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Abstract
Although prototype-based explanations provide a human-understandable way of representing model predictions
they often fail to direct user attention to the most relevant features. We propose a novel approach to identify the
most informative features within prototypes, termed alike parts. Using feature importance scores derived from an
agnostic explanation method, it emphasizes the most relevant overlapping features between an instance and its
nearest prototype. Furthermore, the feature importance score is incorporated into the objective function of the
prototype selection algorithms to promote global prototypes diversity. Through experiments on six benchmark
datasets, we demonstrate that the proposed approach improves user comprehension while maintaining or even
increasing predictive accuracy.
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1. Introduction

Research on explaining black-box machine learning methods, which have been intensively developing in
recent years, has led to the introduction of a great number of various explanation methods; see, e.g. [1].
Since prototypes correspond to training data, they are easier for humans to understand compared to
more complex explanation methods [2]. Prototypes can serve as a local explanation by associating
predictions with similar examples or as a global explanation to illustrate model decision boundaries
using a limited number of representative instances.

Although in general prototypes can be applied to different types of data, in this paper we focus on
tabular data, i.e., the description of examples in the form of vectors of (feature , value) pairs. However,
their interpretation may be a challenge, especially when there are too many features [2]. For local
explanations in particular, human users may encounter difficulties in assessing which features are most
important for the prediction of the considered instance. Furthermore, it can be expected for global
explanations that the discovered prototypes are not only well spread over the learning data space but
are simultaneously characterized by quite diversified subsets of the most important features.

Recall that similar expectations have been examined for other data modalities. For images, prototypi-
cal parts networks were introduced to identify characteristic patches instead of complete images [3].
However, for tabular data, the decomposition into meaningful parts remains underexplored. To bridge
this gap, we introduce the identification of the most important features in prototypes. This is achieved by
applying an agnostic explanation method for computing the feature importance of the black-box model,
and offers a more refined perspective than existing techniques. Such subsets of features can be exploited
for local or global approaches and support users in better interpreting the provided explanations.

Our approach uses feature importance in two ways. First, we identify alike parts by highlighting the
most informative overlapping features between an instance and its nearest prototype, directing the
user’s attention to a limited number of key features when interpreting a model prediction. Second, we
incorporate feature importance into the prototype selection objective function to promote diversity,
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which aids in identifying alike parts. These strategies balance interpretability and diversity, enhancing
both local explanations and prototype selection. The methods are evaluated on benchmark datasets,
with source code available on GitHub1.

2. Related work

A dataset 𝒮 consists of 𝑛 instances (learning examples), expressed as 𝒮 = (x𝑖, 𝑦𝑖)
𝑛
𝑖=1, where each

x𝑖 ∈ X𝑑 represents a 𝑑 dimensional feature vector, and 𝑦𝑖 ∈ 𝒴 denotes its corresponding label. In this
work, we consider tabular data in a feature-value format. We assume the presence of a classifier ℎ
trained in 𝒮 , which serves as a black-box model to make predictions. The classifier ℎ maps an input
instance x𝑖 to a predicted label 𝑦𝑖 : ℎ(x𝑖) ↦→ 𝑦𝑖.

From our perspective, a prototype is a representative instance selected from the dataset, i.e., an element
(x𝑗 , 𝑦𝑗), where 𝑦𝑗 denotes the class assignment of the instance made by the classifier ℎ. Typically, the
set of prototypes, denoted as 𝒫 , is a subset of 𝒮 , such that 𝒫 = {(x𝑗 , 𝑦𝑗)}𝑚𝑗=1, where 𝑚 ≪ 𝑛 (𝒫 ⊂ 𝒮),
ensuring that the number of prototypes is much smaller than the total size of the training dataset.

Some prototype selection methods use kernel functions and vector quantization [4], while KNN-based
methods share similar principles. IKNN_PSLFW [5], for example, partitions data into class-specific
subsets and selects prototypes farthest from other classes. However, most methods rely on standard
distance measures in the original attribute space, requiring a similarity definition that supports diverse
data types (binary, numerical, categorical) and is robust to scaling differences. However, most of
these algorithms exploit standard distance measures in the original attribute space, which requires the
definition of similarity that supports different data types and is immune to different scales.

