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Abstract

Large Language Models (LLMs) excel at text classification but remain difficult to interpret. Traditional methods
like Local Interpretable Model-Agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP) rely on
input perturbations, requiring thousands of model passes, which makes them computationally expensive and
unscalable for large models. To address this, we propose a structured learning framework that estimates word
importance using a Siamese neural network, eliminating the need for perturbations. Our approach generates
one-shot explanations, reducing computation by four orders of magnitude for BERT. Evaluated on an emotion
classification and depression classification tasks, it achieves over 90% agreement with LIME. It demonstrates
strong robustness, offering a scalable alternative to explain language model-based classification tasks.

1. Introduction

The adoption of LLMs in text classification has significantly improved performance across tasks such
as emotion recognition, sentiment analysis, and medical diagnosis [1]. Despite their success, LLMs
remain inherently opaque due to their complex architectures comprising billions of parameters. This
lack of interpretability hinders trust and limits their applicability in sensitive domains like healthcare
and finance [1]. Explainable Al (XAI) methods aim to enhance transparency by providing insights into
model predictions [1]. The state-of-the-art XAl algorithms, such as LIME [3] and SHAP [4] approximate
a model’s behaviour in a localized region by analyzing the impact of perturbations on input features.
For example, if the input sentence is "I am so susceptible to feeling insecure when I see people having
a good time" then the emotion classifier identifies sad emotion in this sentence. Then to explain this
decision, LIME assigns higher scores to the words such as susceptible and insecure in the input sentence.

As shown in Figure 1, LIME operates by systematically perturbing the input text and analyzing the
resulting changes in model predictions. While effective, this approach is inherently computationally
expensive, requiring thousands of perturbed inputs per explanation. The inefficiency becomes particu-
larly problematic when applied to LLMs, where repeated inference on perturbed samples introduces
significant overhead. To overcome the complexity, as shown in Figure 2, this work, named PFLex,
proposes a novel deep-learning architecture which does not require perturbing the input sentence,
hence significantly reducing the complexity.

1.1. Motivation

Transformers and LLMs have revolutionized NLP by using self-attention to model long-range dependen-
cies [2]. They process sequences in parallel, capturing contextual relationships via multi-head attention.
Word tokens, mapped to dense embeddings, represent semantic properties. Special tokens like [CLS]
aggregate sentence information. Through transformer layers, embeddings evolve, refining the model’s
decisions.
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Figure 1: Block diagram illustrating LIME-based word importance estimation for text classification.
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Figure 2: Block diagram illustrating the proposed PFLex approach for word importance estimation for text
classification.

Intuitively, words critical to the classification task (i.e., emotion) should be more aligned with the
[CLS] embedding. In the example sentence provided earlier, the distance (i.e., Euclidean) between the
[CLS] embedding and the embeddings of the tokens [susceptible] and [insecure] should be smaller
than the distance between [CLS] and other tokens’ embeddings such as [having]. To validate this
hypothesis, we randomly selected 100 sentences with different emotions. Then we obtain the LIME
word importance score for all the words in each sentence. For the words with higher importance
scores, we measured the Euclidean distance between the word embeddings and the [CLS] embedding at
various layers of a fine-tuned BERT model. As depicted in Figure 3, in the first layer, words identified as
important by LIME tend to have greater distances from the [CLS] token. However, in the final layer, the
same high-importance words cluster much closer to the [CLS] token, supporting our intuition.

While this observation supports our intuition, directly applying Euclidean distance to the embeddings
is insufficient to extract the word importances perfectly. The relationship between word embeddings and
classification decisions is non-linear. However, we can train a neural network to capture the non-linear
relationship and extract the hidden word importance scores. The aim of the neural network should be
to increase the word importance score for important words and decrease the word importance score for
other words.

