
Integrated gradients for enhanced interpretation of
P3b-ERP classifiers trained with EEG-superlets in
traditional and virtual environments
Vladimir Marochko1,*,†, Jacek Rogala2,† and Luca Longo1,†

1Artificial Intelligence and Cognitive load Research Lab, Technological University Dublin, Dublin, Republic of Ireland.
2Faculty of Artes Liberales, University of Warsaw, Warsaw, Poland

Abstract
P3b event-related potentials are neural responses occurring around 300-500 ms after the presentation
of a task-relevant target stimulus, usually evoked with the active visual oddball paradigm. Usually
performed in laboratories, it can be moved to virtual environments, especially for subjects who cannot
reach the physical experimental setting. However, the introduction of a virtual reality headset introduces
significant portions of artefacts, since it is overlapped on top of the EEG headset. This can hamper the
analysis of the p3b ERP and thus limit the understanding of attentional allocation, working memory
operations, and decision-making processes in the brain of a subject. The research aims to compare
the quality of the EEG data collected in virtual environment against that collected in the traditional
environment. After segmenting such data into epochs around each stimulus, superlets are computed
for each, specific time-frequency representations, and trained with a convolutional neural network for
the binary discrimination of segments collected in virtual and traditional settings. Explainable Artificial
Intelligence, namely the Integrated Gradients method, is employed to facilitate the understanding of
such discrimination. An equivalence two one-sided tests (TOST) is performed to verify if both the types
of input EEG segments are statistically similar. This research contribute to the body of knowledge by
extending the application of the Integrated Gradients XAI method in a problem within Neuroscience.
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1. Introduction

Stimuli and response-related fluctuations in human brain electric activity, known as event-
related potentials (ERP) [1], can provide meaningful information on the various human cognitive
processes. This makes them a valuable tool for a broad range of applications in neuro and
cognitive sciences research, diagnostics, including the support of humans in sensory-motor
functions [2]. Despite the advantages in extracting ERP from EEG data, performing experiments
in naturalistic contexts, in contrast to lab-based controlled settings [3], is not a trivial task. VR
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can support the creation of realistic scenarios and allow the manipulation of variables with
precision, supporting ERP research in ecologically valid environments [4]. However, collecting
EEG data in a VR environment is rather challenging because a VR headset influences the
electrodes of an EEG cap. Therefore, an open problem is demonstrating the equivalence of
ERP extraction in VR settings compared to traditional, lab-based settings [5]. This research is
devoted to demonstrating such equivalence by employing deep learning for learning high-level
representations from time-frequency representations and Explainable AI (XAI), namely the use
of the Integrated Gradient method, for supporting the understanding of the difference between
VR-collected versus lab-collected EEG data.

The remainder of this article is structured as follows. Section 2 briefly describes related
work on ERP, its analysis in virtual reality settings, and the XAI methods employed in the
field. Section 3 is focused on the design of an empirical work to demonstrate their equivalence.
Section 4 presents the experimental findings, followed by a critical discussion. Eventually, it
summarises the contribution to the body of knowledge and highlights future work.

2. Related Work

This section focuses on Event-Related Potential analysis and research on its application in
Virtual Reality (VR). A trend is to apply Head Mounted Displays (HMD) to realise virtual reality,
which allows the creation of a 360-degree environment (Fig. 1 right). VR-based environments are
accessible due to a lack of mobility requirements, and are also ecological because of the higher
level of control by the creator [3]. Unfortunately, despite these advantages, recording EEG data
in such settings can increase the contamination of the EEG signal with artefacts, caused by the
movement of the VR headset, usually placed on top of an EEG cap [4]. It was reported that the
participant’s eye, body and head movements in a VR-based experiment are more frequent and
can lead to stronger movement artefacts than those in a traditional environment [6, 7]. A study
reported a special modification of an EEG cap to decrease physical strain and minimise the noise
generated by vertical movements. The modification involved cutting the holes in the VR-HMD
straps where the straps cover the electrodes. For example, the study also proposed removing the
batteries from the head and attaching them to the participant’s belt [7]. After pre-processing and
cleaning EEG data, the usual way of extracting an ERP component is to average the waveform
of specific channels over epochs and then analyse its amplitude and latency from the onset of
stimulus presentation. To support this, an informative way is to translate an EEG timeserie
into a time-frequency representation, which can be subsequently averaged [8] Unfortunately,
ERPS emerge only after such averaging procedures across trials and subjects because of the
low EEG signal-to-noise ratio. This hampers the ability to highlight EEG neural signatures over
trials. To tackle this issue, novel ERP analysis approaches based on deep learning have been
devised. For example, a deep learning-based workflow, based on convolutional neural networks
(CNN), has been presented in [9]. Similarly, CNNS were used to discriminate adult Attention
Deficit Hyperactivity Disorder (ADHD) from healthy individuals using spectral information of
EEG responses to stimuli [10]. The problem with deep learning models is that their internal
structure is very opaque and hidden from human perception. For example, studies have already
attempted to explain CNN models to classify ERPS by evaluating the effect of different parts of