More recent proposals mitigate these distance limitations by considering the proximity of instances in
the new space, referring to predictions of the black-box model; see the tree-space prototypes developed
for explaining ensembles. The first algorithm, SM-A, introduced in [6], searches for prototypes –
medoids in this space. However, it requires the user to specify the expected number of prototypes. This
limitation was later addressed by A-PETE [7], which automates prototype selection.

Although numerous methods have been proposed to assess feature influence for black-box model
predictions, they have not been widely applied in conjunction with prototype-based explanations.
Popular techniques such as SHAP [8] as a local explanation yield a vector of length equal to the
number of features, where each value attributes the importance score of individual features, helping to
understand the behavior of the model for specific instances.

Despite multiple studies on prototypes for tabular data, only a few papers discuss how prototypes
should be presented to end users. In [9], some prototype visualizations are provided, such as 2D scatter
plots or self-organizing maps; however, they are suitable only for low-dimensional data and ultimately
do not focus user attention on specific parts.

3. Method

In Section 3.1 we will first present our proposal to support the local explanation of the example
predication by the nearest prototype. Then, in Section 3.2 we will generalize it to create a diverse global
set of prototypes.

3.1. Identifying important parts

Following [2], for many features, a prototype as a whole can be difficult to comprehend and therefore
make it difficult to explain the prediction of a black-box model. Some features within the prototype
may be of high importance, while others may have low importance to the specific prediction that is
being explained.

1https://github.com/jkarolczak/important-parts-of-prototypes

https://github.com/jkarolczak/important-parts-of-prototypes


Table 1
Finding alike parts for the instance and its prototype from Apple Quality dataset. The first two rows present the
feature importance values for the instance and its prototype, respectively. The third row shows the computed
weights, obtained as the element-wise product of normalized feature importance scores (Formula 2). The bottom
row indicates the binary mask, which selects the most relevant shared features-those with weights above the
mean - denoted by ’1’

Size Weight Sweetness Crunchiness Juiciness Ripeness Acidity
Instance -2.77 -1.08 -1.72 1.38 0.19 3.65 0.31
Prototype -0.97 -0.20 -3.07 0.00 -0.52 3.16 -0.52
Weights 0.18 0.02 0.27 0.00 0.00 0.51 0.00
Mask 1 0 1 0 0 1 0

Therefore, we propose a method that identifies the most informative features shared between an
instance and its prototype, guiding the user’s attention to a concise subset of features. Further, we refer
to them as alike parts, where the importance of features within the alike part is similarly high in both
the instance and its nearest prototype.

To explain the instance x𝑖 by its nearest prototype p𝑗 , we first identify the alike parts by computing
feature importance scores for each feature 𝑙 ∈ 1, . . . , 𝑑 in the classification of x𝑖 and p𝑗 using the
classifier ℎ, denoted as 𝜑(ℎ,x𝑙

𝑖) and 𝜑(ℎ,p𝑙
𝑗), respectively. We use the SHAP method [8] to quantify the

influence of each feature, as it is one of the most widely used methods for feature importance estimation.
However, any feature importance method can be applied in this context. To ensure comparability, the
raw importance scores are normalized, as they can vary in magnitude. We treat both positive and
negative scores equally by squaring them, which avoids cancellations and enables the identification of
similarities and differences between the instance and its prototype:

𝜑̂(ℎ,x𝑙
𝑖) =

(𝜑(ℎ,x𝑙
𝑖))

2∑︀𝑑
𝑘=1(𝜑(ℎ,x

𝑘
𝑖 ))

2
, 𝜑̂(ℎ,p𝑙

𝑗) =
(𝜑(ℎ,p𝑙

𝑗))
2∑︀𝑑

𝑘=1(𝜑(ℎ,p
𝑘
𝑗 ))

2
. (1)

To quantify the alignment of feature importance between the instance and the prototype, we define a
weight for each feature as the product of its normalized importance scores:

𝑤𝑙 = 𝜑̂(ℎ,x𝑙
𝑖) · 𝜑̂(ℎ,p𝑙

𝑗) . (2)

These weights are used to determine the degree to which each feature highly influences the prediction
of the model for both the prototype and the explained instance. Various operators can achieve this - here
we propose to select a subset of the most influential features – by defining a binary mask m ∈ {0, 1}𝑑,
where these features with weights above the mean of all values are retained:

𝑚𝑙 = ⊮

(︃
𝑤𝑙 >

1

𝑑

𝑑∑︁
𝑘=1

𝑤𝑘

)︃
(3)

Table 1 illustrates the identification of a subset of important features.

3.2. New definition of optimization problem

The prototype selection algorithms discussed in this paper, such as [6, 7], define the task of identifying
representative data points as a 𝑘-medoids problem, which is solved using a greedy approximation
algorithm. Typically, the 𝑘-medoids problem minimizes a distance function 𝑑 between each training
example x𝑖 and its nearest prototype p𝑗 . This is expressed as follows:

𝑓(𝒫) =

|𝒮|∑︁
𝑖=1

min
p𝑗∈𝒫

𝑑 (x𝑖,p𝑗) , (4)



Table 2
An example of an instance and its alike parts identified from the nearest prototype using the A-Pete algorithm [7].
The selection is based on two optimization problem definitions: the original (raw) and the Feature Importance
(FI)-informed approach. Parts alike between the explained instance and prototype in the FI-informed approach
are bolded, while those alike in the original (raw) strategy are underlined.

type Pregnancies Glucose BloodP. SkinT. Insulin BMI PedigreeF. Age
instance 6 102 82 0 0 30.8 0.18 36
prototype (FI) 7 125 86 0 0 37.6 0.30 51
prototype (Raw) 7 62 78 0 0 32.6 0.39 41
instance 8 100 74 40 215 39.4 0.66 43
prototype (FI) 9 152 78 34 171 34.2 0.89 33
prototype (Raw) 9 171 110 24 240 45.4 0.72 54

where the notation |𝒮| refers to the cardinality of the training set. The choice of the distance function
𝑑 varies between different algorithms. In neural network-based approaches, it can be a dot product
between trainable embeddings [10], or in tree ensembles, a specialized tree distance metric [6, 7].

To strengthen diversification in feature importance, we propose extending the objective function by
including an additional feature importance component 𝑓𝑖 defined as the product of normalized feature
importance of 𝑙-th feature of instance x𝑖 and its nearest prototype p𝑗 :

𝑓𝑖(x𝑖,p𝑗) =

𝑑∑︁
𝑙=1

(𝜑(ℎ,x𝑙
𝑖))

2∑︀𝑑
𝑘=1(𝜑(ℎ,x
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𝑘
𝑗 ))

2
. (5)

The 𝑓𝑖 scores can be calculated once for all x𝑖 prior to optimization and cached for efficiency. The
revised function incorporates both the minimization of the distance between each instance and its
nearest prototype and an additional term weighted by 𝛽 to account for the feature importance score.
The first term promotes that each instance in the dataset is well represented by a prototype, promoting
compact coverage of 𝒮 by assigning each instance to its closest prototype, while the second encourages
diversification in the feature importance across prototypes. The revised function is formally defined as:

𝑓(𝒫) =

|𝒮|∑︁
𝑖=1

min
p∈𝒫𝑗

(𝑑 (x𝑖,p𝑗) + 𝛽 · 𝑓𝑖 (x𝑖,p𝑗)) , (6)

This modification enables a more nuanced global prototype selection, with 𝛽 balancing distance and
feature importance. The updated formulation improves prototype selection for identifying alike parts.
The proposed method is robust to missing values, assuming that the selected components can handle
them. In this paper, we used prototype selection algorithms [6, 7] based on RF [11], and SHAP, both of
which natively support missing values. Therefore, the method does not require additional preprocessing
for missing data.