A Siamese neural network architecture [6] is particularly well-suited for this task. By employing
two identical subnetworks, the Siamese architecture processes both the [CLS] token embedding and
individual word embeddings in a shared representation space. The network is trained to maximize
similarity for words with high feature importance while minimizing similarity for less relevant words. To
validate the idea, we evaluated our approach on fine-tuned BERT models for emotion classification [18]
and depression classification [19] using the Twitter sentiment dataset’ and Reddit Depression Dataset °.
The experimental results show more than 90% agreement with the LIME-based word importance score
while improving efficiency by four orders of magnitude for BERT model. It should be noted that the

'Elkomy, A. (2024). Twitter Emotion Dataset: Unveiling the Emotional Tapestry of Social Media. Available at: https:
/Iwww.kaggle.com/datasets/adhamelkomy/twitter-emotion-dataset/data.
*Depression: Reddit Dataset (Cleaned) (2020), https://www.kaggle.com/datasets/infamouscoder/depression-reddit-cleaned.
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Figure 3: Comparison of Euclidean distance between [CLS] and [word] versus LIME-based word importance at
different layers of BERT.

savings would increase with the larger models. Stress tests further validate its robustness, making it a
scalable alternative for LLM explainability.

2. Literature Review

We review three types of XAI approaches in this section.

2.1. Feature Attribution-Based Explanations

Feature attribution methods quantify the contribution of individual input words to a model’s prediction.
Prominent techniques include LIME [3] and SHAP [4], which have been widely adopted in text-based
decision systems [7]. These methods typically operate by perturbing inputs or applying game-theoretic
principles to assess feature importance. For instance, LIME [3] generates perturbed variations of the
original input by omitting or replacing words and observes how these changes affect predictions. It then
fits an interpretable surrogate model to approximate the original model’s decision boundary. SHAP [4],
on the other hand, leverages Shapley values to attribute importance scores based on cooperative game
theory, capturing both individual and interaction effects of words. Despite their effectiveness, these
methods are computationally intensive. LIME and SHAP require the generation of multiple perturbed
samples per input, leading to high inference costs, particularly for large-scale LLMs.

2.2. Example-Based Explanations

This approach includes adversarial examples and counterfactual explanations. As studied in [8], ad-
versarial examples involve minimally altered inputs that cause misclassification, exposing model vul-
nerabilities. While valuable, these methods face challenges in computational cost and example quality.
TEXTFOOLER [8], for instance, generates adversarial inputs via synonym substitution, which can be
costly. Similarly, crafting meaningful counterfactual explanations requires careful input modifications
to ensure interpretability. Recent advancements, such as Uni-Modal Event-Agnostic Knowledge Distil-
lation (UEKD) [9] for multimodal fake news detection and LLM Sentinel (LLAMOS) [10] for adversarial
defense, have improved the robustness of example-based explanations. Interactive XAI systems like
TalkToModel [12] also enhance user understanding by facilitating human-model interactions, though
ensuring explanation validity remains a challenge.

2.3. Attention-Based Explanations

Attention-based explanations leverage the inherent attention mechanisms within transformer models
to provide insights into their decision-making process. These methods typically utilize attention
weights to highlight influential features. For instance, [13] proposes a text classification method that
combines keyword-based approaches with attention mechanisms. Similarly, AttentionViz [14] leverages
attention patterns to reveal relationships within the model. However, recent research has highlighted
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Figure 4: The training architecture diagram for the proposed PFLex approach.

the limitations of relying solely on attention weights for faithful explanations. The study in [15] has
demonstrated that attention weights may not always accurately reflect the true importance of input
features and can even be misleading in certain cases [16]. These limitations stem from the fact that
attention weights can encode information beyond feature importance, leading to misinterpretations

[17].

3. Methodology

3.1. Training Data Construction

To train a perturbation-free word importance model, we use LIME-generated scores as ground truth.
Sentences are passed through a fine-tuned BERT for emotion predictions. LIME perturbs words, trains a
surrogate model, and assigns importance scores. These scores are used as labels. Sentences are converted
to word-CLS embedding pairs, framing the task as word similarity estimation. With approximately
1000 sentences per class and the average length of 30 words, the dataset contains around 200,000 word
embeddings for emotion classification and 60,000 for depression classification.

