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Abstract
Counterfactual explanations are a key tool in explainable AI, offering insights into complex machine learning
models by addressing "What if?" scenarios. While conventional methods for generating counterfactual explana-
tions (CFEs) rely on computationally expensive optimization techniques, generative models such as GANs and
VAEs have enabled faster CFE generation. However, their opaque nature raises concerns about trustworthiness,
especially in high-stakes domains like healthcare and finance, where transparency and accountability are crucial.
In this study, we benchmark existing methods for generating CFEs that apply generative models and connect
them with a range of established metrics to assess robustness in both binary and multiclass image classification
settings. Our analysis yields insights into the reliability of these approaches, while the proposed taxonomy
organizes this rapidly evolving field through categorization based on CFE search methodologies.
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1. Introduction

The rapid development of generative models (GMs) aims to tackle complex tasks, such as identifying
abnormalities in medical images, detecting fraud, and optimizing supply chains. As the demand for
explainability and transparency in black-box AI models grows, counterfactual explanations (CFEs) have
emerged as a tool in explainable AI that sheds light on decision-making processes by answering "What
if?" question. CFEs generate plausible scenarios to provide alternative outcomes, enhancing model
interpretability and trust. However, optimization-based methods for generating CFEs are computation-
ally expensive [1]. The integration of GMs, such as Generative Adversarial Networks (GANs) [2] and
Variational AutoEncoders (VAEs) [3], into the counterfactual explanation generation pipeline offers
faster alternatives, although their opaque nature raises concerns about trustworthiness.

In high-stakes domains like healthcare, finance, and human behavior, black-box explainers require
full transparency regarding both predictions and potential uncertainties. Attributes like proximity,
sparsity, robustness, feasibility, and actionability are crucial. While extensive surveys ([1], [4], [5]) have
categorized methods and benchmarks, they reveal that no single method satisfies all attributes simul-
taneously. Instead, methods balance these properties based on specific domain needs, enhancing the
flexibility and adaptability of CFEs. Among these attributes, robustness, ensuring CFE stability despite
input or model changes, remains underexplored for high-dimensional data like images. Robustness
refers to the insensitivity of CFEs to small perturbations within guaranteed bounds, given that the
model’s prediction remains unchanged for the generated explanation. While significant progress has
been made in evaluating the robustness of CFE generation methods [6], most work has focused on
binary classification and tabular data.

In this research, we assess the robustness of methods based on generative models used for counter-
factual explanations in a benchmark of three techniques with a lens on multiclass classification as most
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of the robustness metrics in literature are primarily applied to binary classification tasks. Multiclass
scenarios remain underexplored, where target class selection significantly impacts counterfactual quality
due to varying distances in the data manifold and the proximity of decision boundaries. Additionally,
we compare the stability of these methods with regard to task complexity, specifically binary and
multiclass classification, and report the results based on the corresponding metrics. The considered
research questions are as follows:

• RQ 1: Are the counterfactual explanations produced by generative models resistant to various
forms of perturbations?

• RQ 2: Is the robustness of generated counterfactual explanations different in a multiclass setting
compared to the binary classification setting?

2. Background and Related Works

In this section, the definition of counterfactual explanations for classification tasks is formalized and
key components of the loss functions used by counterfactual explainers are outlined, which vary with
model architecture and domain. For instance, GANs optimize an adversarial loss, while VAEs use an
evidence lower bound. Further in the Related works subsection, we review recent work on GMs for
CFEs and propose a taxonomy of these commonly employed pipelines.

