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Abstract

Counterfactual Explanations (CFEs) have emerged as a powerful tool for interpreting machine learning
models by illustrating alternative scenarios where key factors differ. Despite their widespread adop-
tion, the existing literature often overlooks the diverse needs and objectives of users across various
domains—ranging from guiding decision-making to understanding model behavior and assessing ro-
bustness—and their implications for CFE characteristics. As a result, CFEs frequently fail to adequately
address these distinct use cases, leading to suboptimal and sometimes misleading explanations. In
this paper, we advocate for a more user-centered approach to CFEs, emphasizing the importance of
aligning their characteristics with user objectives. We identify three primary use cases—actionable user
guidance, system understanding, and vulnerability assessment—and examine the desired properties of
CFEs in each case. By addressing these differences, we aim to inform the design and deployment of more
effective, context-aware explanations that meet the unique needs of users while ensuring the accuracy
and usefulness of the insights provided.

1. Introduction

Explainable Artificial Intelligence (XAI) has become increasingly indispensable as Al systems
are integrated into various facets of society. It aims to elucidate the opaque decision-making
processes of machine learning algorithms, offering transparency and useful insights, and
fostering trust among multiple stakeholders from Al engineers to end-users. Counterfactual
Explanations, grounded in research from philosophy [1] and psychology on counterfactual
thinking [2], explore why a particular outcome occurred by examining alternative scenarios
where key factors or events were different. In artificial intelligence, these explanations provide
insight into how alterations in input features would have influenced an Al system’s output,
thereby facilitating a deeper understanding of its behavior and decision-making mechanisms.
Due to their contrastive nature, CFEs are close to how humans perceive explanations [3],
facilitating an intuitive way to study a model’s behavior.

While numerous existing works delve into the desired characteristics of counterfactual ex-
planations [4, 5, 6, 7] and how to evaluate them [8], they often approach them with a unified
strategy encompassing multiple objectives including detecting biases, providing actionable
recourse, increasing trust, and enhancing understandability. However, this approach over-
looks the fact that the diverse needs and objectives of users across various applications and
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domains necessitate different properties for counterfactual explanations [9]. Consequently,
the explanations generated may fail to adequately address all use cases, as the requirements
for one user’s target could directly conflict with another’s. This phenomenon of conflicting
motivations and ambiguity of objectives in XAI has been thoroughly discussed in literature
[10, 11]. Our work aligns with numerous works that call for contextualized design, development,
and evaluation of explanations in terms of application [12], target audience [13, 14, 15, 16], and
end-goal [17, 6]. Therefore, there is a pressing need to distinguish between the distinct use cases
in which counterfactual explanations are applied. By doing so, we can pinpoint the specific
desired characteristics for each use case, rather than attempting to create counterfactuals that
aim to cover all scenarios, which is inherently infeasible.

In this paper, we advocate for a more nuanced understanding of counterfactual explanations,
recognizing that their desired properties vary significantly depending on user objectives and
target applications. Building on existing literature [5, 6], we identify three primary scenarios
based on user objectives and examine the key properties that CFEs should exhibit in each case.
The first case concerns actionable user guidance, where CFEs assist users in decision-making by
providing actionable guidance on how to modify inputs to achieve a specific desired outcome.
The second is system understanding, a central focus in explainable Al, where CFEs are used to
analyze model behavior across real-world inputs, offering insights into the model’s biases and
intricate decision-making mechanisms. The third is vulnerability assessment, which leverages
CFEs to identify weaknesses in a model, such as susceptibility to input perturbations, assessing
its robustness. While CFEs can support all these objectives, their effectiveness depends on
how well they align with the specific needs of each use case. For instance, CFEs designed to
guide user actions may fail to reveal deeper insights into a model’s reasoning, whereas those
tailored for system investigation may lack actionable recommendations. By acknowledging
these distinctions, we can develop more targeted and effective explanations that empower users
across different contexts, ultimately fostering more meaningful human-AI collaboration.

2. Preliminaries

In this section, we explain and briefly discuss some concepts that we use throughout this
paper. We assume that there is an Al system f under examination that accepts an input x
and produces an output f(z) = y. For example, the Al system might be an automated loan
approval system deployed by a bank. In this case, x would be a client’s application that
might include information such as age, gender, occupation, income, number of existing loans,
etc. and y would be the Al system’s decision, approve or reject. A counterfactual instance
of z is a new input z/(# z) that produces a different output y'(# y). 2’ is also generally
expected to minimize some metric ¢+ among all inputs that produce a different output, i.e.,
a! = argmin{pu(z, 2) | f(2) # y}. We further discuss this in the following paragraph. The

system tlzlat produces counterfactuals instances, may be referred to as the counterfactual
explainer or counterfactual editor. The differences between x and 2’ are also referred to as the
counterfactual edit. The counterfactual edit indicates what changes need to be made to the
input to receive a different output. In the automated loan approval example, a counterfactual
edit may suggest to a user with a rejected application, that they need to change occupation or



pay off one of their existing loans for their application to be approved.