3.2. Siamese Network Architecture and Training

Let us denote the [CLS] token embedding as h,;s, word embeddings as h,, and word importance score as
fIy. To model the relationship between word embeddings and their importance, we employ a Siamese
network [6]. As shown in Figure 4, the network consists of two identical subnetworks that transform
the [CLS] token embedding and word embeddings into a shared representation space. The objective is
to maximize similarity for words with high importance and minimize similarity for less relevant words.
Our network consists of two fully connected layers with ReLU activation and dropout for regularization.
The transformation function is given by:

€cls = W(hcls)7 €y = W(hw) (1)
The similarity between transformed embeddings is computed using Cosine similarity:

sim(egs, €y) = Oels " Cuw (2)
lecis|l[[ew
To train the network, we use GRPO. GRPO is a reinforcement learning-inspired optimization strategy
designed to stabilize learning and improve convergence in policy-based learning tasks. In our context,
GRPO is employed to fine-tune the Siamese network such that words with higher feature importance
scores align more closely with the [CLS] token in the learned representation space. The loss function
we used to train the model is defined as follows:

G G
L=— Z FID . sim(eys, €w) + A Z sim(es, €y )>. (3)
i=1

i=1
where ) is a granularity factor which is selected as 1 in this context and G denotes the group of words
selected for a given epoch. The first term in the loss function attempts to increase f LL(UZ ). sim(es, €w)-
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Figure 5: Feature importance obtained via the proposed PFLex method.

Therefore, if the word is important for the classification (i.e., f1, 1(5 ) is positive) then the network optimises
the weights such that sim(e.;, €,) is positive. On the other hand, if the word is not important for

the classification (i.e., f L(UZ ) is negative) then the neural network weights are optimised such that the
sim(es, €y ) is negative. Due to the requirement for both positive and negative similarity scores, Cosine
similarity was employed. However, to mitigate the tendency of similarity scores to converge towards
extreme values of +1 or —1 during loss minimization, a regularization term, A Zfil sim(eqs, ey),
was incorporated into the loss function (Equation 3). This term serves to discourage the attainment of
maximum or minimum similarity values, thereby stabilizing the training process.

4. Experimental Setup

We validated our method using fine-tuned BERT models [18, 19] (110M parameters, 12 layers, 93.4%
emotion, 98.8% depression accuracy). Datasets: Twitter emotion (6 classes, 1000/200 train/test per
class, ~ 30 words/Tweet) and Reddit depression (2 classes, 800/200 train/test per class). CLS-word
embedding pairs with LIME-derived importance scores (—1 to 1) were created (~ 200, 000 emotion,
~ 50,000 depression embeddings). The Siamese network (two subnetworks, 784 — 512 — 128 —
64 layers, ReLU, 20% dropout) transformed embeddings into a latent space. Cosine similarity (1) was
computed and optimized using loss (3), Adam (1 x 10~* learning rate), and 300 epochs. Feature
extraction and training (6000 sentences) took ~ 1 hour each on a 16GB RAM, RTX 2080 GPU system.

5. Experimental Results

To qualitatively assess our method, we generate heatmaps illustrating word importance as determined
by PFLex for selected test sentences (Figure 5). The visual representation reveals a clear correspondence
with PFLex’s importance scores. To quantify the proposed approach, we perform a stress test comparing
PFLex against LIME below.

5.1. Stress test

A stress test evaluates feature importance faithfulness by perturbing input data and observing its impact
on model predictions. In text classification, this involves removing important words (e.g., by LIME
or PFLex) and measuring the accuracy drop. Significant degradation upon removal indicates genuine
feature importance. We performed the stress test to measure the faithfulness of the proposed PFLex
approach. As shown in Figure 6, the removal of the most important features leads to a sharp decline in
overall accuracy for both tasks. With all features present, the original model achieves a high accuracy
of 93% and 98% for emotion and depression tasks. However, for the emotion task, when the single
most important word is removed, accuracy drops drastically to 19.77% using LIME and 34.20% using
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Figure 6: Overall classification accuracy for both the emotion and depression classification declines as the most
important features are removed, comparing LIME-based and PFLex-based feature importance.
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Figure 7: The histograms depict the frequency of cosine similarity measurements when retaining (1) all features,
and (2) the top 10% of highly influential words between LIME and PFLex.