Definition. A counterfactual explanation can be defined as follows. Given a predictive model 𝑓
that maps the distribution of input data to a discrete class distribution, denoted as 𝑓 : 𝑋 → 𝑌 , where
𝑋 ⊆ R𝑑 and 𝑌 ∈ {0, . . . , 𝑛}, we define a counterfactual explanation for a factual data point 𝑥 of the
class 𝑦 as 𝑥𝑐𝑓 = 𝐺𝐶𝐹 (𝑥, 𝑦, 𝑦

′; 𝑓). 𝐺𝐶𝐹 is a generative model that can either output an explanation
directly or a so-called difference mask, which must be applied to the factual data point. A valid
counterfactual explanation satisfies the condition 𝑓(𝑥𝑐𝑓 ) = 𝑦′, where 𝑦′ ̸= 𝑦. Eq. 1 is the adapted
framework proposed in [7] (Eq. 1,2) that we make more coherent with the introduced notation. The
CFE algorithm is trained to minimize 𝐿𝐺𝐶𝐹

as follows:

𝐿𝐺𝐶𝐹
(𝑥, 𝑥𝑐𝑓 , 𝑦

′) = 𝜆𝑓𝐿𝑓 + 𝜆𝑑𝐿𝑑 + 𝜆𝜒𝐿𝜒; argmin
𝐺𝐶𝐹

𝐿𝐺𝐶𝐹
(𝑥, 𝑥𝑐𝑓 , 𝑦

′), (1)

where 𝐿𝑓 = 𝑑𝑓 (𝑓(𝑥𝑐𝑓 ), 𝑦
′) is a classification loss term, regularized by 𝜆𝑓 , encouraging the classifier’s

output on the counterfactual 𝑥𝑐𝑓 to be close to the desired class 𝑦′. 𝐿𝑑 = 𝑑(·, ·) is a measure of the
distance between the data point 𝑥 and the counterfactual 𝑥𝑐𝑓 regularized with 𝜆𝑑. 𝐿𝜒 is a generative
model-dependent regularization term, penalizing out-of-distribution instances, typically formulated as
an adversarial loss and/or a cycle-consistency loss. The number of components in the loss function
may vary depending on the required properties for the generated CFEs.

Related Works. The development of GMs demonstrates not only their ability to produce high-quality
synthetic data, but also their potential to create realistic and meaningful visual CFEs. Categorizing CFE
methods based on GMs is challenging due to the complexity of models and their compound nature.
Kirilenko et al. [8] outlined the literature on GMs for counterfactual explanations. In contrast, we focus
on a higher-level classification based on CFE search mechanics rather than specific GMs. Our taxonomy
aims to highlight emerging directions in integrating GMs for CFEs and should be seen as an extension,
not a replacement, of existing benchmarks.

Latent space optimization/perturbation. The latent space of GMs offers a compact, adjustable rep-
resentation for generating new instances. Applying simple linear interpolations in the latent space
allows transformations of the latent vector [9], but these may not fully capture the complexities of
decision boundaries learned by sophisticated classifiers. Singla et al. [10] apply walks with a fixed step
size on the data manifold, which are then embedded in a low-dimensional space. C3LT [11] optimizes
an external model to learn meaningful perturbations for steering predictions, and REVISE [12] uses
constrained optimization with a pretrained VAE to modify the latent representation.

Disentanglement of latent space. Disentangling the latent space in GMs helps identify orthogonal
factors that can be mapped to distinct, semantically meaningful concepts [13]. This approach can help



to reveal biases in black-box models or data and enhance counterfactual explainability by detecting
spurious correlations and enabling feature editing through factor manipulation. StyleGAN is used
in [14] to extract human-understandable latent style vectors, concept disentanglers are employed in
[15] to learn a predefined set of K concepts via cross-entropy loss, and Rotem et al. [16] enforce
disentanglement by whitening the latent covariance matrix in an adversarial autoencoder.

Concept-based. Unlike tabular data, small image perturbations can lead to unrealistic adversarial
examples instead of plausible explanations. GMs can facilitate operation at a more abstract conceptual
level. STEEX [17] decomposes a latent vector into codes for semantic categories, while the work [18]
encodes label-related concepts as binary latent variables, and Dominici et al. [19] combine a Concept
Bottleneck Model with a VAE to model concept dependencies within a continuous latent space.