Although, in principle, any instance 2’ # x with 4/ # y can be considered as a coun-
terfactual, most approaches require z’ to be close to x by some metric u, which offers
two key benefits. First, it ensures that the counterfactual edit—the differences between
2 and 2'—is minimal, making it easier to interpret which specific changes influence the
model’s output. This helps isolate the impact of different input features. Second, it trans-
forms the search for a suitable counterfactual into an optimization problem, where the
objective is to find the closest possible 2’ with y’ # y leveraging heuristics or established
optimization techniques. It is crucial to note that the choice of metric used to calculate the
distance between x and 2’ is not merely a technical detail; it fundamentally shapes the charac-
teristics of CFEs and is closely tied to the different scenarios and use cases analyzed in this paper.

Although valid, some counterfactual edits may lead to instances that are highly uncommon
or even unattainable in the real world. For example, it is rare for a teacher to earn an income
of $1 million, and it is impossible for someone to have an age of -1. Therefore, assessing
whether a counterfactual instance is coherent with a reference population—such as real-world
distributions—is crucial, as its plausibility can significantly impact its usefulness in different
contexts. Counterfactual instances that align with a reference population are referred to as
plausible or feasible [18, 6]. Plausible instances are also said to be close to the data manifold [7],
or in-distribution, while implausible instances are said to be far from the data manifold and
out-of-distribution (OOD).

However, even if a counterfactual instance is plausible, it may still be unattainable from the
original instance due to constraints on the actions required to achieve it. For example, while
any date could be a valid birth date, an individual cannot change their own birth date. Thus, it
is important to assess whether a plausible counterfactual instance can actually be reached from
the original input through real-world actions. Counterfactual edits that modify only mutable
features are referred to as actionable [6]. An actionable edit consists of a set of feasible changes
that can be applied to the input instance to attain the counterfactual instance. While some
features, such as date of birth, are inherently immutable, others, like occupation or income,
may be modifiable in principle, though the feasibility of such modifications can vary across
individuals. Given this variability, it is desirable for an explainer to account for user-specific
constraints when determining actionability, ensuring that counterfactual suggestions align
with real-world possibilities.

The literature discusses various properties and characteristics beyond plausibility and action-
ability that also influence the effectiveness and applicability of CFEs. For instance, counterfactual
edits that involve modifying only a few features are referred to as sparse [7], a property often
desired for clarity and interpretability. However, in this work, we focus primarily on action-
ability and plausibility, as these are the key differentiating factors among the three scenarios
analyzed in the following section.



Table 1
Desirable properties for each use case.

Use Case Plausibility — Actionability
Actionable User Guidance v v
System Understanding v

Vulnerability Assessment

3. Use Cases and User Objectives

In this section, we analyze three distinct user-objective-driven use cases of counterfactual ex-
planations, focusing on the properties of actionability and plausibility. Each use case represents
a real-world application scenario with different goals and constraints. Specifically, we examine
three key scenarios:

1. when an end-user seeks guidance on achieving a desired outcome,

2. when a user aims to investigate and understand an Al system’s behavior—such as detecting
biases, flaws, or inconsistencies on real distributions,

3. and when a user attempts to identify system vulnerabilities and strengthen defenses
against potential attacks.

As demonstrated in Table 1, actionability and plausibility are not universally desirable properties.
Instead, their relevance depends on user objectives, as they may sometimes impose constraints
that limit insights or hinder the effectiveness of the explanation. It is important to note that the
absence of a checkmark in the table does not imply that counterfactuals with these properties
are excluded. Rather, it reflects an opt-in approach, where a checkmark indicates that all
counterfactuals in that use case must exhibit the given property, rather than an opt-out approach,
where their absence would mean such counterfactuals should never be considered. For instance,
while plausible and actionable counterfactuals remain relevant in vulnerability assessment,
relying only on them would overlook important failure modes of the system. As analyzed in the
following subsections, the issue in later use cases arises when counterfactuals are constrained
to those exhibiting these properties, not from their presence itself.

3.1. Actionable User Guidance

In this use case, also known as (actionable) recourse [5, 19, 20], the end-user seeks guidance on
modifying input features to achieve a desired outcome. For instance, in the automated loan
approval system example, a bank customer whose application was rejected may want to know
what changes could increase their chances of approval. This is the most restrictive use case, as it
requires counterfactual explanations to be both actionable and plausible. Actionability ensures
that suggested modifications involve only mutable features, while plausibility guarantees
that these modifications are realistic within the reference population. Providing impractical
suggestions—such as changing one’s birthplace or attaining an impossible state, like a negative
age—would make the CFE unhelpful, as the user would be unable to act on it. The goal is to



offer meaningful and feasible recommendations that align with real-world constraints.