the input signal on the output [9]. These pieces of work have been developed within the larger
field of Explainable Artificial Intelligence (XAI), which allowed scholars to propose generally
applicable methods. These include Grad-cam [11] for the generation of visual explanations of
black-box trained neural networks, or rule-based systems [12], or systematic interpretability of
the latent space of neural networks [13]. Considering the abundance of gradient-based learning,
a popular XAI method is the Integrated Gradients (IG)[14]. In supervised classification tasks,
integrated gradients visualise the influence of different input data features, usually pixels in an
image, on the neural network’s final prediction. This method has recently been applied in ERP
analysis to highlight the difference between ERP of subjects with alcoholism versus control
subjects, or target vs non-target events, by employing CNNs [15]. Leveraging the strength of
deep learning to learn EEG signatures over trials, and explainable AI techniques to allow the
understanding of such signatures, this study aims to demonstrate the equivalence of the ERPS
collected in a VR setting versus those in a traditional lab-based setting.

3. Experimental design and methods

Following the open problem of demonstrating the equivalence between the ERPS collected
in a VR setting versus a traditional, lab-based setting, this section introduces a comparative
empirical work. The component chosen for investigation is the P300 component, one of the
most commonly researched in the ERP field due to its high clearance, familiar and well-polished
protocol [16]. It is an endogenous component caused by the brain response associated with the
oddball task, with two different groups of stimuli, usually visual. In such tasks, the participant
has to define whether the stimulus belongs to the smaller target group or the larger non-target
one. P3b scalp distribution is defined as the amplitude change over the midline electrodes,
namely over the Fz, Cz, Pz channels according to the 10/20 system (Figure 1, centre). This
component has a sharp positive voltage spike of 300 ms after presenting the stimulus [17].

Figure 1: A traditional lab-based setting for Event-Related Potential (ERP) (left), a typical P3B waveform
and a Virtual Reality-based setting

The experimental task is a classic Active Visual Oddball paradigm used for the P3b component
extraction as demonstrated in the ERP-core research [17]. A participant is presented with
a black screen where the letters A, B, C, D and E are shown in blocks. Each block has one
target letter, and the others are non-target. In each block, 8 target and 32 nontarget letters are
displayed. Letters are shown for 200 ms, with a random window of 1200± 100 ms between,



when just a black screen with the white dot at the centre is shown. When presented with
stimuli (letter), the participant should press the right trigger in VR or the ‘c’ letter on the
keyboard key in the traditional environment for the target letter or the left trigger (in VR)
or the ‘z’ letter on the keyboard (traditional) for the non-target. During the experiment,
the 24-channel MbrainTrain Mobi EEG device records a participant’s EEG waves and event
ticks—time markers showing where the event has happened. The Oculus Quest 2 HMD headset
creates the virtual reality setting. The Unity engine implements both traditional and VR
environments. The OpenXR package assists in VR environments, and the LabStreamingLayer
package sends event ticks to the MbrainTrain software. An Arduino-based system with a
light sensor sending a signal to a LabStreamingLayer measures screen latency—the time lag
between the event (letter shown) and the moment it appears on the computer or the VR HMD
screen. The recorded latency is 40 ms for the screen and 70 ms for the HMD. Twenty-two
healthy adult participants aged 20 to 50, both male and female, without a history of seizures
or brain trauma, not receiving EEG-altering medication and with normal or corrected to
normal eyesight, took part in the experiment. Half of the participants were asked to use the
VR environment first, and the traditional one subsequently. In contrast, the other half did
the opposite. This strategy meant eliminating the possible learning effects on the resulting ERPs.