Residual Learning. Another widely adopted approach to generate CFEs involves learning differences
or residuals that modify the initial input to achieve the desired result of the classifier. CounteRGAN
[20] formalized residual GANs for identifying plausible CFEs. CX-GAN [21] generates discrepancy
maps that transform abnormal instances into normal ones in a medical context without relying on
a predictive model. COIN [22] applies a GAN conditioned on a flag for inpainting or removal of the
abnormal region and a latent code. Van Looveren et al. [7] propose a framework for generating sparse,
in-distribution CFEs for various data types, using a loss function tailored for desired properties of CFEs.

Diffusion-based. The limitations of GANs and VAEs have led to diffusion-based models for high-
quality CFEs. Diffusion models reduce VAE blur while preserving quality and variability, which GANs
struggle with. DiME [23] was among the first to use a diffusion model for explainability, combining
an unconditional DDPM sampler with a guidance mechanism. [24] explored adversarial attacks to
generate interpretable perturbations. LDCE [25] introduced a class-conditioned diffusion model with
consensus guidance to filter misleading gradients.

3. Robustness of Counterfactual Explanations

Robustness property is particularly important due to its inherent trade-off with the proximity objective:
proximity seeks minimal changes near the decision boundary, while robustness ensures explanations
remain valid despite minor perturbations. We adopt the classification established by [6] for images,
considering two groups of robustness to input and model changes that might affect the quality of
explanations. Unlike other data modalities, images are highly sensitive to minor, often imperceptible
perturbations that can generate adversarial examples, invalidating predictive outcomes. Therefore, the
robustness of generative model-based methods for CFEs is highly relevant.

3.1. Input Changes

Local Instability (LI) Theoretical proofs and formalizations of robustness to input changes are
present in [26], where it is defined as a measure of local instability. The authors opt for the 𝐿1 norm
without distance function restrictions in their experiments with tabular data and a handwritten digits
dataset. The following Eq. 2 is a mathematical notation of local instability given by [26]:

E
𝑥′∼𝑝𝜖(𝑥)

[︀
𝑑(𝑥cf, 𝑥

′
cf)
]︀
, (2)

where 𝑥 denotes the original instance, 𝑥cf represents its CFE , 𝑥′cf is the CFE for the perturbed instance
𝑥′, 𝑝𝜖 represents the distribution of plausible perturbations around 𝑥, 𝑑(·) measures the similarity or
distance between the CFEs of the original instance 𝑥 and a perturbed instance 𝑥′.

Similarity estimation for images typically relies on 𝐿𝑝 norms, which operate at the pixel level
but ignore semantic differences like shapes and spatial correlations. Alternative metrics such as the
Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio are commonly used in the
related task of adversarial example generation [27]. In our experiments, SSIM [28] and 𝐿1 norm are
used.



Local Lipschitz Continuity Lipschitz continuity is a commonly used metric for evaluating the
stability of post-hoc explanations [29]. It estimates the relative change in the output with respect to the
variations in the input. Although it has been applied to assess the robustness of CFEs against model
changes, it has not yet been utilized to evaluate robustness with respect to input dissimilarities. Eq. 3
below formalizes the estimation of local Lipschitz continuity of the explanations.

𝐿̂(𝑥𝑖) = max
𝑥𝑗∈𝑁𝜖(𝑥𝑖)

‖𝑥𝑐𝑓𝑖 − 𝑥𝑐𝑓𝑗‖2
‖𝑥𝑖 − 𝑥𝑗‖2

, (3)

where 𝑁𝜖(𝑥𝑖) represents an 𝜖-ball centered at 𝑥𝑖, 𝑥𝑐𝑓𝑖 is its CFE, 𝑥𝑗 and 𝑥𝑐𝑓𝑗 are an input instance
sampled from the 𝜖-ball and the corresponding generated CFE, respectively, where lower values of
𝐿̂(𝑥𝑖) indicate more stable explanations.

