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Abstract

Emotion recognition from EEG signals is a core task in affective computing, with growing relevance for real-
world applications. In this study, we analyze the NeuroSense Emotion Recognition Dataset, acquired with
the Muse 2 brain-computer interface (BCI), a portable, low-cost EEG device with only four electrodes. We
implement a complete pipeline that includes signal preprocessing, handcrafted feature extraction (spectral,
entropy, autoregressive), and classification using machine learning models under a Leave-One-Subject-Out
(LOSO) cross-validation scheme. The models achieve an average accuracy and F1-score of 70% across the four
quadrants of Russell’s emotional model. To improve transparency, we apply SHAP to evaluate feature importance
across subjects and emotional states. The analysis reveals both shared and emotion-specific EEG markers but also
highlights a high degree of inter-subject variability in SHAP values. These findings underscore the challenges of
generalization in EEG-based emotion recognition and point to the need for adaptive and personalized approaches.
This work contributes preliminary but actionable insights toward interpretable, lightweight, and user-aware
emotion-aware BCI systems.

Keywords
Emotion Recognition, Brain Computer Interface, Artificial Intelligence, BCI, XAI

1. Introduction

Emotion recognition from EEG signals is gaining momentum in affective computing, with applications
in adaptive interfaces, education, and healthcare [1, 2]. Despite the success of high-density EEG datasets,
real-world usability remains limited by the complexity and cost of traditional acquisition systems|3, 4].

Recent studies have introduced advanced deep learning architectures [5], domain adaptation strate-
gies [6], and graph-based methods [7]. However, these often require dense montages and lack trans-
parency. In contrast, handcrafted features—especially in low-density setups—offer interpretability and
efficiency, yet their role in emotion recognition with portable EEG devices remains underexplored [8].

Furthermore, the integration of eXplainable AI (XAlI) is still in its infancy in EEG-based affective
systems. SHapley Additive Explanations (SHAP) [9] provide a principled method to assess feature
importance in black-box models. Applied to EEG, SHAP can illuminate the neurophysiological basis of
emotional states and support trust and personalization in BCI systems [10]. Still, little is known about
the consistency of SHAP-derived attributions across subjects, or whether shared EEG features underpin
different emotions.
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In this work, we analyze the NeuroSense dataset [11], collected with Muse 2 - a low-cost four-electrode
EEG device. Our pipeline includes preprocessing, feature extraction, classification via Leave-One-
Subject-Out cross-validation, and SHAP-based interpretability analysis.

We address the following research questions:

« RQ1: How do engineered features influence EEG-based emotion classification performance?
« RQ2: Are feature importance explanations consistent across subjects for the same emotion?
« RQ3: Do different emotions rely on shared or distinct EEG features?

To this end, we propose and evaluate a complete pipeline that integrates handcrafted EEG feature
extraction, machine learning-based classification, and post-hoc explainability, applied to data collected
with a low-cost, four-channel BCI device.

2. Methodology

This study adopts a structured pipeline to evaluate EEG-based emotion recognition using interpretable
machine learning techniques. We used the NeuroSense Emotion Recognition Dataset [11], which
includes EEG signals from 30 participants recorded with the Muse 2 BCI, a low-cost device with four
electrodes (AF3, AF4, TP9, TP10). Each subject was exposed to 40 music video clips, carefully selected
to elicit different emotional responses. The stimuli were categorized according to Russell’s circumplex
model [12], which organizes emotions based on valence (positive/negative) and arousal (high/low
activation). EEG data were recorded during both a baseline phase (before stimulus presentation) and
an emotion induction phase, ensuring a structured analysis of emotional states. More details on the
protocol and characteristics of the dataset can be found in the original work [11]. This section outlines
the processing pipeline, including EEG preprocessing and feature extraction, classification strategies,
and model interpretability via SHAP.

2.1. Preprocessing and feature engineering

EEG data were preprocessed through bandpass filtering (1-40 Hz), normalization, detrending, and
artifact removal via the Artifact Subspace Reconstruction (ASR) method [13]. Signals were segmented
into 5-second epochs for both baseline and stimulus periods.

To enhance model performance in this low-density setup, we extracted handcrafted features using
TorchEEG!, grouped into:

+ Frequency-domain features (e.g., PSD in delta to gamma bands),

+ Entropy-based features (e.g., approximate/sample entropy, fractal dimensions, Hurst expo-
nent) [14],

« Autoregressive coefficients modeling temporal dependencies [15].

2.2. Classification strategy

We employed a Leave-One-Subject-Out (LOSO) cross-validation scheme [16], which simulates real-
world deployment by testing generalization on unseen individuals [17]. For each iteration, models were
trained on data from 29 participants and tested on the remaining one, repeated over all subjects.

Five classifiers were tested: SVM, Ridge Classifier, Random Forest, Multi-Layer Perceptron (MLP),
and K-Nearest Neighbors (KNN). Hyperparameters for each model were optimized through grid search,
as detailed in Table 1.