4. Experiments

As discussed in Section 3.2, the proposed optimization method can be adapted to various algorithms. We
applied this modification to prototype selection algorithms optimizing tree distance: A-PETE, SM-A, and
G-KM [6, 7], to explain the Random Forest (RF) ensemble [11]. All use greedy medoid selection, with
key differences: G-KM selects an equal number of prototypes per class (greedy k-Medoid approximation
computed within classes); SM-A [6] selects the prototype providing the greatest improvement across all
classes; and A-Pete [7] automates this by stopping based on relative improvements (see [7] for pseudo
codes). For evaluation, we use four benchmark datasets that have a subset of globally important features:



Figure 1: Comparison of prototypes (x-axis – prototype index) and important features (y-axis – feature index)
for the Diabetes dataset. The top row displays prototypes generated using the original raw algorithm, while the
bottom row incorporates an extended target function with feature importance (FI). The size of the inner circle
represents feature importance, and pink highlights features identified as important for a given prototype.

Australia Rain2, Breast Cancer3, Diabetes4, and Passenger Satisfaction5; and two: Apple Quality6 and
Wine Quality7, which exhibits high feature importance across all features.

The experiments are organized as follows: Section 4.1 presents examples of alike parts identification
on real data and how extending the optimized function improves this process. Section 4.2 aims to
quantify the quality of the proposed improvements by comparing our modified with the original
prototype selection methods, highlighting the impact of our changes. Section 4.3 presents an ablation
study that analyzes the contribution of the 𝛽 factor to algorithm performance.

4.1. Studying the methods in action

Finding alike parts on real data is shown in Table 1, illustrating how feature importance for both the
instance and prototype is used to compute weights. Table 2 compares how alike parts of an instance
and its nearest prototype are selected using the original (raw) and FI-informed versions of the A-Pete
for the Diabetes dataset. Incorporating feature importance into A-Pete’s optimization led to different
selections than the raw algorithm when generating prototypes from black-box RF [11].

For example, when using the prototype from raw A-PETE, only the Glucose is highlighted as the
feature important for both the instance and prototype. Meanwhile, the FI-informed algorithm also
highlights Diabetes Pedigree Function, and Age which aligns with established medical knowledge on
diabetes risk factors [12]. This demonstrates the potential of our method to facilitate the identification
of more meaningful relationships between instances and prototypes.

A visual comparison of the globally generated sets of prototypes and selected important attributes
for the Diabetes dataset is presented as Figure 1. The figure contrasts prototypes generated using
the original (raw) A-Pete algorithm with those generated using the FI-informed approach. The figure
demonstrates that the FI-informed algorithm yields more diversified prototypes that highlight parts
varying between prototypes – the sixth feature was selected as important only when FI was included in
the target function. A similar phenomenon was observed for Australia Rain and Breast Cancer – certain
features were considered significant only when using the FI-informed version of the algorithm.

The proposed approach was validated on the test subset of each dataset to quantitatively compare
the frequency of features identified as important. In the Figure 2, presenting results, one can observe
that the frequency of highlighting each feature differs between the original and FI-informed strategies.
This difference is especially noticeable for the G-KM algorithm: when prototypes are selected using the
FI-informed strategy, certain features are highlighted that were not emphasized by the raw algorithm.

2https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package
3https://www.kaggle.com/datasets/rahmasleam/breast-cancer
4https://www.kaggle.com/datasets/mathchi/diabetes-data-set
5https://www.kaggle.com/datasets/teejmahal20/airline-passenger-satisfaction
6https://www.kaggle.com/datasets/nelgiriyewithana/apple-quality
7https://www.kaggle.com/datasets/taweilo/wine-quality-dataset-balanced-classification
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https://www.kaggle.com/datasets/nelgiriyewithana/apple-quality
https://www.kaggle.com/datasets/taweilo/wine-quality-dataset-balanced-classification


Figure 2: The comparison of the frequency of feature highlighting between the original (raw) and Feature
Importance (FI)-informed strategies across different benchmark datasets. The results are shown for three
prototype selection algorithms: A-Pete, G-KM, and SM-A.