3.2. Model Changes

This category of perturbations relates to variations in the predictive model 𝑓 , which may be caused
by model retraining, a common practice in real-world applications, alters decision boundaries and,
consequently, the generated explanations. Prior studies have examined small perturbations caused by
weight reinitialization or the removal of training data subsets [30].
Invalidation Rate (IR) In counterfactual consistency for deep neural networks, [31] suggests ac-
counting for both the cost of generating stable explanations and the Lipschitz continuity of the predictive
model in the vicinity of the counterfactual. The consistency of the explanations is measured by the
Invalidation Rate (IR), given by:

IR(𝑥𝑐𝑓 , 𝜃) = E𝜃′∼Θ̃[I[𝑓(𝑥𝑐𝑓 ; 𝜃
′) ̸= 𝑓(𝑥𝑐𝑓 ; 𝜃)]], (4)

where 𝑓(𝑥𝑐𝑓 ; 𝜃) denotes the predictive model with parameters 𝜃, and 𝜃′ represents the model param-
eters after variations in the training conditions.
Validity After Retraining (VaR) It is a commonly used evaluation metric that measures the percent-
age of CFEs that remain valid [30], i.e. belong to the same predicted class, under the retrained model.
It can be considered the opposite of the IR. However, the latter provides only a relative estimation
of the percentage of invalidated explanations after the model change introduced. In some cases, the
counterfactual generation method itself might have a low validity. Comparing the validity of the
perturbed predictive model with its initial counterpart can offer a broader perspective on the robustness
and performance of the method. The validity can be defined as follows:

Validity =
1

𝑛

𝑛∑︁
𝑖=1

1[𝑓𝜃′(𝑥𝑐𝑓𝑖) = 𝑡], (5)

where 𝑛 is a total number of counterfactual explanations, 𝑓𝜃′(𝑥𝑐𝑓𝑖) is a prediction of the retrained
model for the 𝑖-th counterfactual instance, and 𝑡 is the target class.
Relaxed Stability (RS) The counterfactual stability metric was adapted for differentiable models
based on the concept of local Lipschitz continuity in [30]. As exact Lipschitz estimation is often imprac-
tical, the authors derive a relaxed stability metric (Eq. 6), where the Lipschitz constant is approximated.
The following properties are considered essential for generating robust explanations under naturally
occurring model changes, enabling the proposed relaxation: (i) high model confidence for an input 𝑥𝑐𝑓 ,
denoted as 𝑓(𝑥𝑐𝑓 ); (ii) elevated values of 𝑓(𝑥′𝑐𝑓 ) for several points 𝑥′𝑐𝑓 in close proximity to 𝑥𝑐𝑓 ; (iii)
low variability in model outputs around 𝑥𝑐𝑓 .

𝑅̂𝑘,𝜎2(𝑥𝑐𝑓 , 𝑓) =
1

𝑘

∑︁
𝑥𝑐𝑓,𝑖∈𝑁𝑥𝑐𝑓,𝑘

(︀
𝑓𝜃′(𝑥𝑐𝑓,𝑖)− |𝑓𝜃′(𝑥𝑐𝑓 )− 𝑓𝜃′(𝑥𝑐𝑓,𝑖)|

)︀
, (6)

where 𝑁𝑥𝑐𝑓 ,𝑘 represents a set of k points sampled from a Gaussian distribution 𝒩 (𝑥𝑐𝑓 , 𝜎
2I𝑑), with

I𝑑 being the identity matrix.



4. Experiments

4.1. Experimental Design

Datasets and classifiers. Most methods for generating CFEs focus on binary classification, where the
target class is the opposite of the initial prediction. Multiclass scenarios, however, remain underexplored.
In these cases, target class selection affects counterfactual quality, especially when the target class is
farther in the data manifold, increasing explanation costs. For instance, class 7 is farther from class
8 than from class 0, based on cosine similarity and class centroid distances in the MNIST manifold.
Additionally, multiple decision boundaries may challenge the stability of these explanations.