PFLex. This pattern continues with additional removals, reinforcing the critical role these top-ranked
words play in determining model predictions. A similar pattern was observed for the depression task,
validates the effectiveness of PFLex as a perturbation-free alternative to LIME.

5.2. Evaluating Alignment Between LIME and PFLex Feature Importance Scores

To assess the agreement between LIME and PFLex feature importance rankings, we computed cosine
similarity scores between their word-level importance values. The analysis was conducted under
varying levels of feature selection, progressively filtering out less significant words to focus on the
most impactful ones. The histograms in Figure 7 illustrate how this similarity evolves across different
filtering thresholds. When all features are considered, the cosine similarity between LIME and PFLex
exhibits a wider spread (showing only 60% correlation), indicating moderate alignment. However,
when we consider the top 10% of words with the highest absolute importance scores—the correlation
reaches more than 90% between the two methods. This supports the hypothesis that PFLex effectively
identifies the most crucial features in a manner that closely aligns with LIME, particularly for the most
influential words in a sentence.

5.3. Complexity Comparision

Figure 8 shows the comparison between LIME and PFLex in terms of execution time and computational
cost. In terms of execution time, LIME exhibits a substantial processing delay due to its perturbation-
based approach. For small sentences (10 words), LIME takes approximately 5 seconds, whereas PFLex
completes the explanation in just 0.52 seconds, achieving nearly a 10-time speedup. This disparity
becomes even more pronounced as sentence length increases. For medium-length sentences (20 words),
LIME requires 7.13 seconds, while PFLex remains highly efficient at 0.54 seconds. The most striking
difference occurs for long sentences (30 words), where LIME takes an overwhelming 40.77 seconds,
whereas PFLex maintains a stable processing time of just 0.55 seconds.

The computational cost analysis, shown in the second bar chart, further emphasizes the advantage of



Execution Time Comparison (LIME vs PFLex) Computational Cost Comparison (FLOPs)

- IMF - IMF
m PFlex m— PFlex
10000

8000

6000

FLOPs (G)

4000

2000 .l 1‘1876 |

o0l
Small (10 words) Medium (20 words) Long (30 words) Small (10 words) Medium (20 words) Long (30 words)
Sentence Length Sentence Length

2.72G |

Figure 8: Comparison of Execution Time and Computational Cost for LIME vs. PFLex. (Left) Execution time
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PFLex over LIME. LIME requires a substantial number of FLOPs due to the repeated inference steps
needed to generate perturbed samples. For small sentences, LIME requires 261G FLOPs, while PFLex
completes the task with just 1.02G FLOPs, representing a reduction of over 99% in computational
complexity. This efficiency gain is even more pronounced for long sentences, where LIME demands
11, 147G FLOPs, compared to only 2.72G FLOPs for PFLex. Overall, the results demonstrate that PFLex
offers a significantly more scalable and computationally efficient solution compared to LIME.

6. Conclusions and Future Works

We introduced PFLex, a perturbation-free method for word-level feature importance in LLMs, using a
Siamese network to directly map embeddings to importance scores. PFLex achieves LIME-comparable
feature attribution with orders-of-magnitude lower computational cost. Quantitative, qualitative, and
stress tests validate PFLex’s effectiveness, showing high agreement with LIME and robustness. Analysis
of [CLS] embeddings supports our approach’s theoretical basis.

6.1. Future Works

Despite its strong performance, there remain areas for further improvement. One limitation is that PFLex
relies on precomputed feature importance scores from LIME during training, which may introduce biases
from perturbation-based methods. Future research will explore alternative self-supervised objectives to
learn feature importance directly from the model’s internal representations without requiring external
supervision.

By bridging the gap between computational efficiency and interpretability, PFLex presents a promising
direction for scalable, real-time explainability in LLMs. Future developments in this space could lead to
even more lightweight and adaptable XAI techniques, ensuring that explainability remains accessible
and practical for modern NLP applications.
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