Model performance was assessed using accuracy, precision, recall, and F1-score, calculated indepen-
dently for each of the four emotional quadrants defined by the circumplex model. This process yielded
a total of 120 trained models (30 subjects x 4 emotions).

'https://torcheeg.readthedocs.io/en/latest/
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Table 1
Hyperparameter Grid for different models

Model Hyperparameters

scaler: MinMaxScaler, RobustScaler, StandardScaler
C: Logarithmic scale from 107 to 10?
SsvC kernel: linear, rbf, sigmoid
gamma: auto
tol: Logarithmic scale from 107 to 107!

scaler: MinMaxScaler, RobustScaler, StandardScaler

RidgeClassifier alpha: 1,3, 5, to 99

scaler: MinMaxScaler, RobustScaler, StandardScaler
n_estimators: 10, 20, 30, 40

max_depth: 5,15, 25, 35, 45

min_samples_split: 2,5, 10

min_samples_leaf: 1,2,4,6,8,0

criterion: gini, entropy

RandomForest

scaler: MinMaxScaler, RobustScaler, StandardScaler

hidden_layer_sizes: 50, 100, 150, 50 50, 100 50, 100 100
MLP activation: relu

alpha: Logarithmic scale from 107 to 1

learning_rate: adaptive

scaler: MinMaxScaler, RobustScaler, StandardScaler
n_neighbors: 1, 3,5 to 49

weights: uniform, distance

metric: euclidean, manhattan, chebyshev

KNeighbors

2.3. Explainability with SHAP

To interpret model decisions, we applied Shapley Additive Explanations (SHAP) [9], a post-hoc technique
based on cooperative game theory. SHAP values quantify each feature’s contribution to a model’s

prediction, enabling fine-grained attribution analyses [17]. Given a feature x;, its Shapley value ¢ is
defined as:
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where N is the set of all features and f(S) the model output when only features in S are considered.
For each emotional quadrant, we selected the best-performing model based on mean accuracy across
subjects. These models were used to compute SHAP values for each test subject and for each trial. This
enabled the identification of both shared and emotion-specific feature relevance patterns.
Moreover, to summarize feature importance, SHAP vectors were:

« averaged within each emotion to obtain quadrant-specific attribution profiles,
« ranked to identify the most influential features.

2.3.1. Inter-subject similarity

To evaluate consistency across individuals, Pearson correlation matrices were computed on SHAP
vectors for each emotion. The resulting correlations quantified the similarity in feature attribution
patterns among subjects and were summarized using boxplots to assess variability.

2.3.2. Cross-emotion comparison

To identify common or emotion-specific features, SHAP value distributions were compared across
emotional quadrants. This analysis revealed whether the same features played similar roles in different
emotional states or contributed in a differentiated, emotion-dependent manner.



3. Results and discussion

This section presents the results obtained from the EEG-based emotion classification models and the
SHAP-based feature attribution analysis, structured according to the research questions outlined in the
Section Introduction.

3.1. RQ1: How do engineered features influence EEG-based emotion classification
performance?

The impact of feature engineering on classification performance was evaluated by training multiple
machine learning models on the extracted feature set. Using LOSO, the best-performing classifier was
selected for each Russell’s emotional quadrant based on accuracy, precision, recall, and F1-score. The
performance metrics of all models are reported in Tables 2.

The results show that SVM outperformed other classifiers in three quadrants (Excited, Sad, Angry),
while Random Forest (RF) yielded the highest accuracy for the Relaxed state. The difference in model
performance suggests that linear separability in feature space is particularly relevant for these emotions,
while decision-tree-based models may better handle the variability present in low-arousal states.

Compared to the previous study introducing the NeuroSense dataset[11], which reported an average
accuracy of 75% across the four emotional quadrants, the performance obtained in this work is slightly
lower. The previous study employed MiniRocket, an algorithm that applies random convolutional
kernels followed by global max pooling, generating a high-dimensional feature space that captures
complex temporal patterns in the EEG signals. The extracted features were then classified using SVM,
benefiting from the rich and diverse representations learned through the MiniRocket transformation.

In contrast, this work relied on a feature engineering approach, extracting spectral and entropy-based
descriptors from the raw EEG signals. Although these features provided meaningful physiological in-
sights into EEG-based emotion classification, their performance was slightly lower than the MiniRocket-
based method. This suggests that convolutional feature extraction techniques, such as MiniRocket,
may be particularly effective in leveraging hidden temporal dependencies in EEG signals. In contrast,
engineered features may be better suited for improving model interpretability and explainability.