Figure 3: The comparison of accuracy (hue) achieved by A-Pete, G-KM, and SM-A algorithms across benchmarks
against algorithm-specific hyperparameters (x-axis) and 𝛽 (y-axis). Note that the bottom line of each subfigure
(𝛽 = 0) represents the original definition of the algorithms, where only the tree distance is minimized.

4.2. Predictive performance in comparison to original versions of the algorithms

This section compares the accuracy achieved by a surrogate model based on prototypes, as it was
done in [6, 7]. The surrogate model uses a 1-nearest neighbor (1-NN) search within the set of selected
prototypes and is evaluated on classifying instances from a test set. We specifically examine the impact
of our modified prototype selection method, which incorporates feature importance.

Figure 3 illustrates how algorithm-specific hyperparameters and the weighting factor 𝛽 influence
prototype selection and consequently impact accuracy, with 𝛽 controlling the extent to which feature
importance is incorporated into the optimization function. The results show that the modified approach
maintains or improves predictive performance with respect to main parameters. Similar information is
presented in Table 3 where the values corresponding to the accuracy optima found are presented for
the original and the FI-incorporated algorithms.



Table 3
Comparison of accuracy achieved by A-Pete, G-KM, and SM-A across benchmarks. The hyperparameters selected
for the Feature Importance-informed version of the algorithm correspond to the maxima of accuracy in Figure 3.

Algorithm
Objective
function

Dataset
Apple
Quality

Australia
Rain

Breast
Cancer

Diabetes
Passenger

Satisfaction
Wine

Quality

A-Pete
FI 0.520 0.767 0.798 0.623 0.837 0.605

Raw 0.487 0.424 0.488 0.427 0.783 0.438

G-KM
FI 0.861 0.843 0.965 0.766 0.865 0.602

Raw 0.785 0.822 0.939 0.739 0.781 0.541

SM-A
FI 0.571 0.809 0.623 0.734 0.779 0.624

Raw 0.461 0.625 0.344 0.492 0.712 0.448

Figure 4: The comparison of mean feature importance of the features included in alike parts (left y-axis) and
the length of the vector identified as alike parts between the explained instance and the prototype (right y-axis).
The plot illustrates these two values tested against different 𝛽 values (x-axis).

4.3. Ablation study

Here, we analyze the impact of the parameter 𝛽 on the selection of the prototype by examining how it
influences the alikeness between an explained instance and its prototype. Figure 4 shows how mean
feature importance and alike-part length vary with 𝛽. The results indicate that as 𝛽 increases, the
mean feature importance similarity tends to rise, suggesting that high 𝛽 encourages the selection of
prototypes that align more closely with important features of the explained instance. However, this
trend is not strictly monotonic and careful tuning is required, with 𝛽 ≤ 2.0 often providing a good
balance, although the optimal value depends on the dataset. To determine the optimal value of 𝛽, grid
search or Bayesian optimization can be used to tune 𝛽 and other algorithm-specific parameters, aiming
to maximize the accuracy of a surrogate 1-NN model.

5. Discussion

This work introduces an innovative approach to prototype-based explanations, enhancing their in-
terpretability by directing user attention to the most important features of both the prototype and
the classified instance, the so-called alike parts. By incorporating feature importance into the proto-
type selection, our proposal bridges a gap in the literature where these two aspects were previously
considered separately. The experimental results suggest that this integration improves the clarity of
the explanation while preserving and, in some cases, even improving the predictive accuracy (see
Section 4.2). Incorporating feature importance leads to selecting prototypes with different, often more
meaningful, alike parts. This was shown with the Diabetes dataset, where our method identified



features such as Age and Pedigree Function as crucial, aligning with established medical knowledge
(see Section 4.1). Moreover, it can extend beyond the tested algorithms, G-KM, SM-A, A-PETE, and a
black-box RF. Importantly, Section 4.3 shows that adjusting the weighting factor 𝛽 fine-tunes the balance
between feature importance and distance minimization, highlighting adaptability to different tasks.
Future research should explore its effectiveness from the user perspective, assessing whether these
explanations enhance human understanding of model decisions. Furthermore, evaluating the approach
on non-tabular modalities, such as images and text, is necessary to assess its broader applicability.
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