The choice of minimality metric also plays a crucial role in optimizing CFEs for this use
case. Some works advocate for the use of a sparsity-inducing norm such as g or [y, since it
provides the user with a small set of specific goals [21, 22]. Sometimes, these norms result in a
counterfactual edit with a big change to a single feature, which might be less attainable than a
few smaller changes. Other norms such as /5 and [, along with a sparsity-inducing penalty
might be more suitable. A different approach focuses on the cost of real-world actions. Instead
of evaluating minimality with regard to differences between the two different instances x and
2/, they work on a higher-level space of actions that a user needs to take in order to arrive
at 2’ starting from z, simultaneously addressing issues of cause and effect [23, 24, 25]. In the
example of the loan approval system, a counterfactual edit suggesting a change of occupation
may be irrelevant if it does not refer to a set of actions necessary to change occupations and
ignores that other features may have to change as a result of those actions, such as income and
education level.

3.2. System Understanding

In this use case, the user seeks to analyze and understand the behavior of the Al system
within the domain of in-distribution data. Counterfactual explanations help uncover potential
biases and inconsistencies in the model’s decision-making. In this context, plausibility is
crucial because the goal is to analyze the model’s decision-making within realistic, real-world
distributions. Allowing non-plausible counterfactuals could introduce noise and non-sensical
edits, potentially obscuring meaningful biases among irrelevant or unrealistic changes.
Conversely, if we were to restrict ourselves only to actionable edits, we would miss biases
related to immutable features—such as gender or ethnicity—which are often at the core
of discriminatory behavior in Al systems. Many real-world biases manifest in decisions
that treat individuals differently based on characteristics they cannot change, so excluding
counterfactuals that vary these attributes would prevent us from fully diagnosing such issues.
For instance, an Al engineer developing a loan approval or candidate screening system may
investigate whether the model exhibits biases related to sensitive attributes such as gender
or skin color. The engineer may also assess whether the model’s decisions align with human
intuition and logical reasoning. For example, if a counterfactual edit suggests that reducing
one’s income would increase the likelihood of loan approval, it would be counter-intuitive,
possibly indicating an unexpected flaw in the system’s behavior. Presenting a multitude of
counterfactuals is very important in this use case since their contrast can reveal biases. For
instance, one counterfactual edit might suggest an increase of income by $10,000 to secure loan
approval, while another might suggest an increase of income by $1,000 and a change of gender.
This looser income requirement for a different gender would reveal a potential gender bias.

In such cases, the choice of minimality metric depends on the focus of the investigation.
When stress-testing for specific biases, it is often beneficial to isolate certain sensitive features or
heavily penalize non-sensitive alterations. This can be achieved through proper customization
of the minimality metric. Conversely, when the goal is a broader understanding of model



behavior, norm-based metrics such as /; or l5 are commonly used.

3.3. Vulnerability Assessment

In this use case, the user aims to identify potential weaknesses or vulnerabilities in the
Al system. Counterfactual explanations serve as a tool to assess the model’s robustness
against small perturbations or out-of-distribution inputs. For instance, a security engineer
may want to test whether slight modifications to input data—such as leaving fields empty,
providing invalid values, or introducing minor inconsistencies—could compromise the system’s
integrity. The primary emphasis here lies on robustness, where considerations of plausibility
and actionability pose potential conflicts with the user’s objectives as they could hinder
the detection of vulnerabilities involving random noise or out-of-distribution permutations.
Imperceptible changes to the input that significantly alter the output, commonly known as
adversarial examples [26] also fall under this category. Although typically treated as a distinct
concept, sometimes explicitly suppressed by counterfactual explainers, they are, in essence, a
specific case of counterfactual edits. Rather than viewing them as a separate phenomenon, it is
preferable to specify whether a given counterfactual explainer accommodates this use case.

For such robustness assessments, norm-based metrics are generally preferred for minimality,
as they focus on small perturbations that influence the output without necessarily having
semantic meaning. Counterfactual edits with low norm minimality are particularly useful, as
they identify points on the data manifold that are very close to the original input, allowing
for a fine-grained evaluation of the system’s resilience. However, the choice of norm metric
still impacts the nature of the generated counterfactuals. For example, in the domain of image
classifiers, some editors employ the /[y norm to change a single, or very few, pixels [27], while
others use the l2 norm to produce a set of many tiny changes that are imperceptible to the
human eye [28]. Both are valid approaches with different implications for robustness testing.
To comprehensively assess a system’s vulnerabilities, a variation of such metrics should be
considered to ensure that different types of adversarial weaknesses are adequately explored.

4. Conclusions

In this paper, we underscore the importance of a nuanced understanding of counterfactual
explanations. By recognizing the variability in desired properties based on user objectives and
target applications, we have advocated for a tailored approach to the design and development
of CFEs. Our analysis of three main user objectives and their relation to the key concepts
of plausibility and actionability has revealed that the desired characteristics of CFEs differ
significantly depending on the end task, highlighting the necessity of considering user needs
in the explanation process. Through this study, we have demonstrated the limitations of a
one-size-fits-all approach to CFEs and emphasized the need for customized explanations that
address the specific requirements of users across diverse scenarios.
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