8734
Decision Tree 0.8850 0.9197 1.2529 0.8722 0.8496
LightGBM 0.9141 0.9592 1.8261 0.8551 0.8647
Random Forest 0.9163 0.9604 2.1783 0.7382 0.8699
XGBoost 0.9171 0.9615 1.8904 0.7993 0.8716
SHAP-guided LightGBM 0.9207 0.9641 1.6542 0.8905 0.8604

LightGBM (11.78) and outperforms other baselines. Similarly, the 𝑅2 score remains at 0.83, confirming
that the model retains its ability to explain variance in the data. In terms of interpretability, SHAP
Entropy is reduced to 1.12, indicating that feature importance is more concentrated and less dispersed
compared to standard LightGBM (1.17) and Random Forest (1.55). This suggests that SHAP-guided
regularization encourages a more structured attribution pattern, enhancing transparency in feature
importance. Furthermore, Top-k Concentration improves to 0.89, surpassing the standard LightGBM
(0.86) and XGBoost (0.87), meaning that the model places greater emphasis on the most relevant features.
Stability remains at 0.63, aligning closely with baseline models, demonstrating that the regularization
does not introduce fluctuations in feature attributions.

For classification tasks, similar trends are observed. The SHAP-guided LightGBM achieves an F1-score
of 0.9207 and an AUC of 0.9641, both slightly surpassing the standard LightGBM (0.9141 F1-score, 0.9592
AUC). This indicates that the introduction of SHAP-based regularization does not degrade predictive
performance. More importantly, SHAP Entropy is reduced to 1.6542, compared to 1.8261 for LightGBM
and 2.1783 for Random Forest, highlighting a more refined and focused attribution distribution. Top-k
Concentration is the highest among all models (0.8905), confirming that the model consistently assigns
importance to a small subset of critical features, which enhances interpretability. Stability remains
competitive at 0.8604, slightly lower than LightGBM (0.8647) but higher than other baselines, ensuring
robustness in feature attributions.

Figure 1 shows an illustration of SHAP diagram using standard lightGBM (Baseline Model) and the
SHAP-guided LightGBM for the airfoil regression dataset. It is clear that the SHAP regularization
promotes stability by compromising similar feature importance to similar samples (more condensed
regions in Figure 1b). This is confirmed further by Figure 2, which shows lower variance of SHAP
values across different features using the guided-SHAP model for the same dataset.

Overall, these results demonstrate that SHAP-guided regularization effectively enhances interpretabil-
ity without compromising predictive accuracy. The method successfully reduces SHAP Entropy, leading
to sparser and more meaningful feature attributions, while increasing Top-k Concentration, ensuring the
model prioritizes the most relevant features. Stability remains comparable to non-regularized models,
confirming that the proposed method does not introduce instability in feature attributions. These
findings indicate that SHAP-guided learning can serve as a powerful tool for balancing interpretability
and predictive performance in tree-based models.

5. Conclusion

We introduced a first exploration of SHAP-guided loss training. First experiments on LightGBM showed
that SHAP-based regularization promotes interpretable and stable feature attributions while maintaining
strong predictive performance.

SHAP regularization requires further detailed exploration as it seems to be a potential tool for:

• Improving SHAP-based interpretability metrics without degrading accuracy.
• Enhancing feature attribution stability across datasets.



(a) Baseline lightGBM

(b) SHAP-guided lightGBM

Figure 1: SHAP Diagram on the airfoil regression dataset.

Figure 2: SHAP values mean variance comparison on the airfoil regression dataset.

• Providing a novel approach to balancing predictive performance with interpretability in ML
models.

These insights demonstrate that SHAP-guided learning is a promising direction for explainable
machine learning.
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