Table 2
Average performance of the ML models across the four emotions.
Model ‘ Emotion ‘ Precision ‘ Recall ‘ F1-score | Accuracy
Excited 0.69 0.70 0.69 0.69
. Relaxed 0.68 0.68 0.67 0.68
KNeighbors Sad 0.63 0.63 0.62 0.62
Angry 0.67 0.67 0.67 0.67
Excited 0.70 0.70 0.70 0.70
RandomForest Relaxed 0.70 0.70 0.70 0.70
Sad 0.65 0.66 0.65 0.65
Angry 0.68 0.68 0.68 0.68
Excited 0.66 0.66 0.66 0.66
MLP Relaxed 0.70 0.70 0.69 0.69
Sad 0.64 0.64 0.64 0.64
Angry 0.68 0.68 0.68 0.68
Excited 0.72 0.72 0.72 0.72
SVC Relaxed 0.68 0.69 0.69 0.68
Sad 0.69 0.69 0.69 0.69
Angry 0.70 0.70 0.70 0.70




3.2. RQ2: Are feature importance explanations consistent across subjects for the
same emotion?

To assess the consistency of feature attributions across subjects for a given emotional state, we computed
Pearson correlation coefficients between the SHAP value vectors of all participant pairs. The distribution
of these correlation values, summarized in the box plots of Figure 1, provides insight into the variability
of feature importance rankings across participants for all the emotions. The results showed generally
low inter-subject correlations across all four emotions, with values clustered near zero indicating high

variability.
£ E —( —‘7

Figure 1: Boxplots of pairwise SHAP value correlations across subjects for each emotional state. Each boxplot
summarizes the distribution of Pearson correlation coefficients between SHAP vectors from different participants.
Lower correlation values reflect greater inter-subject variability in feature importance.

These findings suggest that the EEG features contributing to emotion classification differ substantially
between individuals, regardless of the emotional quadrant. No specific emotion exhibited significantly
higher consistency. This inter-subject variability may stem from differences in brain physiology,
cognitive processing, or emotional perception.

Overall, the results highlight a key limitation of subject-independent models in EEG-based emotion
recognition and support the development of adaptive or personalized approaches that can accommodate
individual differences in feature attribution.

3.3. RQ3: Do different emotions rely on shared or distinct EEG features?

To investigate whether specific EEG features contribute similarly across emotions, we compared SHAP-
based feature rankings for each emotional quadrant. Figure 2 shows the top 10 most important features
for each emotional state, averaged across subjects.

The analysis revealed both shared and emotion-specific neural signatures. Excited states were
dominated by spectral features in the theta and alpha bands at frontal electrodes (AF3, AF4), consistent
with prior findings linking these rhythms to attentional engagement and arousal [18]. Relaxation was
primarily associated with beta-band kurtosis and delta-band entropy at TP9, which may reflect reduced
cortical excitability and idling activity [19].

Sad states showed a predominance of entropy-based measures—especially sample and approximate
entropy—in delta and alpha bands at frontal and temporal sites. This supports evidence that emotional
distress is associated with higher EEG complexity [20]. In contrast, anger was characterized by nonlinear
and higher-order features, including delta power and fractal dimension, consistent with increased
cortical activation and arousal [21].

From a spatial perspective (reported in Figure 3), the top features for excitement were primarily
left-lateralized (AF3), supporting the frontal asymmetry hypothesis [22], whereas relaxed and sad
states involved TP9, suggesting stronger temporal-parietal engagement [23]. Anger exhibited a more
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Figure 2: Top-10 SHAP-based features for each emotional state: (a) Excited, (b) Relaxed, (c) Sad, (d) Angry. Each
panel shows the most relevant EEG features ranked by mean SHAP values across all subjects.

bilateral distribution, which may reflect motor-preparatory activity tied to action-oriented affective
responses [24].

In terms of frequency content, theta and alpha bands were most relevant for high-arousal states
(excited, angry), while delta and beta-related entropy measures were dominant for low-arousal states
(relaxed, sad). These findings underscore the importance of combining generalizable spectral features
with emotion-specific nonlinear descriptors to effectively characterize affective EEG responses.

Overall, the results suggest that no single feature set universally applies across emotions, and that
emotion-specific feature selection strategies could enhance classification performance in EEG-based
affective computing.

4. Conclusions and future work

This study explored interpretable EEG-based emotion recognition using a low-cost, sparse-electrode
device, leveraging engineered features and SHAP analysis. Our results confirmed that spectral and
entropy-based features enable competitive classification performance, yet highlighted substantial inter-
subject variability in feature relevance.

While some EEG features showed cross-emotion generalizability, others were clearly emotion-specific,
reflecting distinct neural mechanisms. These findings emphasize the limitations of subject-independent
models and support the use of adaptive, personalized strategies in real-world affective BCI systems.

Future work will focus on dynamic feature selection and online adaptation techniques to improve
robustness and user specificity. While the current study was limited to a single dataset, we plan
to validate our findings on additional datasets to assess generalizability across acquisition setups.
Furthermore, we aim to explore hybrid pipelines that combine engineered and learned representations
to better capture complex EEG patterns without sacrificing interpretability. Finally, we intend to deepen
the neurophysiological interpretation of EEG markers by involving domain experts and integrating
insights from affective neuroscience.
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Figure 3: Spatial distribution of SHAP-based feature importance across emotional states: (a) Excited, (b) Relaxed,
(c) Sad, (d) Angry. Each panel highlights the most relevant EEG features and their associated electrode locations.
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