We use the MNIST dataset for experiments in binary and multiclass classification tasks. In the binary
setting, class 1 is used for factual instances, with class 8 as the target for explanations. In the multiclass
setting, class 8 remains the target while considering multiple initial classes. Factual instance classes are
determined based on cosine similarity of features from the penultimate model layer, selecting the five
closest classes (0, 3, 4, 5, and 9) to class 8. A simple CNN with 3 convolutional layers and max pooling
achieved 99.95% accuracy in binary and 98.16% in multiclass classification.

Counterfactual explainers. The analyzed counterfactual explainers covered diverse approaches
and model types, as detailed in Section 2, with code availability also considered. For example, STEEX
[17] requires segmentation masks for training instances, CF-CBM [19] relies on annotated concepts in
the data, and COIN is designed only for binary classification. Thus, REVISE [12], CounteRGAN [20],
and C3LT [11] were selected for the initial experiments.

Robustness evaluation. For optimization-based methods like REVISE, robustness evaluation is
computationally expensive, so we limited the number of factual instances to k=100. In contrast, Coun-
teRGAN generates counterfactuals efficiently, allowing for more perturbed inputs. To estimate LI, we
applied incremental Gaussian noise 𝜖 = {0.001, 0.0025, 0.005, 0.0075, 0.01}, ensuring visual similarity.
Estimating local Lipschitz continuity involves sampling from the 𝜖-ball around an input and generat-
ing multiple explanations per sample. The number of sampled points around a given counterfactual
explanation is set to 30 for REVISE, to reduce computational costs, and 50 for CounteRGAN and C3LT.

The metrics in Section 3.2 are evaluated on 10 perturbed CNN models, averaging results. Naturally
occurring model changes, theoretically justified in [30], are introduced by reinitializing model weights
with adjusted random seeds. We estimate IR and RS using explanations from the original test images.

Results. The primary results of our study are summarized below. To gain a better understanding
of the quality of the generated explanations, we evaluate not only local instability w.r.t. (𝐿1) distance
and SSIM but also the validity (the same Eq. 5) of the methods. The results of LI towards small input
perturbations for both binary and multiclass settings are depicted in Fig. 1. The validity results indicate
that REVISE is capable of generating CFEs that consistently lead the classifier to the same target output
and remain stable across tested noise magnitudes. In contrast, CounteRGAN achieves only 43% validity
at a perturbation level of 0.001, which further declines to 36% at a noise level of 0.01 in the multiclass
classification task. For binary classification, CounteRGAN attains a maximum validity of 15% at a noise
level of 0.001 and drops to 9%. C3LT maintains consistent validity across all multiclass experiments,
with all generated explanations correctly classified as digit 8. However, in the binary setting, the validity
of the algorithm is lower, reaching only 67%.

Regarding 𝐿𝐼(𝐿1) metric, REVISE exhibits stable average values even at higher noise levels, despite
having a higher standard deviation. Furthermore, the distances between CFEs generated for original
and perturbed inputs are greater in multiclass classification, presumably due to the richer semantics of
the selected classes and, consequently, the larger number of transformed pixels during CFE generation.
It is worth noting that the method optimizes the latent code of the perturbed input, which may converge
along a different gradient path, potentially resulting in a different yet valid explanation. It can be seen
in Fig. 1 (a), where 𝐿𝐼(𝑆𝑆𝐼𝑀) is rather low for both binary and multiclass tasks.

In contrast, explanations generated by CounteRGAN deviate more from the original explanations
as the noise magnitude increases (Fig. 1 (b)). However, the average LI remains lower compared to
REVISE in scenarios involving multiple classes. The method’s poor performance in the binary setting



(a)

(b)

(c)

Figure 1: Validity and LI estimation w.r.t. 𝐿1 and SSIM for REVISE (a), CounteRGAN (b), and C3LT (c) methods.

Figure 2: Estimates of Local Lipschitz
Continuity.