The collected data was divided into four groups according to the independent feature:
Target-VR, Target-Screen, Non-Target-VR, and Non-Target-Screen. The following pre-
processing steps are executed: raw signals were high-pass filtered to 0.1 Hz, low-pass
to 30 Hz and re-referenced to the average. Then the FASTER automated preprocessing
pipeline was applied, using Fp1 and Fp2 instead of EOG channels [18]. Noisy channels
were removed, the raw signal was separated into epochs (-200 ms, 800 ms to the stimuli),
and too noisy epochs were removed. The ICA was then run, and bad channels were
rejected and interpolated, always using the FASTER methodology. After such pre-processing,
18 participants were left with an average of 5% epochs excluded. Only data from the Pz
electrode was taken for further investigation, as this is where the P3b signal is the strongest [17].

A CNN network (figure 2) was devised to train superlets, and it has been inspired by the
EEGnet structure proposed in [19] with a changed layer to fit the scalogram input. L2- reg-
ularisation parameter of 0.000001, dropout rate of 0.25, depth multiplier 4, 64 temporal and
256 pointwise filters. Superlets are specific time-frequency representations of univariate EEG
data that tackle the Heisenberg–Gabor uncertainty principle, which states that finite oscillation
transients are difficult to localise simultaneously in time and frequency [20]. Superlets use sets
of wavelets with increasingly constrained bandwidth, combined geometrically to preserve the
good temporal resolution of single wavelets and gain frequency resolution in the upper bands.
Superlets were generated for the interval 0-600 ms post-stimulus associated with target and
non-target stimuli. After a few attempts, the 30 Hz bandwidth was separated into 60 bands, the
cycle parameter was set to 3, and the order parameters from 3 to 20 were chosen to combine
high transformation speed and good temporal and frequency resolution. The collected data was
randomly split into training and testing sets with a ratio of 80/20, stratified by the independent
feature (target or non-target), and the validation set was extracted from the former with an
85/15 split. The superlets in both the training and validation sets were augmented by adding a



Gaussian noise with an amplitude of 0.02%, essentially doubling their cardinality. Two models
were trained, one for the data collected in the VR environment and one for the data collected in
the traditional environment. The experimental hypothesis is that Signal-to-noise Ratio (SNR)
and the peak-latency convergence rates are statistically equivalent.

Figure 2: An illustration of the experimental pipeline, including data collection, pre-processing, epoching,
transformation into superlets, CNN training, and XAI Integrated Gradients analysis.

To test this hypothesis, the Two One-Sided Tests (TOST) procedure was first selected to
check the statistical equivalence of the signal-to-noise ratios of the four groups and the P3b
peak latency convergence between ERPs collected in the VR and traditional lab environments.
TOST performs two one-sided tests to check if the observed data is significantly larger than
an equivalence boundary lower than zero (∆𝐿) or substantially smaller than an equivalence
boundary larger than zero (∆𝑈 ) [21]. In addition, the Bland-Altman test [22] was used to
verify the agreement and correlation between ERPs collected in the VR and the traditional lab
environments and to find if there is a consistent bias. The SNR metrics used are: 1) 𝑙𝑜𝑔10 of
the ratio of variance of signal to the variance of baseline, 2) 𝑙𝑜𝑔10 of the ratio of peak-to-peak
amplitude of signal to the variance of baseline, 3) 𝑙𝑜𝑔10 of the ratio of root-mean-squared
signal to root-mean-squared baseline and 4) 𝑙𝑜𝑔10 of the ratio of mean amplitude of the signal
to the variance of baseline. SNR is measured in decibels, while peak latency is measured in
milliseconds at each trial. The first derivative of each metric is averaged over trials to find its
convergence rate. Even when ERP signals collected in different environments have statistically
equal metrics, these environments may still influence the resulting waveform. Secondly, in
addition to the TOST and the Bland-Altman test, an XAI technique is used to extract additional
understanding of their differences. The two trained models are trained using the data collected
in VR and traditional environments, and the Integrated Gradients method is applied. For the
neural network 𝐹 : 𝑅𝑛 → [0, 1], where 𝑥 ∈ 𝑅𝑛 is actual input and 𝑥′ ∈ 𝑅𝑛 is some baseline
input (black image or random noise), integrated gradients are found by cumulating the gradients
along the straightline path from baseline to the input as the path integral. To find the integrated
gradient along the 𝑖𝑡ℎ dimension for an input 𝑥 and baseline 𝑥′, equation 1 is used:

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠𝑖(𝑥) = (𝑥𝑖 − 𝑥′𝑖)×
∫︁ 1

𝛼=0

𝛿𝐹 (𝑥′ + 𝛼× (𝑥− 𝑥′))

𝛿𝑥𝑖
𝛿𝛼 (1)

Where
𝛿𝐹 (𝑥)

𝛿𝑥𝑖
is the gradient of 𝐹 (𝑥) along the 𝑖𝑡ℎ dimension [14].