IV ↑ IR ↓ VaR ↑ RS ↑
Methods Binary Classifiaction
REVISE 1.0 0.195 (0.11) 0.805 (0.11) 0.787 (0.11)

CounteRGAN 0.15 0.015 (0.02) 0.135 (0.02) 0.75 (0.11)
C3LT 0.65 0.005 (0.01) 0.645 (0.01) 0.644 (0.004)

Methods Multiclass Classifiaction
REVISE 1.0 0.046 (0.02) 0.954 (0.02) 0.924 (0.02)

CounteRGAN 0.47 0.093 (0.04) 0.37 (0.04) 0.613 (0.04)
C3LT 1.0 0.0 (0.0) 1.0 (0.0) 1.0(0.0)

Table 1: CFE robustness against model changes, mean (std).

is reflected in the results of 𝐿𝐼(𝑆𝑆𝐼𝑀), which indicate a deterioration in CounteRGAN’s ability to
generate perceptually similar explanations, which is less pronounced in the results of 𝐿𝐼(𝐿1). A similar
pattern is observed for C3LT (Fig.1 (c)), although the average distances in all perturbations remain
relatively low. Unlike REVISE that optimizes the latent code directly, C3LT uses this additional model
g that learns the mapping of the given latent code of a factual class to the target class. The local
Lipschitz continuity estimates are shown in Figure 2. This metric effectively reflects the conclusions on
local instability, demonstrating a greater dissimilarity between counterfactuals generated by REVISE
compared to those produced by CounteRGAN and C3LT.

Comparing the robustness of explanations against model changes, we additionally present the initial
validity (IV) results of the unperturbed classifier in Table 1. REVISE shows a higher IR in binary
settings, which is 0.195, than in multiclass - 0.046, consistent with VaR being the inverse of IR. The



multiclass classifiers achieve an average RS of approximately 0.92, whereas binary classifiers attain
only 0.79. CounteRGAN exhibits an inverse trend in terms of IR, with higher initial validity but greater
invalidation in the multiclass setting. Nevertheless, the RS results reveal a different pattern: multiclass
classifiers perform worse on the generated explanations validated by the unperturbed classifier. For this
method, validity is initially low in either settings: 15% in the binary setting and 47% in the multiclass
setting. C3LT provides only 65% of valid explanations in the binary problem, while reaching 100% in
the multiclass task. The IR is 0 for the latter setting and constitutes only 0.001 for the former. However,
the RS of slightly perturbed binary classifiers drops significantly compared to multiclass scenarios.

5. Conclusion

In this work, we present preliminary results on the robustness of counterfactual explanation methods
based on generative models. Our proposed taxonomy provides structure to this rapidly evolving
field by categorizing solutions according to their architectural properties. The evaluation reveals that
robustness requires joint assessment across multiple metrics, with binary classification unexpectedly
exhibiting greater fragility than multiclass scenarios despite its simpler decision boundaries. For RQ1,
CounteRGAN and C3LT produced counterfactuals with greater deviation under perturbations, while
REVISE better preserved explanation quality. However, perceptual analysis revealed that REVISE
may still generate visually distinct explanations from minimally perturbed inputs, posing concerns
in sensitive applications. For RQ2, multiclass tasks increased explanation costs due to more semantic
features, reflected in REVISE’s local instability. CounteRGAN and C3LT showed low validity in binary
settings, declining with perturbations. All methods were less stable under model changes, with binary
classification surprisingly showing higher invalidation rates. Overall, these findings reveal critical
trade-offs between explanation quality, stability, and task complexity that must be addressed for reliable
deployment in sensitive domains. The code is publicly available on GitHub 1.

Declaration on Generative AI

During the preparation of this work, the author(s) used Chat-GPT in order to: Grammar and spelling
check. After using these tool(s)/service(s), the author(s) reviewed and edited the content as needed and
take(s) full responsibility for the publication’s content.
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