4. Experimental results and discussion

The participant-wise averages of the signal recorded are plotted on the figure 3, first column.
The green line is for the signals collected in the traditional lab environment, and the blue is for
VR-based. The plot shows that the shape of the P3b signal is very clear and similar for the target
events (top). However, the non-target events are visibly different after the peak area (after 0.3
seconds, bottom). This is due to the significantly lower nontarget P3b signal amplitude than
the target one, making minor noise look significant. It is also important to mention that the
averaging did not remove the consistent signal of the 10 Hz frequency. It is very obvious both at
the averaged EEG signal and at most of the superlets: for example, fig. 3 VR-based env target (col.
3, top) and both target and non-target for the traditional environment, fig. 3 (col. 4). It means
that it is some sort of signal going either from the natural EEG signal or from the equipment,
and time-locked to the event in some way. The Signal-to-noise ratios and peak latencies for raw
and preprocessed signals are statistically different (around 10% to 15% of groups have TOST
p-values below 0.05). Still, they change very similarly, and the convergence rate for all groups is
statistically equivalent - 83% - 94% of preprocessed datasets have TOST p-value below 0.05 and
91% - 100% of raw signals. Bland-Altman plots (an example in figure 3, col. 2) show a very high
agreement with 90-95% of dots falling in ±1.96𝑆𝐷, for all the participants. The mean difference
fluctuates around 0, slightly higher or lower for different groups. The AUC score used in [19]
reached 0.72 for VR and 0.70 for the superlets associated with screen-based data. Classification
results were separated into true-positives, true-negatives, false-positives and false-negatives,
considering target ERPs as positives. Then, the Integrated Gradients method was run for each,
and the results compared pairwise (VR vs screen) to facilitate the visual interpretation.

Figure 3: Averaged ERP-signals for 1 of the participants (col.1) and Bland-Altman plots for SNR and
P3b peak latencies comparing convergence rates of the same metrics for the same participants (col. 2)
for the ERP signals collected in the VR environment vs collected in the traditional lab environment, and
Pairwise comparison of Integrated Gradients, target (col.3) and non-target (col.4 )

A visual inspection of the figure 3 shows that the model trained to classify ERPs collected in
VR and the model trained with natural lab environment signals have similarities, scalograms
and integrated gradients. Such cases are consistent across participants. The interpretation of
the integrated gradients reveals that both VR-specific and natural environment-specific models
tend to focus on low (below 10 Hz) frequencies after the P3b peak for the target events and
before for the non-target events. This follows the expectation that the P3b signal’s peak for the



target is large enough compared to the non-target events, where the peak amplitude is much
lower (1 vs 6 𝜇volts on the fig. 3). However, the visualisation of IG shows that this effect is much
stronger in the VR-associated signals (3𝑟𝑑 and 4𝑡ℎ columns on the fig. 3). Considering that the
signals are the same, the noise is random, the signal-to-noise ratios are statistically equivalent,
and preprocessing pipelines are the same for both environments, it is safe to assume that the
aforementioned effect variation is created by the difference between the signals themselves. The
longer attention is situated on the peak: 0.1-0.3 sec for VR vs 0-0.4 sec (last two images of the first
row on the fig. 3) for traditional environment, which support the higher level of engagement in
VR environments as it was reported by [23]. Also, as pointed out in [4], data collection in the
VR environment caused higher artefact levels, the model successfully overcomes it by paying
attention to a broader range of frequencies, as seen in the figure (1𝑠𝑡 column on the fig. 3)

In conclusion, experimental findings show that the ERP signals collected in VR are slightly
different in the noise distribution and the nature of the factors that decrease ERP measure
quality compared to those from traditional environments. However, the signals provide the
same amount of information about the ERP as is visually inspectable from the IGS. Future work
includes, but is not limited to, extending the application of Integrated Gradients with GradCAM
and SHAP to achieve further insights. Perturbation methods are envisioned as in [24], especially
to understand the impact of the removal of the 10Hz noise on the classification accuracy of
models. In line with this, alternative superlet parameters like the number of cycles are planned
to localise ERP over time better.

Declaration on Generative AI

The author has not employed any Generative AI tools.
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